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ABSTRACT: In this paper we give the idea of hesitant fuzzy ideals, hesitant fuzzy bi-ideals, hesitant fuzzy interior ideals,
hesitant fuzzy quasi ideals of an AG-groupoid. We also discuss the inter relationships between the hesitant fuzzy ideals.

Further we show that if H is a hesitant fuzzy sub AG-groupoid, then H is a hesitant fuzzy bi-ideal if (HoGoH)< H and is
interior ideal if (GoH oG) < H . Moreover we show that in an AG-groupoid a fuzzy hesitant fuzzy ideal is a hesitant fuzzy

quasi-ideal but the converse is not true.
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1. INTRODUCTION
An Abel Grassmann’s groupoid, abbreviated as AG-

groupoid, is a groupoid G whose elements satisfy the law,
(ab)(cd)=(ac)(bd) for all a,b,c,d €G holds [9,10]. left

invertive law: (ab)c=(cb)a for all a,b,ceG. An AG-

groupoid is the midway structure between a commutative
semigroup and a groupoid. There are several authors who
explored this idea further and added many usefull results to
the theory of AG-groupoids, for instance, Mushtaq et al.
[19-20], Gulistan et al. [6], Khan et al. [11-12,17] and
Yaqoob et al. [22, 26].

The theory of a fuzzy subset of a set was first time
discovered by Zadeh [31]. The theory of fuzy sets have been
applied to algebras by several researchers, for instance,
Akram et al. [1], Aslam et al. [2], Faisal et al. [3,4,5],
Gulistan et al. [7], Khan et al. [13-16,], Yaqoob et al. [23-
25, 27-29] and Yousafzai et al. [30].

Torra [21] introduced the notion of hesitant fuzzy sets. Let
X be a given set, a hesitant fuzzy set abbreviated by ( HFSs)
can be defined in the term of a function that when applied to

a set X again returns a subset of [0,1]. Hesitant fuzzy set is

a usefull generalization of the fuzzy set. The hesitant fuzzy
set permits the membership degree of an element to a set to

be represented by a set of possible values between 0 and 1.
Similar to the situations of hesitant fuzzy set where a
decision maker may hesitate between several possible
values as the membership degree when evaluating an
alternative, in a qualitative circumstance, a decision maker
may hesitate between several terms to assess a linguistic
variable. Hesitant fuzzy set theory has been applied to
many practical problems, primarily in the area of decision
making. Jun and Song [8] applied the theory of Hesitant
fuzzy sets to MTL-algebras.

In this paper we define hesitant fuzzy bi-ideal, generalized
hesitant fuzzy bi-ideals, hesitant fuzzy interior ideal, and

hesitant fuzzy quasi-ideals. We show that if H is a hesitant
fuzzy sub AG-groupoid, then H is a hesitant fuzzy bi-ideal
if (HoGoH)c H and is interior ideal if(GoHoG)c H .

Further we show that if H is a hesitant fuzzy sub AG-

groupoid of G , then H being a quasi-ideal if
(HoG)N(GoH) < H. Moreover we show that in an AG-

groupoid a fuzzy hesitant fuzzy ideal is a hesitant fuzzy
quasi-ideal but the converse is not true.

2. PRELIMINARIES
In this section we give some basic definition and results,
which will be used in our main section.

Definition 2.1: [18] A non-empty subset A of G is called
left(right) ideal of an AG-groupoid G if for all
GoAdc A(AoGc A). It is called an ideal of AG-

groupoid if it is both left and right ideal of A .

Definition 2.2: [18] A non-empty subset A of an AG-
groupoid G is said to be a generalized bi-ideal of G if
(AoG)oAc A if A is a sub AG-groupoid of G then

G s said to be a bi-ideal of G if, (10G)oA < A.
Definition 2.3: [18] A non-empty subset A of an AG-
groupoid G is said to be a quasi-ideal of G
if(GoA)N(LoG)c A.

Definition 2.4: [18] A non-empty subset A of an AG-

groupoid G is said to be an interior ideal
if (GoAd)oG c A

Lemma 2.5: [18] Let A, and A, be two left (right, two
sided ideal) of an AG-groupoid G . Then the product of A,
and /12 is a left (right, two sided ideal) of G .

Definition 2.6: [31] A fuzzy subset S of a set X is a
function of X into the closed interval [0,1] that is
B:X —[01].

Definition 2.7: [32] A fuzzy subset 77 of an AG-groupoid
G is a function of G into the closed unit interval [0,1]
thatis 8:G —[0,1].

Jan-Feb


mailto:gulistanmath@hu.edu.pk1
mailto:shahzadmaths@hu.edu.pk
mailto:f.ishaq@mu.edu.sa3
mailto:muhammadazammath@gmail.com
mailto:shahnawazawan82@gmail.com5
mailto:gulistanmath@hu.edu.pk

20 ISSN 1013-5316; CODEN: SINTE 8

Definition 2.8: [32] In an AG-groupoid G, a fuzzy subset
n of G is called a fuzzy sub AG-groupoid if

Bxy)=B(X)AB(Y), VXxyeG.

Definition 2.9: [32] Let # be fuzzy subset of an AG-
groupoid G. Then S is called fuzzy left ideal and fuzzy
right ideal of G if g(xy)>p(y) for all xyeG.  And
B(xy)=p(x) for all X,y eG and is called fuzzy two-
sided ideal of G if it is both a fuzzy left and fuzzy right
ideal of G .

Theorem: [32] Let G be an AG-groupoid with left identity

e. Then evry fuzzy right ideal of G is a fuzzy left ideal of
G.
Definition 2.10: A fuzzy subset 8 of an AG-groupoid G

is called a fuzzy quasi-ideal of G if
(BoG)N(Gof) < f. A fuzzy subset [ of an AG-
groupoid G is called a fuzzy generalized bi-ideal of G if
ﬂ((ta)z);ﬂ(t)ﬂﬂ(z). for all a,t,zeG . A fuzzy
subset 3 of an AG-groupoid G is called fuzzy interior
ideal of G if 3((ta)z) 2 B(a) forall a,t,z€G.
Definition 2.11: [18] Let /3 and /3, be two fuzzy subsets
of an AG-groupoid G . Then [ o 3, is defined as:

(ﬂloﬂz)(g)
U{s@Np, b)) if g=ab,Vab,geGC,

=< g=ab
0 otherwise.
Definition 2.12: [18] Let B, and [, be two fuzzy subsets

of G . Then the intersection and unionof #,  and  J3,
can be defined as follow:

(BN B2) (1)= min{ B (1), Ba(t)}
= B ) AL()

and

(51U B2) (t)= max{pu(t), Ba(t)},
= B(t)v Ba(t), vV teG.

3. HESITANT ABEL-GRASSMANN’S GROUPOIDS

In this section we define hesitant fuzzy ideals, hesitant fuzzy
bi-ideals, hesitant fuzzy interior ideals and hesitant fuzzy
quasi ideals in AG-groupoid with examples. Further we will
study some properties.

Definition 3.1: Let H be a hesitant fuzzy set of AG-
groupoid G. Then we have
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H,=H(a), H) =H(@)nH(b), H[c]
=H(a)nH(b)~H(c).
Sowe getthat H’ =H2
H,=H, &H,cH,,
forall a,b G.

Definition 3.2: Let Hy and H, be two hesitant fuzzy sets
of G . Then hesitant union H;\UH, and hesitant
intersection HyH, of H; and H, are define to be
hesitant fuzzy sets of G as follow:

H, UH,:G — P([0,1]),

a—>H_,UH,, =max{Hla, H,.}

H,cH

a’

and
H,"H,:G - P([0,1]),

a—>H,NH,, =min{H,, H,}.

Definition 3.3: A hesitant fuzzy set H on AG-groupoid G
is called a hesitant fuzzy sub AG-groupoid of G if it
satisfies:

H, 2H.=H,nH,, VabeG.
Definition 3.4: A hesitant fuzzy set H of G is called a
hesitant fuzzy left (right) ideal of G if it satisfies:
H,>oH,(H, 2H,) VabeG.
Definition 3.5: A hesitant fuzzy left ideal and a hesitant
fuzzy right ideal of an AG-groupoid G is called hesitant
fuzzy two-sided ideal of G .
In the following we give some examples of hesitant fuzzay
set of AG-groupoid G.
Example 3.6: Let G = {a, b,C} be an AG-groupoid whith

the binary operation define in the table

o a b c
a|bj|c|b
b |b|bi|b
c|b|b|b
Let H be a hesitant fuzzy set on G defined as follows:
[0,0.2) if t=a,
H:G — P([0,1]), t—<[0.1,0.5] if t=b,

[0.1,0.5]w(0,0.3) ift=c.
Then H is a hesitant fuzzy left (resp., right) ideal of G.
Remarks 3.7: Every hesitant fuzzy left (right) ideal of G

is a hesitant fuzzy sub AG-groupoid of G . But the
converse is not true as show in the following example.

Example 3.8: Let G ={a,b,c} be an AG-groupoid and let

H be a hesitant fuzzy set of G define in the example and
define the hesitant fuzzy set of G as follow:
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[0.3,0.4) if t=a,
H:G—>P([0.1]), t l[0.1,15 if t=b,
(0,0.3) ~[0.1,0.5] if t=c.
Then H is a hesitant fuzzy sub AG-groupoid of G , but it
is not a hesitant fuzzy ideal of G pecayse
H,2oH, =H xH,.
Definition 3.9: Let H; and H, be two hesitant fuzzy sets
of G . Then their product defined as follows:
U {Hlb M ch}
(H1 o Hz)a: a=hc
¢ otherwise.

In the following we give some basic properties of a hesitant
fuzzy set of an AG-groupoid.

Proposition 3.10: If G is an AG-groupoied, then the
collection of all hesitant fuzzy sets ( HF (G),o) is an AG-
groupoid.

Proof: Since HF (G) is closed. Let H € HF(G) . Then
HoH < HF (G), such that

(HoH), = | J{H,NH.} = |JH,'=H, € HF(G).
a=hc a=bc

Thus GF(H) is closed.

Let H1, Hz, H3E HF(G)

Then we have,

((H,0H,)oH,), = J {(H,0H,), NH., |

Yl e
U {(Hi, NHo )N H, |

t=(pa)z
U {(ngﬂqu)ﬂ Hlp}

t=(zq) p

= U {(HSOHZ)W m Hlp}

t=wz
= ((H,0oH,)oH,)
= (H,oH,)oH,=(H,0oH,)oH,.
Hence (HF (G),0) is a AG-groupoid.
Corollary 3.11: If G is an AG-groupoid , then the medial
law holds in HF (G).
Proof: Let Hq, H,, H3, H, € HF(G). Then we have:

ISSN 1013-5316; CODEN: SINTE 8

21
((HIOHZ)O(H3OH4))[ = U {(HlOHZ)a M (H3OH4)b}

U{ngOHM}}

U {H0H,3n
t=ab [a=cd b=ef

{(Hy0H 4 ) A (Hg A H, )}
t=(cd)(ef )
- U {(H1C0H3e)m(H4me3d)}
t=(ce)(df )

UH,oH, 3 U{szomf}}

w=ce z=df

-U

t=wz

|

= U {(H10H3)w N (H20H4)z}

=((H,0H;)o(H,0H,)),

Thus,

(HloH2)0(H30H4):(H10H3)0(H20H4)'
Theorem 3.12: If G be an AG-groupoid with left identity
e, then the two properties hold in HF (G):
(a) H10(H20H3) = HzO(H10H3).
(b) (H10H2)0(H30H4.) = (H4.0H3)O(H20H1),
\v4 H1, Hz, H3, H4.€ F (G)
Proof: (a) LetteG, st, t#yz, Vy,zeG. Then

(H,0(H,0H,)),=¢=(H,0(H,0H,)),.
Ift=yz, V1,y,2eG, then

(H,0(H,0H,)), = [J {Hy, n(H,0H,), }
t=yz
= U{H ) U{Hszsq}}
t=yz 2=pq
{ (Hy N H,, }
t=y(pq)
t= y(pq){ }
= {Hzpm U{Hlymng}}
t=y(pq) w=yq
= U {HZpﬁ(Hlon)w}
t=y(pq)
= (H,0(H,0H,)),
Thus
(H1 O(Hz ° H3) = (Hz O(Hl °© Hs)'
(b): If teG, st, t=yz, Vy,zeG,
Then
((Hl ° Hz) °(H3 ° H4))t =¢= ((H4 ° Hs) O(Hz ° Hl))t -
If t=yz, then
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((HlOH 2)0(H30H4))t = U{(H1 ° HZ)y ('\(H30H4)Z}

t=yz

U1 U (R U o)

t=yz ( y=pq z=uv

= U {(H1p AH, )N (Hy, mHAV)}

t=(pg)(uv)

:((H40H 3)0(H20H1))1
= ((H,oH 2)o(H30H4))t =((H,0H 3)0(H20H1))t-
Hence proof.
Proposition 3.13: An AG-groupoid G with
HF(G)= (HF (G))2 is commutative semigroup if and
Only |f ( H10H2)0H3 = H10(H3OH2)
Proof: Suppose G is commutative semigroup. For any

hesitant fuzzy subsets Hy,H, and H; of G by use
Preposition P1, and commutative law:

((H,0H,)oH,), = [J{(H.0H,), N H,,}

t=ab

SUIVCRUMELN

t=ab La=cd

= |J {Hen(Hy)nHy |

t=c(db)

= |J {Hi " (Ha) N Hy

t=c(bd)

~UHan U ot

t=cw w=hd

= U{Hien(HsoH),)

t=cw
= (Hlo(HSOHZ))t'

Thus,

(H10Hz)oH3s = H,0(H30H>)
Conversely, suppose that,

(H,0H3)oH 3 = H;0(H30H))
holds for all fuzzy subsets H4, H,, H; € G. Now we want
to show an AG-groupoid G is a commutative semigroup.
Let H4 and H be any two arbitrary hesitant fuzzy subsets
of G . Since HF (G)=(HF(G)).2 So Hy = Hz0H,, where

Hsand H, are any hesitant fuzzy subsets of G . Now
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(H10H2)t:((H30H4)0H2)t = U {(H30H4)a M sz}

t=ab

~U{U o)t

t=ab (a=cd

= U {(HSCﬁHzld)msz}

t=c(db)

= |J {(HpnHy )N H,, |

t=b(cd)

:U{Hmm U {Hac“HAd}}

t=bz z=cd
= U{sz ﬁ(H3 ° H4)z} = U{sz M le}
t=hz t=bz
=(H,oH,),

Thus

H10H2 = H20H1,
Which show that commutative law holds in G. Now by
using Propositionl and commutative law.

4. HESITANT FUZZY BI-IDEALS IN AG-

GROUPOIDS

Here we define hesitant fuzzy Bi-ideals in AG-groupoid.

We give some examples and some properties.

Definition 3.14: A hesitant fuzzy subset H of an AG-

groupoid G is called a hesitant fuzzy bi-ideal of G if
Hey 2H,NH,, for all xy,zeG.

Example 3.15: G={a,b,c} be an AG-groupoid with binary

operation define in table T1:

[0.2,0.6) if x=a,
H:G — p([0,1]), x<[0.2,0.5] if x=b,
(0.1,0.2) n[0.3,0.7) if x=c.

Then H is a hesitant fuzzy bi-ideal on G.
Definition 3.16: A non-empty subset A of an AG-groupoid

G s called the characteristic function of G if,
0,1 ifte A

[HA]:G—>P([0,1]),U—>{[ 4 e
o otherwise.

Theorem 3.17: For a non-empty subset A of an AG-
groupoid G is called a bi-ideal of G if and only if the
characteristic function [H, | of an AG-groupoid G isa

hesitant fuzzy bi-ideal of G.
Proof: Suppose that A is a bi-ideal of an AG-groupoid G.
Let a,b,ceG, if a,c ¢ A, then

[HA]a m[HA]C =9 [HA](ab)c
= [H.], ~[H.] = [H.]

(ab)c ”
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If a,c e A, then ac € A. Since A is a bi-ideal of G.
Then

[HA](ab)c = [0’1] = [HA]a m[HA]C'
Thus [H ] is a hesitant fuzzy bi-ideal of G.
Conversely, assume that [H , | is a hesitant fuzzy bi-ideal
of G. Let a,cc A and b e G then

[HA]a ﬁ[HA]C 2[0’1]
J.=[0.4]

and thus

[HA](ab)c o[H,],n[H.

= [HA](ab)c = [0'1]'
Which show that (ab)c € AGA. Thus A is a bi-ideal of
G.
Lemma 3.16: Let H be a hesitant fuzzy sub AG-groupoid
of an AG-groupoid G . Then H is a hesitant fuzzy bi-ideal
of G ifand only if

(HoG)oH < H.

Proof: Suppose that, H be a hesitant fuzzy bi-ideal of G .

Letx =ab, for all ,a,beG. Then
(HoGoH)X:U{(HoG)ame}zU{U{Hpqu}me}
x=ab x=ab (a=pq
{ {H,n[0,1] mH} U {H,nH,}
x=ab | a=pq x=(pq)b
= U (pq)b}
x=(pq)b
cH,

Thus, HoGoH < H.
Conversly, assume that: HoGoH < H.

Let x=(ab)c, for all a,b,c,xeG.
H, 2 (HoGoH), = [ J {(HoG), nH,}

X=pq

= U {(HOG)p qu}

(ab)e=pq

2 (HoG),, "H,
= |J {H,nG}nH,

(ab)=uv
2 (Ha me)m Hc
=(H, n[0,1]nH,
=H,H..

Thus, H ). 2 H, nH..

5. HESITANT FUZZY INTERIOR IDEALS IN AG-
GROUPOIDS

Definition 3.17: A hesitant fuzzy subset H of an AG-
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groupoid G s called a hesitant fuzzy interior ideal of G if
Hay 2H,, forall a,b,ceG.

Example 3.18: Let G = {a, b, C} be an AG-groupoid
with the binary operation definein table T1.

[0.3,0.9) if x=a,
H:G - p([0.1]), x+>1[0.1,0.7] if x=h,
(0.3,0.8] if x=c.

Then H is a hesitant fuzzy interior ideal of G.

Definition 3.19: Let H be a hesitant fuzy set of an AG-
groupoid G and € C [0,1], then
G(H;&)={teG/ecH,}, iscalled the hesitant level

setof H .
Theorem 3.20: A hesitant fuzzy interior ideal H of an
AG-groupoid G is a hesitant fuzzy sub AG-groupoid of

G ifandonlyiftheset G(H;e)={teG/ecH,} is
a sub AG-groupoid, when ¢ € P([O,l]) :

Proof: Let H be a hesitant fuzzy interior ideal of G. Let
X, Y,2Z eG(H;g). Implies that &€ € H,,

= (xy)zeG(H;e).
Which show that G ( H; 6‘) is a sub AG-groupoid of G .

and s e H,,

but by hypothesis £ = H,,,

Conversly, assume that G ( H; 8) is a sub AG-groupoid of
G. Let X,Y,Z €G suchthat H(Xy)Z
X,y,2eG(H;e), but (xy)z£G(H
that H(xy)Z ) Hy.

Lemma 3.19: Let H be a hesitant fuzzy sub AG-groupoid

of an AG-groupoid G . Then H is a hesitant fuzzy interior
ideal of G if and only if GoHoGEH.
Proof: Let H be a hesitant fuzzy interior ideal of G. Then

DED Hy, then

€), which show

H iy 2 Ha
Let a,b,ceG
(GoHoG), = {(GoH), NG, } = U{U{Game}mGz}

- U{U ([0, H }m[o,l]}: U{U{Hb}m[O,ll}

Xx=yz | y=aob x=yz | y=ab

= U {Hn}g U H ey, = Hy

x=(ab)z x=(ab)z
Thus
(GoH)oG c H.

Conversly, assume that: GoHoG — H. Let a,Xx,be G,
such that, (ax)b = X. Then
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H oo 2 (GOHOG) = |J {(GoH), NG}

(ax)b=pq

G mH qu}

(ax)b =pq

{ [0 nH, m[O,l]}
(@)b=pg { p=yx

{ m[O 1]}
(@)b=pq [ p=yx
(ax)b=pq { p=yx }

H(ax)b oH,.

Thus

6. HESITANT FUZZY QUASI IDEALS IN AG-
GROUPOIDS

Definition 3.20: A hesitant fuzzy set H of G is called a
hesitant fuzzy quasi ideal of G if the following condition
is valid:
(HoG)N(GoH) c H.

Theorem 3.21: Let ¢ # A = G. Then A is a quasi-ideal
of G if and only if the characteristic hesitant fuzzy set
[HA] is a hesitant fuzzy quasi-ideal of G .

Proof: Suppose that A is a quasi-ideal of G . LetXe G,
if X € A. Then

(H ]1oG)N(Ge[H,]), < [0.1]=[H,]

IfX g A, then

[H.] =¢<(H,]eG)N(G-[H,]),

= (H,1°G)N(Ge[H,]), =[H,I

Conversly, assume that [HA] is a quasi-ideal on G .
Let X be an element of (H cG) N (GoH). Then

ca=x=bd, VabeG and c,d € A. Thenby
defination we have

[H L 2W{([HA1-G) N (G -[H, D).
([H,12G) (G -[H, D,

(SECR R IUTICRRatH)

X=uv X=uv

= (Uitra} ) Uie J-om

andso X € A. Thus AGNGA C A and hence A isa
quasi-ideal of G .
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