
Sci.Int.(Lahore),28(1),19-25,2016 ISSN 1013-5316; CODEN: SINTE 8 19 

Jan-Feb 

HESITANT FUZZY ABEL-GRASSMANN’S GROUPOIDS 
Muhammad Gulistan

1,a
, Muhammad Shahzad

2
 , Farooq Ahmad

3
, Muhammad Azam

4
, Shah Nawaz

 5
  

gulistanmath@hu.edu.pk1, shahzadmaths@hu.edu.pk2, f.ishaq@mu.edu.sa3,  

muhammadazammath@gmail.com4, shahnawazawan82@gmail.com5  
1,2,4,5Department of Mathematics, Hazara University, Mansehra, Pakistan 

3Presently Mathematics Department, Majmaah University, College of Science, Alzulfi, KSA 

 3Punjab Higher Education Department, College wing, Lahore, Pakistan 

a: (Corresponding author) gulistanmath@hu.edu.pk 

ABSTRACT: In this  paper we give the idea of hesitant fuzzy ideals, hesitant fuzzy bi-ideals, hesitant fuzzy interior ideals, 

hesitant fuzzy quasi ideals of an AG-groupoid. We also discuss the inter relationships between the hesitant fuzzy ideals. 

Further we show that if H  is a hesitant fuzzy sub AG-groupoid, then H  is a hesitant fuzzy bi-ideal if ( )H G H H  and is 

interior ideal if ( )G H G H . Moreover we show that in an AG-groupoid a fuzzy hesitant fuzzy ideal is a hesitant fuzzy 

quasi-ideal but the converse is not true. 
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1. INTRODUCTION 
An Abel Grassmann’s groupoid, abbreviated as AG-

groupoid, is a groupoid G   whose elements satisfy the law, 

     ab cd ac bd  for all , , ,a b c d G  holds [9,10]. left 

invertive law:    ab c cb a  for all , , .a b c G  An AG-

groupoid is the midway structure between a commutative 

semigroup and a groupoid. There are several authors who 

explored this idea further and added many usefull results to 

the theory of AG-groupoids, for instance, Mushtaq et al. 

[19-20], Gulistan et al. [6], Khan et al. [11-12,17] and 

Yaqoob et al. [22, 26]. 

The theory of a fuzzy subset of a set was first time 

discovered by Zadeh [31]. The theory of fuzy sets have been 

applied to algebras by several researchers, for instance, 

Akram et al. [1], Aslam et al. [2], Faisal et al. [3,4,5], 

Gulistan et al. [7], Khan et al. [13-16,], Yaqoob et al. [23-

25, 27-29] and Yousafzai et al. [30]. 

Torra [21] introduced the notion of hesitant fuzzy sets. Let 

X be a given set, a hesitant fuzzy set abbreviated by ( HFSs) 

can be defined in the term of a function that when applied to 

a set X again returns a subset of  0,1 . Hesitant fuzzy set is 

a usefull generalization of the fuzzy set. The hesitant fuzzy 

set permits the membership degree of an element to a set to 

be represented by a set of possible values between 0  and 1 . 

Similar to the situations of hesitant fuzzy set where a 

decision maker may hesitate between several possible 

values as the membership degree when evaluating an 

alternative, in a qualitative circumstance, a decision maker 

may hesitate between several terms to assess a linguistic 

variable.  Hesitant fuzzy set theory has been applied to 

many practical problems, primarily in the area of decision 

making. Jun and Song [8] applied the theory of Hesitant 

fuzzy sets to MTL-algebras. 

In this paper we define hesitant fuzzy bi-ideal, generalized 

hesitant fuzzy bi-ideals, hesitant fuzzy interior ideal, and 

hesitant fuzzy quasi-ideals. We show that if H  is a hesitant 

fuzzy sub AG-groupoid, then H  is a hesitant fuzzy bi-ideal 

if ( )H G H H  and is interior ideal if ( )G H G H . 

Further we show that if H  is a hesitant fuzzy sub AG-

groupoid of G , then H  being a quasi-ideal if 

( ) ( ) .H G G H H  Moreover we show that in an AG-

groupoid a fuzzy hesitant fuzzy ideal is a hesitant fuzzy 

quasi-ideal but the converse is not true. 

 

2. PRELIMINARIES 

In this section we give some basic definition and results, 

which will be used in our main section. 

Definition 2.1: [18] A non-empty subset   of G is called 

left(right) ideal of an AG-groupoid G if for all 

).(G G      It is called an ideal of AG-

groupoid if it is both left and right ideal of  . 

Definition 2.2: [18] A non-empty subset   of an AG-

groupoid  is said to be a generalized bi-ideal of G  if 

)( G    if   is a sub AG-groupoid of G  then 

G  is said to be a bi-ideal of G  if, ( ) .G    

Definition 2.3: [18] A non-empty subset   of an AG-

groupoid G is said to be a quasi-ideal of G  

if ( ) ( )G G   . 

Definition 2.4: [18] A non-empty subset   of an AG-

groupoid G  is said to be an interior ideal 

if ( ) .G G   

Lemma 2.5: [18] Let 1  
 and 2  be two left (right, two 

sided ideal) of an AG-groupoid G . Then the product of 1  

and 2  is a left (right, two sided ideal) of G .  

 Definition 2.6: [31] A fuzzy subset   of a set X  is a 

function of X into the closed interval [0,1]  that is 

 : 0,1 .X    

Definition 2.7: [32] A fuzzy subset   of an AG-groupoid 

G  is a function of G  into the closed unit interval [0,1]  

that is  : 0,1 .G 
 

mailto:gulistanmath@hu.edu.pk1
mailto:shahzadmaths@hu.edu.pk
mailto:f.ishaq@mu.edu.sa3
mailto:muhammadazammath@gmail.com
mailto:shahnawazawan82@gmail.com5
mailto:gulistanmath@hu.edu.pk


20 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),19-25 ,2016 

Jan-Feb 

Definition 2.8: [32] In an AG-groupoid G, a fuzzy subset 

   of G is called a fuzzy sub AG-groupoid if 

      ,     , .xy x y x y G      

Definition 2.9: [32] Let    be fuzzy subset of an AG-

groupoid G. Then    is called fuzzy left ideal and fuzzy 

right ideal of G if     xy y   for all x,y∈G.   And 

    xy x   for all ,x y G  and is called fuzzy two-

sided ideal of G  if it is both a fuzzy left and fuzzy right 

ideal of G . 

Theorem: [32] Let G  be an AG-groupoid with left identity 

e .  Then evry fuzzy right ideal of G  is a fuzzy left ideal of 

G . 

Definition 2.10: A fuzzy subset   of an AG-groupoid G  

is called a fuzzy quasi-ideal of G  if 

( ) ( ) .G G    A fuzzy subset   of an AG-

groupoid G  is called a fuzzy generalized bi-ideal of G  if 

      .ta z t z    for all , ,a t z G . A fuzzy 

subset   of an AG-groupoid G  is called fuzzy interior 

ideal of G  if     ta z a   for all , ,a t z G .
 

Definition 2.11: [18] Let 1  and 2  be two fuzzy subsets 

of an AG-groupoid G . Then 1 2   is defined as:   

 1 2( ) g   

 1 2

g=ab

( ) ( )      ,  , , ,

0                                                      .

a b if g ab a b g G

otherwise

    


 


  

Definition 2.12: [18] Let 1  and 2  be two fuzzy subsets 

of G . Then the intersection and union of 1   and 2  

can be defined as follow: 

      
     

1 2

( ) { },

                    

   ,

    ( )   ( )

t min t t

t t

  







₁ ₂ ₁ ₂
     

and  

                      (    ,{ ,) }t max t t  ₁ ₂ ₁ ₂     

                                      =    1 ,  .t t t G    ₂
 

  

3. HESITANT ABEL-GRASSMANN’S GROUPOIDS 

In this section we define hesitant fuzzy ideals, hesitant fuzzy 

bi-ideals, hesitant fuzzy interior ideals and hesitant fuzzy 

quasi ideals in AG-groupoid with examples. Further we will  

study some properties. 

Definition 3.1: Let H  be a hesitant fuzzy set of AG-

groupoid G. Then we have  

 ( ),  H ( ) ( ),  H

( ) ( ) ( ).

b b

a a aH H a H a H b c

H a H b H c

  

    

So we get that   b a

a bH H   

a b a bH H H H   ,   ,b aH H            

for all , .a b G   

Definition 3.2: Let H₁  and H₂  be two hesitant fuzzy sets 

of G . Then hesitant union H H₁ ₂   and hesitant 

intersection H H₁ ₂   of H₁  and H₂  are define to be 

hesitant fuzzy sets of G  as follow: 

 
1 2

1 2 1 2

:G ([0,1]),  

a max ,  a a a a

H H P

H H H H

 

  
 

and 

 
1 2

1 2 1 2

:G ([0,1]), 

a min ,  .a a a a

H H P

H H H H

 

  
 

Definition 3.3: A hesitant fuzzy set H  on AG-groupoid G 

is called a hesitant fuzzy sub AG-groupoid of G if it 

satisfies:  

,   , .b

ab a a bH H H H a b G 
 

 Definition 3.4: A hesitant fuzzy set H  of G  is called a 

hesitant fuzzy left (right) ideal of G if it satisfies: 

( ),  , .ab a ab bH H H H a b G     

Definition 3.5: A hesitant fuzzy left ideal and a hesitant 

fuzzy right ideal of an AG-groupoid G is called hesitant 

fuzzy two-sided ideal of G . 

In the following we give some examples of hesitant fuzzay 

set of AG-groupoid G. 

Example 3.6: Let  , ,G a b c  be an AG-groupoid whith 

the binary operation define in the table 

 a b c 

a b c b 

b b b b 

c b b b 

Let H be a hesitant fuzzy set on G  defined as follows: 

[0,0.2)                     if t=a,

: ([0,1]),    t [0.1,0.5]                  if t=b, 

[0.1,0.5] (0,0.3)   if t=c.

H G P




 
 

 

Then H is a hesitant fuzzy left (resp., right) ideal of G. 

Remarks 3.7: Every hesitant fuzzy left (right) ideal of G  

is a hesitant fuzzy sub AG-groupoid of G . But the 

converse is not true as show in the following example. 

Example 3.8: Let  , ,G a b c  be an AG-groupoid and let 

H  be a hesitant fuzzy set of G define in the example and 

define the hesitant fuzzy set of G  as follow: 
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  : 0,1 ,   H G P t

 

[0.3,0.4)                  if t=a,

[0.1,1.5]                  if t=b,

(0,0.3) [0.1,0.5]   if t=c.




   

Then H  is a hesitant fuzzy sub AG-groupoid of G , but it 

is not a hesitant fuzzy ideal of G , because 

.ab b c bH H H H  ×
 

Definition 3.9: Let H₁ and H₂  be two hesitant fuzzy sets 

of G . Then their product defined as follows: 

 1 1

1 2( ) =

     . 

b c

a bc
a

H H
H H

otherwise



 


  

In the following we give some basic properties of a hesitant 

fuzzy set of an AG-groupoid. 

Proposition 3.10: If G  is an AG-groupoied, then the 

collection of all hesitant fuzzy sets   ,HF G o  is an AG-

groupoid. 

Proof: Since  HF G  is closed. Let ( )H HF G . Then 

  ,HoH HF G  such that 

 ( o )  = =  (G).c

a b c b a

a bc a bc

H H H H H H HF
 

 

 

Thus GF(H) is closed. 

   

Let  , , .H H H HF G₁ ₂ ₃   

Then we have, 

 

 

  

  

 

1 2 3 1 2 3

1 2 3

1 2 3

( )

3 2 1

( )

3 2 1

3 2 1

1 2 3 3 2 1

((H oH )oH ) = (H oH ) H

= H H

                      

                     ( o )

((H oH )oH )

(H oH )oH =(H oH )oH .

t y z

t yz

p q z

t yz y pq

p q z

t pq z

z q p

t zq p

w p

t wz

H

H H H

H H H

H H H



 







  
 
  











 

Hence   ,HF G o  is a AG-groupoid. 

Corollary 3.11: If G is an AG-groupoid , then the medial 

law holds in  .HF G  

Proof: Let , , ( ).H H H H HF G₁ ₂ ₃, ₄  Then we have: 

 

    

    

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

( )( )

1 3 4 3

( )( )

(( o )o( o )) ( o ) ( o )

{ o } { o }

                                o

o

                            

t a b

t ab

c d e f

t ab a cd b ef

c d e f

t cd ef

c e f d

t ce df

H H H H H H H H

H H H H

H H H H

H H H H



  





 

  
  

  

  

  

1 3 2 4

1 3 2 4

1 3 2 4

  { o } { o }

{( o ) ( o ) }

                               =(( o )o( o ))

c e d f

t wz w ce z df

w z

t wz

t

H H H H

H H H H

H H H H

  



  
  

  

 

  

Thus, 

1 2 3 4 1 3 2 4( o )o( o )=( o )o( o ).H H H H H H H H  

Theorem 3.12:  If G  be an AG-groupoid with left identity 

e , then the two properties hold in   :HF G
 

                   ( (  .) )a H o H oH H o H oH₁ ₂ ₃ ₂ ₁ ₃    

 

 

               ( ) ( ) (  ,

 , , ,

( )

.

)b H oH o H oH H oH o H oH

H H H H F G



 

₁ ₂ ₃ ₄ ₄ ₃ ₂ ₁

₁ ₂ ₃ ₄
  

Proof:    Let ,  . ,  ,   y,z G.a t G s t t yz     Then 

1 2 3 2 1 3( o( o )) = =( o( o )) .t tH H H H H H  

If ,   , , ,t yz t y z G  
 
then 

 

  

  

 
2

1 2 3 1 2 3

2 3

t=yz

1 2p 3q

( )

2 1y 3q

( )

2 1 3

( )

2 1

(

( o( o )) (H oH )

{H H }

                      H H

= H H

                      = H { }

= H ( )

t y z

t yz

p q

z pq

y

t y pq

p

t y pq

p y q

t y pq w yq

p w

t y

H H H H

H

H

H

H H

H H









 



 

  
  

  

  

 

  
  

  


)

2 1 3                     = ( o( o ))

pq

tH H H

 

Thus 

1 2 3 2 1 3( ( ) ( ( ).H H H H H H
 

( ) :   ,  . ,  ,   , ,b If t G s t t yz y z G   
 

Then 

   1 2 3 4 4 3 2 1( ) ( ) ( ) ( ) .
t t

H H H H H H H H 
 

 ,  If t yz then
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1 2 3 4 1 2 3 4

t=yz

1 2 3 4

t=yz

1 2 3 4

t=(pq)(uv)

4 3 2 1

t=(vu)(qp)

4 3 2 1

t=

( o )o( o )  = ( ) ( o )

= )

 =  

=  

                     = )

y zt

p q u v

y pq z uv

p q u v

v u q p

v u q p

m pq n qp

H H H H H H H H

H H H H

H H H H

H H H H

H H H H

 

 



  
   

  

  

  

  
   

  

 

 

   

mn

4 3 2 1

t=mn

4 3 2 1

1 2 3 4 4 3 2 1

= ( ) ( o )  

 = ( o )o( o )

 ( o )o( o ) ( o )o( o ) .

m n

t

t t

H H H H

H H H H

H H H H H H H H



 

 Hence proof. 

Proposition 3.13: An AG-groupoid G  with 

     ²HF G HF G is commutative semigroup if and 

only if ( ) ( ).H oH oH H o H oH₁ ₂ ₃ ₁ ₃ ₂  

Proof: Suppose G is commutative  semigroup. For any 

hesitant fuzzy subsets H₁,H₂ and H₃ of G  by use 

Preposition P1, and commutative law: 

 

 

  

  

 

 

1 2 3 1 2 3

t=ab

1 2 3

t=ab a=cd

1 2 3

t=c(db)

1 3 2

t=c(bd)

1 3 2

t=cw

1 3 2

t=cw

(( o )o ) ( o )

                        

                       

( )

        

t a b

c d b

c d b

c b d

c b d

w bd

c w

H H H H H H

H H H

H H H

H H H

H H H

H H H



 

 
   

 

  

  

 
   

 

 

1 3 2             ( o( o )) .tH H H

 

Thus, 

( ) ( )H oH oH H o H oH₁ ₂ ₃ ₁ ₃ ₂  

Conversely, suppose that, 

( ) ( )H oH oH H o H oH₁ ₂ ₃ ₁ ₃ ₂  

holds for all fuzzy subsets , , .H H H G₁ ₂ ₃  Now we want 

to show an AG-groupoid G  is a commutative semigroup. 

Let H₁ and H₂be any two arbitrary hesitant fuzzy subsets 

of G . Since     .²  ,HF G HF G So H H oH ₁ ₃ ₄  where 

H₃ and H₄  are any hesitant fuzzy subsets of G . Now 

 

 

  

  

 

   

1 2 3 4 2 3 4 2

t=ab

3 4 2

t=ab

3 4 2

t=c(db)

2 3 4

t=b(cd)

2 3 4

t=bz

2 3 4 2 1

t=bz t=bz

( o ) =(( o )o ) ( o )

             o

           H

          ( )

t t a b

c d b

a cd

c d b

b c d

b c d

z cd

b z b z

H H H H H H H H

H H H

H H H

H H

H H H

H H H H H





 

 
  

 

  

  

 
   

 

   

2 1         ( )tH H

 

Thus 

H oH H oH₁ ₂ ₂ ₁, 
Which show that commutative law holds in G. Now by 

using Proposition1 and commutative law. 

 

4. HESITANT FUZZY BI-IDEALS IN AG-

GROUPOIDS 

Here we define hesitant fuzzy Bi-ideals in AG-groupoid. 

We give some examples and some properties. 

Definition 3.14: A hesitant fuzzy subset H  of an AG-

groupoid G is called a hesitant fuzzy bi-ideal of G  if 

(xy)z ,    , , .x zH H H for all x y z G  
 

Example 3.15: G={a,b,c} be an AG-groupoid with binary 

operation define in table T1:  

  
[0.2,0.6)                      if x=a,

[0.2,0.5]                      if x=b,

(0.1,0.2) [0.3,0.

: 0,

7)    if x=

1  

.

,   

c

H G p x




 





 

Then H is a hesitant fuzzy bi-ideal on .G  

Definition 3.16: A non-empty subset   of an AG-groupoid 

G  is called the characteristic function of G  if, 

    
 0,1                 ,

: 0,1 ,    
                 .

ift
H G P t

otherwise


 
 



  

Theorem 3.17: For a non-empty subset   of an AG-

groupoid G  is called a bi-ideal of G  if and only if the 

characteristic function  H
 of an AG-groupoid G  is a 

hesitant fuzzy bi-ideal of .G  

Proof: Suppose that   is a bi-ideal of an AG-groupoid .G  

Let , , ,a b c G  if , ,a c  then 

     

     

( )

( )
.

a c ab c

a c ab c

H H H

H H H
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If , ,a c  then .ac  Since   is a bi-ideal of .G  

Then 

       
( )

0,1 .
ab c a c

H H H      

Thus  H
 is a hesitant fuzzy bi-ideal of .G  

Conversely, assume that  H
 is a hesitant fuzzy bi-ideal 

of .G  Let ,a c  and b G  then 

     0,1
a c

H H     

and thus 

       

   

( )

( )

0,1

0,1 .

ab c a c

ab c

H H H

H

  



  

   

Which show that ( ) .ab c G   Thus   is a bi-ideal of 

.G  

Lemma 3.16: Let H  be a hesitant fuzzy sub AG-groupoid 

of an AG-groupoid G . Then H  is a hesitant fuzzy bi-ideal 

of G  if and only if 

( ) .HoG oH H  

Proof: Suppose that, H  be a hesitant fuzzy bi-ideal of G . 

Let ,    , , .x ab for all a b G 
 
Then 

   

   

 

ab ab

ab ( )b

(pq)b

( )b

.

( o o ) = ( o )

                [0,1]

                

               

x a b p q b

x x a pq

p b p b

x a pq x pq

x pq

x

H G H H G H H G H

H H H H

H

H

  

  



  
    

  

  
     

  





  

Thus, .HoGoH H  

Conversly, assume that: .HoGoH H  

Let   ,   , , , .x ab c for all a b c x G    

 

 
x=pq

(ab)c=pq

ab

(ab)=uv

( o o ) ( o )

( oG)

( oG) H

   { G }

( G ) H

( [0,1] H

= .

x x p q

p q

c

u v c

a b c

a c

a c

H H G H H G H

H H

H

H H

H

H

H H

  

 

 

  

  

  



 

Thus, 
(ab)c .a cH H H    

 

5. HESITANT FUZZY INTERIOR IDEALS IN AG-

GROUPOIDS 

Definition 3.17: A hesitant fuzzy subset H  of an AG-

groupoid G  is called a hesitant fuzzy interior ideal of G if 

(xa)y ,    , , .aH H for all a b c G   

Example 3.18: Let  , ,G a b c  be an AG-groupoid 

with the binary operation definein table 1.T  

  
[0.3,0.9)          if x=a,

[0.1,0.7]          if x=b,

(0.3,0.8]         

: 0,

 if x=c.

1 ,   H G p x











 

Then H is a hesitant fuzzy interior ideal of .G  

Definition 3.19: Let H  be a hesitant fuzy set of an AG-

groupoid G  and  0,1 ,   then 

   ; / ,tG H t G H     is called the hesitant level 

set of H . 

Theorem 3.20: A hesitant fuzzy interior ideal H  of an  

AG-groupoid G  is a hesitant fuzzy sub AG-groupoid of  

G  if and only if the set    ; / tG H t G H     is  

a sub AG-groupoid, when   0,1P  . 

Proof: Let H  be a hesitant fuzzy interior ideal of .G  Let  

 , , ;x y z G H  . Implies that 
xyH    and ,zH    

but by hypothesis  ( ) ( ) ; .xy zH xy z G H      

Which show that  ;G H    is a sub AG-groupoid of G .  

Conversly, assume that  ;G H   is a sub AG-groupoid of  

.G   Let , ,x y z G  such that 
( ) ,xy z yH H   then  

 , , ; ,x y z G H   but  ( ) ; ,xy z G H   which show 

 that 
( ) .xy z yH H    

Lemma 3.19: Let H  be a hesitant fuzzy sub AG-groupoid 

of an AG-groupoid G . Then H  is a hesitant fuzzy interior 

ideal of G if and only if GoHoG⊑H. 

Proof: Let H  be a hesitant fuzzy interior ideal of G. Then 

(xa)y .aH H
 

Let a,b,c∈G 

   

   

 

x=yz x=yz y=ab

x=yz y=aob x=yz y=ab

(ab)z

x=(ab)z x=(ab)z

( o o ) = ( o )

               [ ,1] [0,1] [0,1]

             

x y z a b z

b b

b x

G H G G H G G H G

o H H

H H H

  
    

  

      
       

      

  

 

Thus 

( ) .GoH oG H  
Conversly, assume that: .GoHoG H  Let , ,a x b G , 

such that,  ax b x . Then 
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(ax)b (ax)b

(ax)b=pq

(ax)b=pq yx

(ax)b=pq yx

(ax)b=pq yx

( o o ) ( )

                                [0,1] [0,1]

[0,1]

                         

p q

y x q

p

x

p

x

p

H G H G G H G

G H G

H

H







  

  
   

  

  
   

  

  
  

  

 
(ax)b=pq yx

      .x x

p

H H


  
  

  

 

Thus 

(ax)bH H .x
 

 

6. HESITANT FUZZY QUASI IDEALS IN AG-

GROUPOIDS 

Definition 3.20: A hesitant fuzzy set H  of G  is called a 

hesitant fuzzy quasi ideal of G  if the  following condition 

is valid:  

( ) ( ) .H G G H H    

Theorem 3.21: Let .G    Then   is a quasi-ideal 

of G  if and only if the characteristic hesitant fuzzy set 

 H   is a hesitant fuzzy quasi-ideal of G . 

Proof: Suppose that   is a quasi-ideal of G . Let x G , 

if .x  Then 

([ ] G) (G [ ])   [0,1]= [ ] .x xH H H      

If ,x  then 

 
  = ([ ] G) (G [ ])

([ ] G) (G [ ])  [ ] .

xx

x x

H H H

H H H

  

  

 

    

 Conversly, assume that  H  is a quasi-ideal on G . 

Let x be an element of ( ) ( )H G G H . Then 

,   ,ca x bd a b G     and , .c d  Then by 

defination we have 

   

   

x=uv x=uv

x=uv x=uv

[ ] (([ ] G) ((G [ ]))

= ([ ] G) (G [ ])

= [ ] [ ]

= [ ] =[0,1].

x x

x x

u v u v

u v

H H H

H H

H G H G

H G

  

 

 



 



   
     

   

   
   

   

  

and so x . Thus G G    and hence   is a 

quasi-ideal of G . 
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