SOME WEIGHTED INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GEOMATRICALLY-QUASI CONVEX FUNCTIONS ON THE ARGUMENTS

Wajeeha Irshad ${ }^{1}$, M. A. Latif ${ }^{2}$, M. Iqbal Bhatti ${ }^{1}$
${ }^{1}$ Department of Mathematics, Univarsity of Enginering and Technlogy, Lahore, Pakistan.
${ }^{2}$ School of Computasional and Appllied Mathemetics, University of Witwatersrund, Privatte Bagge 3, Wits 2050, Johsannesburg, South Africa.
Contact: Wajeeha Irshad, wchattha@hotmail.com

ABSTRACT: In the present paper, the concept of geometrical quasi convex functions on the argument is instigated. By using the concept of geometrically quasi convexity of a function on the argument, Hermite-Hadamard type inequalities for this category of functions are established.
Key words: Convex function, argumented GA-convex function, Hölder's integral integral inequality, Geometrically quasi convex functions, Hermite-Hadamard type inequality

1. INTRODUCTION

An operation $f: L \subseteq \mathbb{R} \rightarrow \mathbb{R}$ forenamed as convex in a classical touch [1], if this lack of equality

$$
f(\sigma e+(1-\sigma) k) \leq \sigma f(e)+(1-\sigma) f(k)
$$

exists for every $e, k \in L$ and $\sigma \in[0,1]$.
Indeed, a vast literature has been registered on inequalities utilizing traditional convexity, but one of the most celebrated is the hermit-Hadammard inequality. This double inequality is broadcast as succeeding :
Authorize $f: L \subseteq \mathbb{R} \rightarrow \mathbb{R}$ to be a function and $\mu, w \in L$ with $\mu<w$. Then f is convex on $[\mu, w]$ if
$f\left(\frac{\mu+w}{2}\right) \leq \frac{1}{w-\mu} \int_{\mu}^{w} f(e) d e \leq \frac{f(\mu)+f(w)}{2}$.
It is well-known that notion of quasi-convex functions as given in the definition below, which generalizes the notion of convex functions. Evidently, every convex function is a quasi-convex function.
Definition 1: A function $f: L \subseteq \mathbb{R} \rightarrow \mathbb{R}$ aforesaid as quasi-convex if
$f(\sigma \mu+(1-\sigma) w) \leq \max \{f(\mu), f(w)\}$
exists for all $\mu, w \in L$ and $\sigma \in[0,1]$.
In what follows, we will consider $I=[m, b]$ and $J=[c, d]$ with $m<b$ and $c<d$.
Definition 2 [2]: A function $f: \Delta \rightarrow \mathbb{R}$ is aforementioned to be convax over arguments on
Δ in case that partial mappings $f_{k}: I \rightarrow \mathbb{R}, f_{k}(u)=f(u, k)$ and $f_{e}: J \rightarrow \mathbb{R}, f_{e}(v)=f(e, v)$ are convex where denominate for every $e \in I, k \in J$.
Remark 1 [3]: It is clear that if a function $f: \Delta \rightarrow \mathbb{R}$ is convex over arguments on Δ. Then
$f(e+(1-\sigma) z, \rho k+(1-\rho) w)$

$$
\begin{aligned}
& \leq \sigma \rho f(e, k)+\sigma(1-\rho) f(e, w) \\
& +\rho(1-\sigma) f(z, k)+(1-\sigma)(1-\rho) f(z, w)
\end{aligned}
$$

$e, z \in$
holds for all $(\sigma, \rho) \in[0,1] \times[0,1]$ and
$\mathrm{I}, k, w \in \mathrm{~J}$.
It is well-known that every convex averaging $f: \Delta \rightarrow \mathbb{R}$ is convex on the arguments, but counter pole may not permitted to be accurate [2].
The upcoming inequalities of Hermmite-Hadammard sort of augmented convex functions on the rectangle from the plane \mathbb{R}^{2} were settled in [5].
Theorem 1: Pretend $f: \Delta \rightarrow \mathbb{R}$ to be argumented convex on Δ, [4] then

$$
f\left(\frac{m+b}{2}, \frac{c+d}{2}\right)
$$

$\leq \frac{1}{2}\left[\frac{1}{b-m} \int_{m}^{b} f\left(e, \frac{c+d}{2}\right) d e+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{m+b}{2}, k\right) d k\right]$

$$
\begin{gather*}
\quad \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(e, k) d k d e \\
\leq \frac{1}{4}\left[\frac{1}{b-m} \int_{a}^{b}[f(e, c)+f(e, d)] d e\right. \\
\left.\quad+\frac{1}{d-c} \int_{c}^{d}[f(m, k)+f(b, k)] d k\right] \\
\leq \frac{f(m, c)+f(m, d)+f(b, c)+f(b, d)}{4} \tag{3}
\end{gather*}
$$

The raised inequalities are sharp.
Definition 3 [5]: A action $f: \Delta \subseteq(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ is geometrically quasi-convex on Δ, with $\mathrm{m}<\mathrm{b}$ and $c<d$ if $f(\rho e+(1-\rho) z, \rho k+(1-\rho) w)$

$$
\leq \max \{f(e, k), f(e, w), f(z, k), f(z, w)\}
$$

holds for all $(e, k),(z, w) \in \Delta$ and $\rho \in[0,1]$.

2. WEIGHTED INEQUALITIES FOR ARGUMENTED GEOMETRICALLY QUASI CONVEX FUNCTIONS

Now we will introduce the definition of the geometrically quasi-convex functions.
Definition 4: A activity $f: \Delta \subseteq(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ is geometrically quasi-convex on the arguments on Δ, with $m<b$ and $c<d$ if

$$
f\left(e^{t} z^{1-t}, k^{\rho} w^{1-\rho}\right)
$$

$\leq \max \{f(e, k), f(e, w), f(z, k), f(z, w)\}$
holds for all $(e, k),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
and

$$
\begin{gather*}
f(\rho e+(1-\rho) z, \rho k+(1-\rho) w) \\
\leq f\left(e^{\rho} z^{1-\rho}, k^{\rho} w^{1-\rho}\right) \tag{4}
\end{gather*}
$$

$\leq \max \{f(e, k), f(e, w), f(z, k), f(z, w)\}$
We will use the following notations, in regard of amenity

$$
\begin{aligned}
& \psi_{1}(t)=m^{\frac{1+t}{2}} b^{\frac{1-t}{2}}, \psi_{2}(s)=c^{\frac{1+s}{2}} d^{\frac{1-s}{2}} \\
& \Omega_{1}(t)=m^{\frac{1-t}{2}} b^{\frac{1+t}{2}}, \Omega_{2}(s)=c^{\frac{1-s}{2}} d^{\frac{1+s}{2}}
\end{aligned}
$$

To obtain ou principal emanation, we first establish the following weighted identity.
Lemma 1: Suppose that $f: \Delta \subseteq(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ has second order partial derivatives on Δ° and $I \times J \subseteq \Delta^{\circ}$. If $h: I \times J \rightarrow[0, \infty)$ is twice partially differentiable mapping and $f_{t s} \in L(I \times J)$, then the upcoming identity exists
$\Phi(m, b, c, d ; f, h)=h(m, c) f(m, c)$
$-h(m, d) f(m, d)-h(b, c) f(b, c)+h(b, d) f(b, d)$
$+\int_{c}^{d} h_{k}(m, k) f(m, k) d k-\quad \int_{c}^{d} h_{k}(b, k) f(b, k) d k$
$-\int_{a}^{b} h_{e}(e, d) f(e, d) d e+\int_{a}^{b} h_{e}(e, c) f(e, c) d e$

Sci.Int.(Lahore),28(1),31-35,2016
ISSN 1013-5316; CODEN: SINTE 8

$$
\begin{gathered}
=\frac{(\ln b-\ln m)(\ln d-\ln c)}{4} \\
\times\left[\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s) h\left(\psi_{1}(t), \psi_{2}(s)\right)\right.
\end{gathered}
$$

$\times f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right) d s d t$ $+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s) h\left(\Omega_{1}(t), \psi_{2}(s)\right)$
$\times f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right) d s d t$

$$
\begin{align*}
+ & \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s) h\left(\psi_{1}(t), \Omega_{2}(s)\right) \\
& \times f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right) d s d t \\
+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) & \Omega_{2}(s) h\left(\Omega_{1}(t), \Omega_{2}(s)\right) \\
& \left.\times f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right) d s d t\right] . \tag{5}
\end{align*}
$$

Proof. By switching of the variables $e=a^{\frac{1+t}{2}} b^{\frac{1-t}{2}}, k=$ $c^{\frac{1+s}{2}} d^{\frac{1-s}{2}}$ and by integration by parts with respect to k and then with respect to e, we have

$$
\begin{align*}
& \frac{(\ln b-\ln m)(\ln d-\ln c)}{4} \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s) h\left(\psi_{1}(t), \psi_{2}(s)\right) \\
& \times f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right) d s d t \\
& \begin{array}{r}
=\int_{a}^{\sqrt{m b}} \int_{c}^{\sqrt{c d}} h(e, k) f_{e k}(e, k) d k d e \\
\quad=h(\sqrt{m b}, \sqrt{c d}) f(\sqrt{m b}, \sqrt{c d}) \\
-h(m, \sqrt{c d}) f(m, \sqrt{c d})-h(\sqrt{m b}, c) f(\sqrt{m b}, c) \\
\quad+h(m, c) f(m, c)+\int_{c}^{\sqrt{c d}} h_{y}(m, y) f(m, y) d y \\
\quad-\int_{c}^{\sqrt{c d}} h_{k}(\sqrt{m b}, k) f(\sqrt{m b}, k) d k \\
\quad-\int_{m}^{\sqrt{m b}} h_{e}(e, \sqrt{c d}) f(e, \sqrt{c d}) d e \\
\quad+\int_{m}^{\sqrt{m b}} h_{e}(e, c) f(e, c) d e \\
\quad+\int_{m}^{\sqrt{m b}} \int_{c}^{\sqrt{c d}} h_{e k}(e, k) f(e, k) d k d e
\end{array}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
& \frac{(\ln b-\ln m)(\ln d-\ln c)}{4} \int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s) h\left(\Omega_{1}(t), \psi_{2}(s)\right) \\
& \times f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right) d s d t \\
& = \\
& \quad h(b, \sqrt{c d}) f(b, \sqrt{c d})-h(b, c) f(b, c) \\
& \quad-h(\sqrt{m b}, \sqrt{c d}) f(\sqrt{m b}, \sqrt{c d}) \\
& + \\
& \quad h(\sqrt{m b}, c) f(\sqrt{m b}, c) \\
& \quad-\int_{c}^{\sqrt{c d}} h_{k}(b, k) f(b, k) d k \\
& \quad+\int_{c}^{\sqrt{c d}} h_{k}(\sqrt{m b}, k) f(\sqrt{m b}, k) d k \\
& \quad-\int_{\sqrt{m b}}^{b} h_{e}(e, \sqrt{c d}) f(e, \sqrt{c d}) d e \tag{7}\\
& +
\end{align*}
$$

$$
\begin{gather*}
\frac{(\ln b-\ln m)(\ln d-\ln c)}{4} \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s) h\left(\psi_{1}(t), \Omega_{2}(s)\right) \\
\quad \times f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right) d s d t \\
=h(\sqrt{m b}, d) f(\sqrt{m b}, d)-h(m, d) f(m, d) \\
-h(\sqrt{m b}, \sqrt{c d}) f(\sqrt{m b}, \sqrt{c d})+h(m, \sqrt{c d}) f(m, \sqrt{c d}) \\
-\int_{c}^{\sqrt{c d}} h_{k}(\sqrt{m b}, k) f(\sqrt{m b}, k) d k \\
\\
+\int_{c}^{\sqrt{c d}} h_{k}(m, k) f(m, k) d k \\
\quad-\int_{m}^{\sqrt{m b}} h_{e}(e, d) f(e, d) d e \\
\quad+\int_{m}^{\sqrt{m b}} h_{x}(e, \sqrt{c d}) f(e, \sqrt{c d}) d e \tag{8}\\
+\int_{m}^{\sqrt{m b}} \int_{\sqrt{c d}}^{d} h_{e k}(e, k) f(e, k) d k d e
\end{gather*}
$$

and

$$
\begin{gathered}
\frac{(\ln b-\ln m)(\ln d-\ln c)}{4} \int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s) h\left(\Omega_{1}(t), \Omega_{2}(s)\right) \\
\quad \times f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right) d s d t \\
=h(b, d) f(b, d)-h(b, \sqrt{c d}) f(b, \sqrt{c d}) \\
-h(\sqrt{m b}, d) f(\sqrt{m b}, d)+h(\sqrt{m b}, \sqrt{c d}) f(\sqrt{m b}, \sqrt{c d}) \\
-\int_{\sqrt{c d}}^{d} h_{k}(b, k) f(b, k) d k+\int_{\sqrt{c d}}^{d} h_{k}(\sqrt{m b}, k) f(\sqrt{m b}, k) d k \\
\quad-\int_{\sqrt{m b}}^{b} h_{e}(e, d) f(e, d) d e \\
\quad+\int_{\sqrt{m b}}^{b} h_{e}(e, \sqrt{c d}) f(e, \sqrt{c d}) d e \\
\quad+\int_{\sqrt{m b}}^{b} \int_{\sqrt{c d}}^{d} h_{e k}(e, k) f(e, k) d k d e
\end{gathered}
$$

Adding (6)-(9), we get the wanted identification. This accomplishes the proof of the Lemma.
Lemma 2: Pretent $u, v>0, \eta, \epsilon \in \mathbb{R}$ and $\eta \neq 0$. Then $\zeta(u, v ; \epsilon, \eta)=\int_{0}^{1}(1-\epsilon t) u^{\frac{1}{2}+\eta t} v^{\frac{1}{2}-\eta t} d t$
$= \begin{cases}\frac{\epsilon \epsilon^{\frac{1}{2}-\eta} u^{\frac{1}{2}}\left[L\left(u^{\eta}, v^{\eta}\right)-u^{\eta}\right]}{\eta(\ln u-\ln v)}+v^{\frac{1}{2}-\eta} u^{\frac{1}{2}} L\left(u^{\eta}, v^{\eta}\right), & u \neq v, \\ \frac{u\left[1-(1-\epsilon)^{2}\right]}{2 \epsilon}, & u=v,\end{cases}$
where $L(u, v)$ is the logarithmic mean

$$
L(u, v)= \begin{cases}\frac{v-u}{\ln v-\ln u}, & u \neq v \\ u, & u=v\end{cases}
$$

Proof. The proof follows by integration by parts.
Theorem 2: Permit $f: \Delta \subseteq(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ be a twice partially differentiable mapping on Δ° and $\mathrm{I} \times J \subseteq \Delta^{\circ}$. If $h: I \times J \rightarrow[0, \infty)$ is a twice partially differentiable mapping such that $f_{t s} \in L(I \times J)$ and $\left|f_{t s}\right|^{q}$ is geometrically quasi-convex on the arguments for $q \geq 1$, then it authority the inequality:
$|\Phi(m, b, c, d ; f, h)| \leq(\ln b-\ln a)(\ln d-\ln c)\|h\|_{\infty}$ $\times\left\{\zeta\left(m, b ; 0, \frac{1}{2}\right) \zeta\left(c, d ; 0, \frac{1}{2}\right) M_{1}(f)\right.$

$$
\begin{align*}
& \quad+\zeta\left(m, b ; 0,-\frac{1}{2}\right) \zeta\left(c, d ; 0, \frac{1}{2}\right) M_{2}(f) \\
& \quad+\zeta\left(m, b ; 0, \frac{1}{2}\right) \zeta\left(c, d ; 0,-\frac{1}{2}\right) M_{3}(f) \\
& \left.+\zeta\left(m, b ; 0,-\frac{1}{2}\right) \zeta\left(c, d ; 0,-\frac{1}{2}\right) M_{4}(f)\right\}, \tag{10}
\end{align*}
$$

where $\|h\|_{\infty}=\sup _{(e, k) \in \mathrm{I} \times \mathrm{J}} h(e, k) \quad$ and $\quad \zeta(u, v ; \epsilon, \eta) \quad$ is prescribed in Lemma 2, and

$$
\begin{aligned}
M_{1}(f)= & \max \left\{\left|f_{t s}(\sqrt{m b}, \sqrt{c d})\right|,\left|f_{t s}(\sqrt{m b}, c)\right|,\right. \\
& \left.\left|f_{t s}(m, \sqrt{c d})\right|,\left|f_{t s}(m, c)\right|\right\} \\
M_{2}(f)= & \max \left\{\left|f_{t s}(\sqrt{m b}, \sqrt{c d})\right|,\left|f_{t s}(\sqrt{m b}, c)\right|,\right. \\
& \left.\left|f_{t s}(b, \sqrt{c d})\right|,\left|f_{t s}(b, c)\right|\right\} \\
M_{3}(f)= & \max \left\{\left|f_{t s}(\sqrt{m b}, \sqrt{c d})\right|,\left|f_{t s}(\sqrt{m b}, d)\right|\right. \\
& \left.\left|f_{t s}(m, \sqrt{c d})\right|,\left|f_{t s}(m, d)\right|\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{4}(f)= \max \left\{\left|f_{t s}(\sqrt{m b}, \sqrt{c d})\right|,\left|f_{t s}(\sqrt{m b}, d)\right|\right. \\
&\left.\left|f_{t s}(b, \sqrt{c d})\right|,\left|f_{t s}(b, d)\right|\right\}
\end{aligned}
$$

Proof. From Lemma 1, we have

$$
\begin{align*}
& |\Phi(m, b, c, d ; f, h)| \leq \frac{(\ln b-\ln m)(\ln d-\ln c)\|h\|_{\infty}}{4} \\
& \quad \times\left[\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right| d s d t\right. \\
& \quad+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right| d s d t \\
& \quad+\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
& \left.+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t\right] . \tag{11}
\end{align*}
$$

Now by using Hölder's inequality for double integrals and by the geometrically quasi-convexity of $\left|f_{t s}\right|^{q}$ on the arguments on $I \times J$ for $q \geq 1$, we acquire

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right| d s d t \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s) d s d t\right)^{1-\frac{1}{q}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s) d s d t\right)^{1-\frac{1}{q}} \\
& \times\left(M^{q}(f) \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s) d s d t\right)^{\frac{1}{q}} \\
& \leq \zeta\left(m, b ; 0, \frac{1}{2}\right) \zeta\left(c, d ; 0, \frac{1}{2}\right) M_{1}(f)
\end{aligned}
$$

Correspondingly

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right| d s d t \\
& \quad \leq \zeta\left(m, b ; 0,-\frac{1}{2}\right) \zeta\left(c, d ; 0, \frac{1}{2}\right) M_{2}(f) \\
& \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
& \quad \leq \zeta\left(m, b ; 0, \frac{1}{2}\right) \zeta\left(c, d ; 0,-\frac{1}{2}\right) M_{3}(f)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
& \quad \leq \zeta\left(m, b ; 0,-\frac{1}{2}\right) \zeta\left(c, d ; 0,-\frac{1}{2}\right) M_{4}(f)
\end{aligned}
$$

Using the above four inequalities in (11) and by resolution, we get (10) and proof is completed.
Corollary 1: If we consider $h(e, k)=\frac{1}{(\ln b-\ln a)(\ln d-\ln c)}$, $(e, k) \in I \times J$ in Theorem 2, then

$$
\begin{align*}
& \left|\Phi\left(m, b, c, d ; f, \frac{1}{(\ln b-\ln a)(\ln d-\ln c)}\right)\right| \\
& \leq\left\{\zeta\left(m, b ; 0, \frac{1}{2}\right) \zeta\left(c, d ; 0, \frac{1}{2}\right) M_{1}(f)\right. \\
& \quad+\zeta\left(m, b ; 0,-\frac{1}{2}\right) \zeta\left(c, d ; 0, \frac{1}{2}\right) M_{2}(f) \\
& \quad+\zeta\left(m, b ; 0, \frac{1}{2}\right) \zeta\left(c, d ; 0,-\frac{1}{2}\right) M_{3}(f) \\
& \left.+\zeta\left(m, b ; 0,-\frac{1}{2}\right) \zeta\left(c, d ; 0,-\frac{1}{2}\right) M_{4}(f)\right\} . \tag{12}
\end{align*}
$$

Theorem 3: Suppose $f: \Delta \subseteq(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ be a twice partially differentiable mapping on Δ° and $I \times J \subseteq \Delta^{\circ}$. Further let $h: I \times J \rightarrow[0, \infty)$ be a twice partially differentiable mapping. If $f_{t s} \in L(I \times J)$ and $\left|f_{t s}\right|^{q}$ is geometrically quasi-convex on the arguments on $I \times J$ for $q>1$, then we have inequality of the form:
$|\Phi(m, b, c, d ; f, h)| \leq(\ln b-\ln a)(\ln d-\ln c)\|h\|_{\infty}$ $\times\left\{\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{1}(f)\right.$ $+\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{2}(f)$ $+\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{3}(f)$

$$
\begin{equation*}
\left.+\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{4}(f)\right\} \tag{13}
\end{equation*}
$$

where $\|h\|_{\infty}=\sup _{(e, k) \in I \times \mathrm{J}} h(e, k)$ and $\zeta(u, v ; \epsilon, \eta)$ is characterized in Lemma 2.
Proof. From Lemma 1, we may write

$$
\begin{align*}
& |\Phi(m, b, c, d ; f, h)| \frac{(\ln b-\ln m)(\ln d-\ln c)\|h\|_{\infty}}{4} \\
& \quad \times\left[\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right| d s d t\right. \\
& \quad+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right| d s d t \\
& \quad+\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
& \left.+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t\right] .(14) \tag{14}
\end{align*}
$$

Now by using Hölder's inequality for double integrals, Lemma 2 and by the geometrically quasi-convexity of $\left|f_{t s}\right|^{q}$ on the arguments on $I \times J$ for $q>1$, consequently we have

$$
\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right| d s d t
$$

$$
\begin{gathered}
\leq\left[\int_{0}^{1} \int_{0}^{1}\left(\psi_{1}(t) \psi_{2}(s)\right)^{\frac{q}{q-1}} d s d t\right]^{1-\frac{1}{q}} \\
\times\left[\int_{0}^{1} \int_{0}^{1}\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right|^{q} d s d t\right]^{\frac{1}{q}} \\
\leq\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{1}(f) .
\end{gathered}
$$

In addition

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right| d s d t \\
\leq\left[\int_{0}^{1} \int_{0}^{1}\left(\Omega_{1}(t) \psi_{2}(s)\right)^{\frac{q}{q-1}} d s d t\right]^{1-\frac{1}{q}} \\
\times\left[\int_{0}^{1} \int_{0}^{1}\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right|^{q} d s d t\right]^{\frac{1}{q}} \\
\leq\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{2}(f), \\
\quad \int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right| d s d t
\end{gathered}
$$

$$
\leq\left[\int_{0}^{1} \int_{0}^{1}\left(\psi_{1}(t) \Omega_{2}(s)\right)^{\frac{q}{q-1}} d s d t\right]^{1-\frac{1}{q}}
$$

$$
\times\left[\int_{0}^{1} \int_{0}^{1}\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right|^{q} d s d t\right]^{\frac{1}{q}}
$$

$$
\leq\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{3}(f)
$$

equivalently

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
\leq\left[\int_{0}^{1} \int_{0}^{1}\left(\Omega_{1}(t) \Omega_{2}(s)\right)^{\frac{q}{q-1}} d s d t\right]^{1-\frac{1}{q}} \\
\times\left[\int_{0}^{1} \int_{0}^{1}\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right|^{q} d s d t\right]^{\frac{1}{q}} \leq \\
{\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{4}(f) .}
\end{gathered}
$$

Using the above four inequalities in (14) and simplifying, we get the required inequality (13).
Corollary 2: If we take $h(e, k)=\frac{1}{(\ln b-\ln m)(\operatorname{lnd}-\ln c)}$, $(e, k) \in I \times J$ in Theorem 3, then

$$
\begin{gathered}
\left|\Phi\left(m, b, c, d ; f, \frac{1}{(\ln b-\ln m)(\ln d-\ln c)}\right)\right| \\
\left\{\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{1}(f)\right. \\
+\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{2}(f) \\
+\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{3}(f)
\end{gathered}
$$

$\left.+\left[\zeta\left(m^{\frac{q}{q-1}}, b^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q}{q-1}}, d^{\frac{q}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{4}(f)\right\} .(15$
)
Theorem 4: Consider $f: \Delta \subseteq(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$ to be a twice partially differentiable mapping on Δ° and $I \times J \subseteq \Delta^{\circ}$. Further let $h: I \times J \rightarrow[0, \infty)$ is a twice partially differentiable maapping. If $f_{t s} \in L(I \times \mathrm{J})$ and $\left|f_{t s}\right|^{q}$ is geometrically quasi-convex on the arguments on $I \times J$ for $q>1$ and $q \geq r \geq 0$, then we attain the following inequality:
$|\Phi(m, b, c, d ; f, h)| \leq(\ln b-\ln m)(\ln d-\ln c)\|h\|_{\infty}$

$$
\times\left\{\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}}\right.
$$

$$
\times\left[\zeta\left(m^{r}, b^{r} ; 0, \frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0, \frac{1}{2}\right)\right]^{\frac{1}{q}} M_{1}(f)
$$

$$
+\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}}
$$

$$
\times\left[\zeta\left(m^{r}, b^{r} ; 0,-\frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0, \frac{1}{2}\right)\right]^{\frac{1}{q}} M_{2}(f)
$$

$$
+\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}}
$$

$$
\times\left[\zeta\left(m^{r}, b^{r} ; 0, \frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0,-\frac{1}{2}\right)\right]^{\frac{1}{q}} M_{3}(f)
$$

$$
\begin{equation*}
+\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} \tag{16}
\end{equation*}
$$

$\left.\times\left[\zeta\left(m^{r}, b^{r} ; 0,-\frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0,-\frac{1}{2}\right)\right]^{\frac{1}{q}}\right\} M_{4}(f),($
where $\|h\|_{\infty}=\sup _{(e, k) \in \mathrm{I} \times \mathrm{J}} h(e, k)$ and $\zeta(u, v ; \epsilon, \eta)$ is defined in Lemma 2.
Proof. From Lemma 1, it follows that

$$
\begin{align*}
& |\Phi(m, b, c, d ; f, h)| \leq \frac{(\ln b-\ln m)(\ln d-\ln c)\|h\|_{\infty}}{4} \\
& \quad \times\left[\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right| d s d t\right. \\
& \quad+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
& \quad+\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
& \left.+\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t\right] \tag{17}
\end{align*}
$$

Now by virtue of geometrically quasi-convexity of $\left|f_{t s}\right|^{q}$ on the arguments on $I \times J$ for $q>1$, Lemma 2 and by the Hölder's inequality for double integrals, so got in hand
$\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right| d s d t$

$$
\begin{gathered}
\leq\left(\int_{0}^{1} \int_{0}^{1}\left(\psi_{1}(t) \psi_{2}(s)\right)^{\frac{q-r}{q-1}} d s d t\right)^{1-\frac{1}{q}} \\
\times\left(\int_{0}^{1} \int_{0}^{1}\left(\psi_{1}(t) \psi_{2}(s)\right)^{r}\left|f_{t s}\left(\psi_{1}(t), \psi_{2}(s)\right)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
\quad \leq\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}}
\end{gathered}
$$

Jan.-Feb

$$
\times\left[\zeta\left(m^{r}, b^{r} ; 0, \frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0, \frac{1}{2}\right)\right]^{\frac{1}{q}} M_{1}(f)
$$

Similarly

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \psi_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right| d s d t \\
\leq\left(\int_{0}^{1} \int_{0}^{1}\left(\Omega_{1}(t) \psi_{2}(s)\right)^{\frac{q-r}{q-1}} d s d t\right)^{1-\frac{1}{q}} \\
\times\left(\int_{0}^{1} \int_{0}^{1}\left(\Omega_{1}(t) \psi_{2}(s)\right)^{r}\left|f_{t s}\left(\Omega_{1}(t), \psi_{2}(s)\right)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
\leq\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1}} ; 0, \frac{1}{2}\right)\right]^{1-\frac{1}{q}} \\
\times \\
\quad\left[\zeta\left(m^{r}, b^{r} ; 0,-\frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0, \frac{1}{2}\right)\right]^{\frac{1}{q}} M_{2}(f) \\
\int_{0}^{1} \int_{0}^{1} \psi_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
\leq\left(\int_{0}^{1} \int_{0}^{1}\left(\psi_{1}(t) \Omega_{2}(s)\right)^{\frac{q-r}{q-q}} d s d t\right)^{1-\frac{1}{q}} \\
\times\left(\int_{0}^{1} \int_{0}^{1}\left(\psi_{1}(t) \Omega_{2}(s)\right)^{r}\left|f_{t s}\left(\psi_{1}(t), \Omega_{2}(s)\right)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
\leq\left[\zeta (m ^ { \frac { q - r } { q - 1 } } , b ^ { \frac { q - r } { q - 1 } } ; 0 , \frac { 1 } { 2 }) \zeta \left(c^{\left.\left.\frac{q-r}{q-1}, d^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}}}\right.\right. \\
\times\left[\zeta\left(m^{r}, b^{r} ; 0, \frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{3}(f)
\end{gathered}
$$

and

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \Omega_{1}(t) \Omega_{2}(s)\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right| d s d t \\
\leq\left(\int_{0}^{1} \int_{0}^{1}\left(\Omega_{1}(t) \Omega_{2}(s)\right)^{\frac{q-r}{q-1}} d s d t\right)^{1-\frac{1}{q}} \\
\times\left(\int_{0}^{1} \int_{0}^{1}\left(\Omega_{1}(t) \Omega_{2}(s)\right)^{r}\left|f_{t s}\left(\Omega_{1}(t), \Omega_{2}(s)\right)\right|^{q} d s d t\right)^{\frac{1}{q}} \\
\leq\left[\zeta\left(m^{\frac{q-r}{q-1}}, b^{\frac{q-r}{q-1}} ; 0,-\frac{1}{2}\right) \zeta\left(c^{\frac{q-r}{q-1}}, d^{\frac{q-r}{q-1} ; 0,-\frac{1}{2}}\right)\right]^{1-\frac{1}{q}} \\
\times\left[\zeta\left(m^{r}, b^{r} ; 0,-\frac{1}{2}\right) \zeta\left(c^{r}, d^{r} ; 0,-\frac{1}{2}\right)\right]^{1-\frac{1}{q}} M_{4}(f)
\end{gathered}
$$

Using the above four inequalities in (17) and simplifying, we obtained the required inequality (16).

REFERENCES

[1] C. M. E. Pearce and J. E. Pec̆aric', Inequalities for differentiable mappings with applications to special means and quadrature formula, Appl. Math. Lett. 13 (2000) 51-55.
[2] S.S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics. 4 (2001) 775-788.
[3] M. A. Latif and M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum, 4(47) (2009) 2327-2338.
[4] M. Emin Özdemir, Ahmet Ocak Akdemir and Melült Tunc, On the Hadamard-type inequalities for co-ordinated convex functions, arXiv:1203.4327v1.
[5] M. A. Latif, Hermite-Hadamard type inequalities for GA-convex functions on the co-ordinates with applications, Proceedings of the Pakistan Academy of Science. (to appear)

