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Abstract: In this paper, a post processing technique is developed to improve the accuracy of the approximation around the corner of 

an elliptic boundary by determining the coefficients in the known locally convergent expansion. It is used to remove the singularity 

present at the reentrant corners of the T-shaped region.  The reentrant corners singularities which are treated by a post processing 

technique also makes use of the asymptotic behavior of the solution at the singular points.  
 Keywords: post processing technique, locally convergent singularities, reentrant corners, asymptotic behavior. 

 
1. INTRODUCTION 
The difficulties of obtaining accurate numerical solutions to 

Poisson’s problems containing boundary singularities are 

well known. Many of the conventional methods e.g. finite 

difference, finite element and boundary integral equation 

methods have limitations when the solution has the 

singularity on the boundary which is due to either a reentrant 

corner or to an abrupt change of boundary condition. Many 

numerical techniques have been proposed to treat these 

difficulties [5]. 

In 1988, spectral methods have solved many engineering 

problems with adequate accuracy, especially in areas of 

computational fluid dynamics [2]. However, if one wishes to 

achieve greater accuracy when the exact solution possesses a 

mild singularity, the use of global trial functions exclusively 

is inefficient [7] explored the possibility of achieving greater 

accuracy by using the method of matched Eigen-function [8] 

expansion to solve the Poisson’s equation in a contraction 

region. They also described how the approximation may be 

post-processed in the neighbourhood of a reentrant corner 

singularity in order to obtain an improved and more rapidly 

converging representation. It is necessary to post-process the 

approximation since, near the singularity, the expansions 

converge prohibitively slowly, and one may require a large 

number of terms to achieve reasonable accuracy. From the 

computational point of view, it is clearly not efficient to 

work with expansions containing so many terms. The post-

processing technique is performed by matching the known 

asymptotic form of the singularity to the solution obtained by 

the method of matched Eigen-function expansions at a 

sufficient distance from the singularity. The method works 

because in elliptic problems the effect of the singularity does 

not penetrate into the interior of the region [3] and so away 

from the singularity, the Eigen functions converge rapidly. 

So in principle, we continue this line of investigation and 

apply the same technique to incorporate the known 

asymptotic form of the singularity into the numerical 

technique for solving Poisson’s equation in rectangular 

decomposable domains. 

Many numerical techniques have been proposed for the 

treatment of problems with singularities. Although solutions 

of elliptic boundary value problems with analytic coefficients 

and boundary data are analytic where the boundary is 

analytic, such solutions generally have singularities at 

corners. When solving Poisson’s equation for the T-

geometry [1], we have seen that the solutions have singular 

derivatives at the reentrant corners. The series expansions we 

obtained in regions I, II, III and IV in the T–geometry 

converge linearly near the singularity [1]. Away from the 

singularity a relatively small number of terms are required to 

achieve good accuracy while near the singularity these 

expansions converge prohibitively slowly and one may 

require a large number of tents to achieve a reasonable 

accuracy. Clearly this is not efficient from the computational 

point of view. In such problems, high accuracy cannot be 

obtained by using smooth Eigen functions only. These 

functions must be augmented with singular functions. So in 

this paper, we propose a technique which circumvents the 

slow convergence arising from the behavior of the singularity 

for the T-geometry. This technique requires knowledge of 

the local asymptotic form of the singularity [4]. 

 
2. MATERIAL AND METHODS 
Suppose that there is a boundary singularity and assume that 

it occurs at the origin. [5] shows that the solution of 

Poisson’s equation can be represented in terms of an 

expansion of the form  

),(),(),(),(  rvrdxyxWyxU   (1) 

where ),(),(2  rvHW   is a vertex singular function not 

in )(2 H  and x is a cut-off function. The inclusion of the 

cut-off function localizes the influence of the singular 

function to the neighbourhood of the vertex. The singular 

function is found by solving a harmonic problem in a region 

sufficiently close to the origin. If an interior angle of   is 

subtended at the origin by  , where   is the boundary 

of the domain ),(,  rv  takes the form 

)/(sin),( /  rrv     (2) 

The coefficient d in (1), is known as the stress intensity 

factor, is a continuous linear functional of the source term 

f(x,y) in Poisson’s equation. This is a local functional if and 

only if  /  is integral [5]. Thus if  /  is not integral 

then the functional is global i.e. it depends on the boundary 

data in the far field. In our case 3/2/   which means 

that the functional is global. 
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Lehman shows that in the neighbourhood of a reentrant 

corner 
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where the functions kv  are harmonic. We note that this 

formal power series coincides with (1) where 
 

11, vvdd   and 
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There are numerous techniques available for determining d in 

(1). Since the Eigen function expansions derived in [1] are 

highly accurate away from the singularity, the Dirichlet data 

for U obtained from these functions on Rr   can be used 

to determine the coefficients in the singular series by means 

of matching. 

In this paper we extend the post-processing method of [7]. 

The key feature of this method is the construction of the 

inharmonic part of the solution analytically with a high rate 

of convergence even when the source term is not smooth. 

This is due to Lehman’s discovery that the singular behavior 

induced by the reentrant corner is confined to harmonic parts 

of the solution. 

 

3. T-SHAPED GEOMETRY AND BOUNDARY 
CONDITIONS  

We consider the Poisson’s equation 

),(),(2 yxfyxU   

in T-geometry. The domain   of the problem and the 

associated Dirichlet boundary conditions are shown in the 

Figure 1. We divided the domain   into four sub-regions 

i.e. region I, II, III and IV respectively. Here D is the width 

of bottom strip. 

 
Figure-1 T-geometry and Boundary Conditions. 

 

3.1  Analytical form of the Singularity 
We define a sector S around the reentrant corner for the T-

geometry in the form 

}2/30,0:),{(   RrrS   (5) 

where r,   are local polar coordinates centered on the 

reentrant corner. In this sector we consider the Poisson 

problem 
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Assume that the solution of (6) is of the form 
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Substituting (7) into the differential equation (6) we have 
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we obtain  
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for all values of n. Using the method of variation of 

parameters we may write the solution of (8) in the closed 

form 
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Provided )(rfn  is regular, it is not difficult to 

show that the representation in (9) is finite for all 0r  and 

  is strictly positive. 

 
3.2 Treatment of the singularity for the T-geometry 

In the solution of Poisson equation, in the T-geometry slow 

convergence near the singularity is due to the harmonic parts 

of the series expansions given by [1] for 
IIIIII UUU ,,  

and 
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IVU  respectively. These harmonic parts are given by: 
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respectively. The coefficients na  and nb have been 

determined in [1]. We note as before that   (10) to (13) do not 

form the full harmonic parts of  
IIIIII UUU ,,  

and 
IVU , 

respectively, in [1]. To construct the harmonic parts we 

proceed in a way similar to that of the contraction geometry 

[7] and denote them by  
III
h
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h

I
h UUU ,,  
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respectively.  

We consider the reentrant corner at )1,( D  of 

the T-geometry [1] and define a sector S around it by (5), 

where 
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We may write the approximate solution valid in 

sector S of the form 
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Using the same post-processing technique as before we use 

the matching process which requires the following 
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where  sin1,cos RyRDX RR  . 

Multiplying both sides of (16) by  k
3
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The integral in the right-hand side of (17) are computed by 

Filon’s method. It is only the harmonic parts which are 

replaced by the expansion (16) in the sector. We may 

compute the remaining parts as accurately as we wish. 

 

4. NUMERICAL RESULTS 
We present the numerical result obtained using the post 

processing technique for the T-geometry [6]. 

 

4.1 Laplace Equation  
Consider Laplace’s equation for the T-geometry the domain 

  and the boundary conditions are shown in the Figure 1. 

The series expansions for 
IIIIII UUU ,,  and 

IVU  given 

by [1] converge slowly in the sector S defined by (5) and 

(14) and are replaced by an expansion (15) which holds in 

the sector S where the coefficients kd  are obtained by (17). 

We list the first four coefficients kd in (15) for different 

values of R computed with a value of M = 33 in table (2). 

The coefficients of kd  seem to become independent of R 

and tend to some finite value as R increase to unity which is 

expected as the matched Eigen functions expansion 

converges rapidly away from the singularity. The largest 

value of R, we take is unity. Table (1) in which case the 

radius of the sector is tangent to the line of symmetry of the 

geometry (i.e. x=0). Only eight non-vanishing terms are 

needed. 

 
Table-1  The coefficients dn for different values of R in the T-

Geometry 

R 1d  2d  3d  4d  

0.1250 –0.42992 –0.18282 0.00120 0.00879 

0.2500 –0.43061 –0.18282 0.00120 0.00851 

0.375- –0.43079 –0.18282 0.00120 0.00850 

0.5000 –0.43086 –0.18282 0.00120 0.00849 

0.6250 –0.4309 –0.18282 0.00120 0.00849 

0.7500 –0.43093 –0.18282 0.00120 0.00849 

0.8750 –0.43094 –0.18282 0.00120 0.00849 

1.0000 –0.43096 –0.18282 0.00120 0.00849 

Again to make the choice of M = 33 justifiable we consider 

the convergence of the coefficients kd  = 1, … , 4 for R = 1 

and evaluate them for various values of M. Table (2) shows 

that the coefficients kd  do not change when M varies after 

33 to 97, which indicates that choice of M = 33 is an 

adequate number. 
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Table-2  The rate of convergence of dn for different values of M 

in the T-Geometry 

M 1d  2d  3d  4d  

17 –0.4309 –0.18282 0.00120 0.00849 

33 –0.43096 –0.18282 0.00120 0.00849 

49 –0. 43096 –0.18282 0.00120 0.00849 

65 –0. 43096 –0.18282 0.00120 0.00849 

81 –0. 43096 –0.18282 0.00120 0.00849 

97 –0. 43096 –0.18282 0.00120 0.00849 

For Poisson’s equation discussed in [1] with different values 

of   and   , we noticed that the slow convergence near the 

singularities is due to the harmonic parts of the series 

solution given by (10) to (13) for 
IIIIII UUU ,,  and 

IVU  

in the sector S defined by (5) and (14). We replaced it by the 

singular expansions (15) for which the coefficients kd  are 

obtained from (17). In this case the coefficients na  and nb  

are obtained and are shown in tables for 0,1   and 

[1]. The singular coefficients are almost identical to those 

obtained for harmonic problem and therefore we do not 

tabulate them. The regular part may be calculated as 

accurately as we wish. A contour plot of the harmonic 

problem in the T-geometry is shown in the Figure (1). 

 
Figure-2 The post-processed contours of the solution of 

Laplace equation 02  U  in the T-shaped geometry. 

 

5. CONCLUSION 
Reentrant corner singularities are treated by a post-

processing technique, which makes use of the known 

asymptotic behaviour of the solution at the singular points. 

We assess the relative advantages and disadvantages of the 

various aspects of this method. A post-processing technique 

is developed to improve the accuracy of the approximation 

around corners by determining the coefficients in the known 

locally convergent expansions. This is necessary because of 

the singularities present at the reentrant corners. The most 

attractive feature of this technique is how an inharmonic part 

of the solution can be constructed analytically with a high 

rate of convergence of series solution even when ),( yxf is 

not smooth. This is due to Lehman’s discovery that singular 

behaviour induced by the reentrant corners is confined to 

harmonic parts of the solution. 
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