Ammar Abdulkadhim Enad¹, Saba Naser Majeed^{2,*}

^{1.2}Department of Mathematics, College of Education for Pure Science (Ibn-Haitham), University of Baghdad, Baghdad, Iraq ammaralkaaby33@gmail.com¹, saba.n.m@ihcoedu.uobaghdad.edu.iq^{2,*}

ABSTRACT In this paper, the classes of B-preinvex and E-B-preinvex functions are extended to the classes of b^h -preinvex and E^h -b-preinvex functions, respectively. In this extension the effect of the functions $h: [0,1] \to \mathbb{R}$ and $b: \mathbb{R}^n \times \mathbb{R}^n \times [0,1] \to \mathbb{R}^+$ are taken into consideration. Some basic properties for the new functions are discussed and some optimality properties for local E^h -b-preinvex nonlinear optimization problems involving E^h -b-preinvex functions are established. The new results can be considered as an extension to several results that are introduced in the literature.

AMS Subject Classification: 46N10, 47N10, 90C48, 90C90, 49K27

Keywords: E-invex set, h-preinvex function, E^h -b-preinvex function, b^h -preinvex function, local E^h -b-preinvex problem

1. INTRODUCTION

Convex analysis is studied and employed widely in applied mathematics, especially, in optimization and optimal control (see e.g., [1-6]). Several attempts were made in the literature to generalize and extend convex sets and convex functions [7-26]. The class of convex sets (functions) were generalized to the class of invex sets [7,8], the class of preinvex functions [9,10], the class of *B*-vex functions [11], and to the class of *B*-preinvex [12]. Recently, Youness [13] introduced the concepts of E-convex sets (functions) and E-convex optimization problems. Youness inspired many researchers to extend many concepts from convex analysis into *E*-convexity and applying *E*-convexity in optimization problems see (e.g., [14-17]. Fulga and Perda [18] introduced the class of E-preinvex functions by combining the classes of preinvex and E-convex functions and also introduced E-prequasiinvex functions. Fulga and Perda applied the new classes to non-linear optimization problems. On the other hand, Syau et. al. [19] defined E-Bpreinvex as a generalizations of *E*-convex and *B*-preinvex functions. More recently, h-strongly E-convex functions [20] was defined as a combination of strongly E-convex functions [14] and h-convex functions [21]. In this paper, we introduce the class of E^h -*b*-preinvex and local E^h -*b*preinvex functions by combining the classes of *h*-preinvex [22] and *E*-*B*-preinvex functions. The class of b^h -preinvex functions is also defined by extending the classes of hpreinvex and B-preinvex functions. In section 2, some preliminary definitions studied in the literature are recalled and the new generalized convex functions are introduced. In section 3, some properties of E^{h} -b-preinvex functions are discussed and two characterizations of this class are provided using b^h -preinvex and *E*-prequasiinvex functions (see Propositions 3.4-3.5). We give a new characterization of *E*-prequasiinvex functions using the invexity of the level set $D_{\gamma,E}$ (see Proposition 3.9). In section 4, we provide some optimality properties of non-linear optimization problems for which the functions are local E^{h} -b-preinvex functions and the constraint set is local Einvex set.

2. Preliminaries

In this paper, \mathbb{R}^n denotes the *n*-dimensional Euclidean space and \mathbb{R}^+ be a set of non-negative real numbers. For brevity in writing the statements, the following assumption is needed.

Assumption Let $\emptyset \neq D \subseteq \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}$, $h: [0,1] \to \mathbb{R}$ be two real valued functions such that. Assume that $E: \mathbb{R}^n \to \mathbb{R}^n \quad \psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, and $b: \mathbb{R}^n \times \mathbb{R}^$

 $[0,1] \to \mathbb{R}^+$ are given mappings where $\lambda b(x, y, \lambda) \in [0,1]$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0,1]$.

Next, some preliminaries and related concepts that to develop the new functions are given. Throughout the paper, D, f, E, ψ and b are defined as in above Assumption unless otherwise stated.

Definition 2.1 Let D, E, and ψ are defined as in the Assumption then, $\forall d_1, d_2 \in D$ and $\forall \lambda \in [0,1]$, *D* is said to be

1. E-convex if $\lambda E(d_1) + (1 - \lambda)E(d_2) \in D$. [13]

2. An invex set with respect to ψ (for short, *D* is an

invex w.r.t. ψ) if $d_2 + \lambda \psi(d_1, d_2) \in D$. [8]

3. An *E*-invex set w.r.t. ψ if $E(d_2) + \lambda \psi(E(d_1), E(d_2)) \in D$. [18]

4. A local *E*-invex set w.r.t. ψ if for each $d_1, d_2 \in D$ there exists $Z_{1,2} \in [0, 1]$ such that

there exists $\zeta_{d_1,d_2} \in (0,1]$ such that

 $E(d_2) + \lambda \psi(E(d_1), E(d_2)) \in D \quad \forall \lambda \in [0, \zeta_{d_1'd_2}].$ [18] **Definition 2.2** [18] Let *H* and *K* be two subsets of \mathbb{R}^n and ψ is defined as in the Assumption. Then

1. *H* is said to be slack-invex w.r.t. *K* if, for every $h, k \in H \cap K$ and every $0 \le \lambda \le 1$ such that $k + \lambda \psi(h, k) \in K$ we get $k + \lambda \psi(h, k) \in H$.

2. *H* is said to be local slack-invex w.r.t. *K* if, for every $h, k \in H \cap K$ there exists $\zeta_{h,k} \in (0,1]$ such that $\forall \lambda \in [0, \zeta_{h,k}]$ if $k + \lambda \psi(h, k) \in K$ we get $k + \lambda \psi(h, k) \in$ *H*.

Proposition 2.3 [18] Let *D* and *E* are defined as in the Assumption such that *D* is an *E*-invex (respectively, local *E*-invex) set. Then, $E(D) \subseteq D$.

Definition 2.4 Let D, f, E, b and ψ are defined as in the Assumption then, $\forall d_1, d_2 \in D$ and for every $\lambda \in [0,1]$, f is called

1. preinvex function w.r.t. ψ on the invex set *D* if,

$$f(d_2 + \lambda \psi(d_1, d_2)) \le \lambda f(d_1) + (1 - \lambda) f(d_2).$$
[9, 10]

-convex function on the *E*-convex set *D* if,

 $f(\lambda E(d_1) + (1 - \lambda)E(d_2)) \le \lambda f(E(d_1)) + (1 - \lambda)f(E(d_2)).$ [13]

3. *E*-preinvex function w.r.t. ψ on the *E*-invex set *D* if,

 $f(E(d_2) + \lambda \psi(E(d_1), E(d_2))) \le \lambda f(E(d_1)) + (1 - \lambda) f(E(d_2)).$ [18]

4. B-preinvex function w.r.t. ψ on the invex set D if, $f(d_2 + \lambda \psi(d_1, d_2)) \le \lambda b(d_1, d_2, \lambda) f(d_1) + (1 - \lambda b(d_1, d_2, \lambda)) f(d_2),$ for $\lambda b(d_1, d_2, \lambda) \in [0,1]$ [12] 5. *E-B*-preinvex function w.r.t. ψ on the *E*-invex set *D* w.r.t. ψ if,

$$\begin{split} & f(E(d_2) + \lambda \psi(E(d_1), E(d_2))) \leq \\ & \lambda b(d_1, d_2, \lambda) \ f(E(d_1)) + (1 - \lambda b(d_1, d_2, \lambda) \) f(E(d_2)), \\ & \text{for } \lambda b(d_1, d_2, \lambda) \in [0, 1]. \ [19] \end{split}$$

6. *E*-prequasiinvex w.r.t. ψ on the *E*-invex set *D* if, $f(E(d_2) + \lambda \psi(E(d_1), E(d_2))) \leq$

 $\max\{f(E(d_1)), f(E(d_2))\}$. [18]

Remark 2.5 For simplicity in appearance

1. We omit in the proofs and calculations the parentheses from E(x), and writing it instead as Ex whenever it seems convenient.

2. *E*-invex set w.r.t. ψ and (preinvex, *E*-preinvex, *B*-preinvex, *E*-*B*-preinvex, *E*-prequasiinvex) functions w.r.t. ψ will be called *E*-invex set, (preinvex, *E*-preinvex, *B*-preinvex, *E*-preinvex, *E*-prequasiinvex) functions.

3. We discard the argument of the mapping *b* and express $b(x, y, \lambda)$ as *b* wherever it appears in the paper. **Definition 2.6** A function $f: \mathbb{R}^n \to \mathbb{R}$ is called

1. sublinear if $f(\alpha_1 x_1 + \alpha_1 x_2) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) \quad \forall x_1, x_2 \in \mathbb{R}^n \text{ and } \alpha_1, \alpha_2 \in \mathbb{R}.$ [1]

2. idempotent if $f^2(x) = f(x) \quad \forall x \in \mathbb{R}^n$. [23]

3. non-decreasing if whenever
$$x, y \in \mathbb{R}^n$$
 such that

 $x \leq y$ (i.e., $x_i \leq y_i$, $\forall i = 1, ..., n$) we get $f(x) \leq f(y)$. [24, Definition 5.2.1]

n the literature, different types of γ -level sets associated with f and E are defined. Some of these sets are listed below.

Definition 2.7 Let $\gamma \in \mathbb{R}$. Then,

1. $D_{\gamma} = \{ d \in D : f(d) \le \gamma \}.$ [1]

2. $E - D_{\gamma} = \{ d \in D : f(Ed) \le \gamma \}.$ [16]

3. $D_{\gamma,E} = \{E(d) \in E(D): f(Ed) \le \gamma\}.$ [16]

Next, the definition of h-convex introduced in [21] is recalled. Noting that, in [25,26] other versions of h-convex functions are defined.

Definition 2.8 [21] Let $h: [0,1] \to \mathbb{R}$ be a function. Then $f: D \to \mathbb{R}$ is said to be *h*-convex function if for each $d_1, d_2 \in D$, and each $0 \le \lambda \le 1$ we have $f(\lambda d_1 + (1-\lambda)d_2) \le h(\lambda)f(d_1) + h(1-\lambda)f(d_2)$.

By making use of a non-negative h-convex function and a preinvex function, Matloka in 2014 introduced the class of h-preinvex function.

Definition 2.9 [22] Let $h: [0,1] \to \mathbb{R}$ be a positive function. Then a positive function $f: D \to \mathbb{R}$ is said to be *h*-preinvex on the invex set *D* if for each $d_1, d_2 \in D$, and each $0 \le \lambda \le 1$ we have $f(d_2 + \lambda \psi(d_1, d_2)) \le h(\lambda)f(d_1) + h(1 - \lambda)f(d_2)$.

By extending the definitions of *B*-preinvex and *h*-preinvex functions, we introduce the b^h -preinvex function as follows.

Definition 2.10 Let D, f, b, ψ and h are defined as in the Assumption such that D is an invex set. Then f is said to be b^h -preinvex function on D if for each $d_1, d_2 \in D$, and each $0 \le \lambda \le 1$

$$f(\mathbf{d}_2 + \lambda \psi(\mathbf{d}_1, \mathbf{d}_2)) \le h(\lambda b) f(\mathbf{d}_1) + h(1 - \lambda b) f(\mathbf{d}_2).$$

Using the definitions of *h*-preinvex function and *E*-*B*-preinvex function, we define the E^h -*b*-preinvex and local E^h -*b*-preinvex functions.

Definition 2.11 Let D, f, E, b, ψ and h are defined as in the Assumption such that D is an E-invex set. Then

1. *f* is said to be
$$E^h$$
-*b*-preinvex function on *D* if for each $d_1, d_2 \in D$, and each $0 \le \lambda \le 1$

$$f(Ed_2 + \lambda \psi(Ed_1, Ed_2)) \le h(\lambda b)f(Ed_1) + h(1 - \lambda b)f(Ed_2).$$

2. *f* is said to be local E^{h} -*b*-preinvex function on *D* if for each $d_1, d_2 \in D$ there exists $\lambda_{d_1, d_2} \in (0, \zeta_{d_1, d_2}]$ such that $\forall \lambda \in [0, \lambda_{d_1, d_2}]$

$$f\left(Ed_2 + \lambda\psi(Ed_1, Ed_2)\right) \le h(\lambda b)f(Ed_1) + h(1 - 1)$$

 $\lambda b)f(Ed_2),$

where $\zeta_{d_1,d_2} \in (0,1]$.

Note that b^h -preinvex and E^h -b-preinvex functions are considered as extentions of B-preinvex and E-B-preinvex functions, respectively in the following sense.

Remark 2.12 If h = I the identity function. Then

1. Every *B*-preinvex function is b^h -preinvex function.

2. Every *E*-*B*-preinvex function is E^h -*b*-preinvex.

Next, we show an example of E^h -*b*-preinvex function that is not E-*B*-preinvex .

Example 2.13 Let $f, E: \mathbb{R} \to \mathbb{R}$ and $\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are defined as follows.

$$f(x) = \begin{cases} 1 & x \in [-2,0] \\ \frac{1}{2} & otherwise \\ \psi(x,y) = \begin{cases} x-y & x,y \in [-2,0] \text{ or } x,y \in (0,2] \\ y-x & otherwise \end{cases}$$

and $E(x) = e^x$ $\forall x \in \mathbb{R}$. Assume that $h: [0,1] \to \mathbb{R}$ is defined as $h(\lambda) = 2\lambda$ $\forall \lambda \in [0,1]$ and $D = [-2,2] \subseteq \mathbb{R}$. We observe that f is E^h -b-preinvex on D but not E-B-preinvex function on D. Indeed, consider $x, y \in (0,2]$ such that x = 2, y = 0.7 and and $\lambda = 1$. Then $\psi(e^x, e^y) = e^y - e^x$. Hence,

$$f\left(Ey + \lambda \ \psi(Ex, Ey)\right) = f\left(e^{y} + \lambda\right)$$

$$\lambda\psi(e^x,e^y)$$

 $= f(e^{y} + (e^{y} - e^{x}))$ $= f(-e^{x} + 2e^{y}) = 1.$

On the other hand,

$$\lambda bf(Ex) + (1 - \lambda b)f(Ey) = \lambda bf(e^x) + (1 - \lambda b)f(e^y)$$
$$= \lambda b\left(\frac{1}{2}\right) + (1 - \lambda b)\left(\frac{1}{2}\right) = \frac{1}{2}.$$

This shows, $f(Ey + \lambda \ \psi(Ex, Ey)) > \lambda b f(Ex) +$

 $(1 - \lambda b)f(Ey)$ which means *f* is not *E*-*B*-preinvex on *D*. Next, we show that *f* is E^h -*b*-preinvex on *D*. Direct calculations yields D = [-2,2] is an *E*-invex set. Now, considering $x, y \in [-2,2]$ and $\lambda \in [0,1]$, we have four possible cases:

Case (1): If x, y > 0, i.e., $x, y \in (0,2]$ and $e^x, e^y \in (1, e^2]$;

then
$$f(Ey + \lambda\psi(Ex, Ey)) = f(e^y + \lambda\psi(e^x, e^y))$$

such that

$$\psi(e^{x}, e^{y}) = \begin{cases} e^{x} - e^{y} & e^{x}, e^{y} \in (1, 2] \\ e^{y} - e^{x} & o.w \end{cases},$$
Now,

$$f\left(e^{y} + \lambda\psi(e^{x}, e^{y})\right)$$

=
$$\begin{cases} f\left(e^{y} + \lambda(e^{x} - e^{y})\right) & e^{x}, e^{y} \in (1, 2] \\ f\left(e^{y} + \lambda(e^{y} - e^{x})\right) & o.w. \end{cases}$$

$$=\begin{cases} f(\lambda e^{x} + (1 - \lambda)e^{y}) & e^{x}, e^{y} \in (1, 2] \\ f(-\lambda e^{x} + (1 + \lambda)e^{y}) & o.w. \end{cases}$$

$$= \begin{cases} 1 & e^{x}, e^{y} \in (1, 2] \\ 1 \text{ or } \frac{1}{2} & o.w. \end{cases},$$

and
$$h(\lambda b)f(Ex) + h(1 - \lambda b)f(Ey) = 2\lambda bf(e^{x}) + \\ 2(1 - \lambda b)f(e^{y}) = 2\lambda b\left(\frac{1}{2}\right) + 2(1 - \lambda b)\left(\frac{1}{2}\right) = 1.$$

Case (2): If $x, y \le 0$, i.e., $x, y \in [-2,0]$ and $e^{x}, e^{y} \in [0.1,1]$. This means $\psi(e^{x}, e^{y}) = e^{x} - e^{y}$, then
 $f\left(Ey + \lambda \psi(Ex, Ey)\right) = f(e^{y} + \lambda(e^{x} - e^{y}))$
 $= f(\lambda e^{x} + (1 - \lambda)e^{y}) = \frac{1}{2},$

and

 $h(\lambda b)f(Ex) + h(1 - \lambda b)f(Ey) = 2\lambda bf(e^{x}) + 2(1 - \lambda b)f(e^{y}) = 2\lambda b\left(\frac{1}{2}\right) + 2(1 - \lambda b)\left(\frac{1}{2}\right) = 1.$ Case (3): If x > 0, $y \le 0$, i.e., $x \in (0,2]$ and $y \in [-2,0]$. Then $e^{x} \in (1, e^{2}]$ and $e^{y} \in [e^{-2}, 1]$ this means $\psi(Ex, Ey) = e^{y} - e^{x}$. Thus, $f\left(Ey + \lambda\psi(Ex, Ey)\right) = f\left(e^{y} + \lambda(e^{y} - e^{x})\right)$

$$= f(-\lambda e^{x} + (1+\lambda)e^{y}) = \frac{1}{2} \text{ or } 1$$

and $h(\lambda b)f(Ex) + h(1-\lambda b)f(Ey) = 2\lambda bf(e^{x}) + 2(1-\lambda b) = 2\lambda b\left(\frac{1}{2}\right) + 2(1-\lambda b)\left(\frac{1}{2}\right) = 1.$

Case (4): If ≤ 0 , y > 0; i.e., $x \in [-2,0]$ and $y \in [0,2]$. Then $e^x \in [0.1,1]$ and $e^y \in (1, e^2]$. This means $\psi(Ex, Ey) = e^y - e^x$,

then
$$f\left(Ey + \lambda\psi(Ex, Ey)\right) = f\left(e^y + \lambda\psi(e^x, e^y)\right)$$

= $f(-\lambda e^x + (1 + \lambda)e^y) = \frac{1}{2}$,
and $h(\lambda b)f(Ex) + h(1 - \lambda b)f(Ey) = 2\lambda bf(e^x) + 2(1 - \lambda b)f(e^y) = 2\lambda b\left(\frac{1}{2}\right) + 2(1 - \lambda b)\left(\frac{1}{2}\right) = 1$,

In all cases, we have $f(Ey + \lambda\psi(Ex, Ey)) \le h(\lambda b)f(Ex) + h(1 - \lambda b)f(Ey)$ as it is required to show.

3. Some properties of E^h -*b*-preinvex functions

In this section, we discuss some basic properties of E^{h} -b-preinvex functions. We start first by showing that the class of E^{h} -b-preinvex functions is closed under non-negative scalar multiplication and addition. Same property holds for classical convex functions.

Proposition 3.1 Let D, f, E, b, ψ and h are defined as in the Assumption. Assume that $g: \mathbb{R}^n \to \mathbb{R}$ be a function such that D is an *E*-invex and f, g are E^h -*b*-preinvex functions, then $\alpha f + \beta g$ is an E^h -*b*-preinvex function. $\forall \alpha, \beta \ge 0$.

Proof. Let $d_1, d_2 \in D$, and $\lambda \in [0,1]$. Set $u = Ed_2 + \lambda \psi(Ed_1, Ed_2) \in D$. Using the fact that f and g are E^h -b-preinvex functions, we obtain

$$\begin{aligned} &(\alpha f + \beta g)(u) = \alpha f(u) + \beta g(u) \leq \alpha h(\lambda b) f(Ed_1) + \\ &\alpha h(1 - \lambda b) f(Ed_2) + \beta h(\lambda b) g(Ed_1) + \beta h(1 - \\ &\lambda b) g(Ed_2), \end{aligned}$$

$$= h(\lambda b)(\alpha f + \beta g)(Ed_1) + h(1 - \lambda b)(\alpha f + \beta g)(Ed_2).$$

Hence, $\alpha f + \beta g$ is an E^h -*b*-preinvex on *D*.

Proposition 3.2 Let Let D, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set and h is positive, $f_i: \mathbb{R}^n \to \mathbb{R}$ is bounded from above for each $i \in \Lambda$. Define, $f: \mathbb{R}^n \to \mathbb{R}$ such that $f = \sup_{i \in \Lambda} f_i$. If f_i is E^h -*b*-preinvex function on D w.r.t. the same ψ, b, h for each $i \in \Lambda$, then f is E^h -*b*-preinvex on D.

Proof. Since f_i is a E^h -*b*-preinvex on $\forall i \in \Lambda$, then, for each $d_1, d_2 \in D$ and $0 \le \lambda \le 1$ we have

$$f_i\left(Ed_2 + \lambda\psi(Ed_1, Ed_2)\right) \le h(\lambda b)f_i(Ed_1) + h(1 - \lambda b)f_i(Ed_2) \qquad \forall i \in \Lambda.$$

Taking the supremum to the right-hand side of the inequality above, we get

$$f_{i}\left(Ed_{2} + \lambda\psi(Ed_{1}, Ed_{2})\right) \leq \sup_{i \in \Lambda} [h(\lambda b)f_{i}(Ed_{1}) + h(1 - \lambda b)f_{i}(Ed_{2})] \quad \forall i \in \Lambda.$$

Then,

$$\sup_{i \in \Lambda} f_{i}\left(Ed_{2} + \lambda\psi(Ed_{1}, Ed_{2})\right)$$

$$\leq \sup_{i \in \Lambda} [h(\lambda b)f_{i}(Ed_{1}) + h(1 - \lambda b)f_{i}(Ed_{2})].$$

From the fact that *h* is positive and sup*M* and sup*N* are finite, we get sup $(M + N) = \sup M + \sup N$. Thus, the last inequality yields, $f(Ed_2 + \lambda \psi(Ed_1, Ed_2)) \le h(\lambda b) \sup_{i \in \Lambda} f_i(Ed_1) + h(1 - \lambda b) \sup_{i \in \Lambda} f_i(Ed_2)$ $= h(\lambda b) f(Ed_1) + h(1 - \lambda b) f(Ed_2).$

get
$$f$$
 is an E^{h} - b -preinvex.

The composite property is also held if f is an E^h -b-preinvex function as we show next.

Proposition 3.3 Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex and f is an E^h -b-preinvex on D. Assume that $G: \mathbb{R} \to \mathbb{R}$ is a non-decreasing sublinear function. Then $G \circ f$ is an E^h -b-preinvex on D. **Proof.** Let $d_1, d_2 \in D$, and $\lambda \in [0,1]$. Since, f is E^h -b-preinvex on the E-invex set D, then

$$Ed_2 + \lambda \psi(Ed_1, Ed_2) \in D$$
 and

$$f(Ed_2 + \lambda \psi(Ed_1, Ed_2)) \le h(\lambda b)f(Ed_1) + h(1 - \lambda b)f(Ed_2),$$

$$G\left(f\left(Ed_2 + \lambda\psi(Ed_1, Ed_2)\right)\right) \le G(h(\lambda b)f(Ed_1) + h(h(\lambda b)f(Ed_1)))$$

 $h(1-\lambda b)f(Ed_2)).$

Then, we

The last inequality holds because G is a non-decreasing function. Using the sublinearity assumption of G, the right-hand side of the last inequality yields,

$$G(f(Ed_2 + \lambda \psi(Ed_1, Ed_2))) \le h(\lambda b)G(f(Ed_1)) + h(1 - \lambda b)G(f(Ed_2)),$$

i.e., $(Gof)(Ed_2 + \lambda \psi(Ed_1, Ed_2)) \le h(\lambda b)(Gof)(Ed_1) + h(1 - \lambda b)(Gof)(Ed_2).$

Thus, Gof is a E^h -*b*-preinvex on D.

The next propositions provide necessary and sufficient conditions for f to be an E^h -b-preinvex function.

Proposition 3.4 Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set and E(D) is an invex. Then, a function f is E^h -b-preinvex on D if and only if its restriction $\tilde{f}: E(D) \to \mathbb{R}$ is b^h -preinvex on E(D). **Proof.** Let $\tilde{d_1}, \tilde{d_2} \in E(D)$ then there exist $d_1, d_2 \in D$ such that $\tilde{d_1} = Ed_1$ and $\tilde{d_2} = Ed_2$. Since E(D) is an invex set then $\tilde{d_2} + \lambda \psi(\tilde{d_1}, \tilde{d_2}) \in E(D)$. First, we prove \tilde{f} is b^h -preinvex on E(D) where $\tilde{f}(\tilde{d}) = f(\tilde{d}) \quad \forall \tilde{d} \in E(D)$. From the definition of \tilde{f} and the assumption on f, we get $\tilde{f}(\tilde{d_1} + \lambda \psi(\tilde{d_1}, \tilde{d_2})) = f(\tilde{d_1} + \lambda \psi(\tilde{d_1}, \tilde{d_2}))$

$$f(d_{2} + \lambda \psi(d_{1}, d_{2})) = f(d_{2} + \lambda \psi(d_{1}, d_{2}))$$

$$= f\left(Ed_{2} + \lambda \psi(Ed_{1}, Ed_{2})\right)$$

$$\leq h(\lambda b)f(Ed_{1}) + h(1 - \lambda b)f(\widetilde{d_{2}})$$

$$= h(\lambda b)f(\widetilde{d_{1}}) + h(1 - \lambda b)f(\widetilde{d_{2}})$$

$$= h(\lambda b)\tilde{f}(\widetilde{d_1}) + h(1-\lambda b)\tilde{f}(\widetilde{d_2}).$$

Thus, \tilde{f} is b^h -preinvex on E(D). For obtaining the reverse implication, we use the definition of f and the assumption on \tilde{f} , $\forall \lambda \in [0,1]$ and $\lambda b \in [0,1]$ we have

$$f\left(Ed_{2} + \lambda\psi(Ed_{1}, Ed_{2})\right) = \tilde{f}\left(\overline{d_{2}} + \lambda\psi(\overline{d_{1}}, \overline{d_{2}})\right)$$

$$\leq h(\lambda b)\tilde{f}(\overline{d_{1}}) + h(1 - \lambda b)\tilde{f}(\overline{d_{2}})$$

 $= h(\lambda b)f(Ed_1) + h(1 - \lambda b)f(Ed_2),$ which implies that f is E^h -b-preinvex on D.

Proposition 3.5 Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set. Assume that $h(\alpha) \leq \alpha \, \forall \alpha \in [0,1]$, h is a non-negative function, and h(1) = 1. Then, f is E^h -b-preinvex on D for some b and h if and only if f is an E-prequasiinvex on D.

Proof. Let *f* be an E^{h} -*b*-preinvex on *D* w.r.t. some *b* and *h*. Note that for all $d_1, d_2 \in D, \lambda \in [0,1]$ and $\lambda b \in [0,1]$ we have

$$f\left(Ed_2 + \lambda\psi(Ed_1, Ed_2)\right) \\ \leq h(\lambda b)f(Ed_1) + h(1 - \lambda b)f(Ed_2)$$

From the assumptions on h, the right-hand side of the above inequality becomes

$$f\left(Ed_2 + \lambda\psi(Ed_1, Ed_2)\right) \le \lambda bf(Ed_1) + (1 - \lambda b)f(Ed_2)$$
$$\le \max\{f(Ed_1), f(Ed_2)\},\$$

where the right-hand side of the last inequality obtained by considering $\lambda b = 1$ or 0. This yields that f is an E-prequasiinvex on D. Assume now that f is an E-prequasiinvex on D and define $b(d_1, d_2, \lambda)$ by

$$b(d_1, d_2, \lambda) = \begin{cases} \frac{1}{\lambda} & \text{if } \lambda \in (0, 1] \text{ and } f(Ed_1) \ge f(Ed_2) \\ 0 & \text{if } \lambda = 0 \text{ or } f(Ed_1) < f(Ed_2) \end{cases}$$

$$\lambda b(d_1, d_2, \lambda) = \begin{cases} 1 & \text{if } \lambda \in (0, 1] \text{ and } f(Ed_1) \ge f(Ed_2) \\ 0 & \text{if } \lambda = 0 \text{ or } f(Ed_1) < f(Ed_2) \end{cases}$$
(1)

From the assumption on f, $f(Ed_2 + \lambda \psi(Ed_1, Ed_2)) \le \max\{f(Ed_1), f(Ed_2)\}$. To show f is E^h -b-preinvex on D for some b, it is enough to prove that

$$\begin{split} \max \{f(Ed_1), f(Ed_2)\} &= h(\lambda b) f(Ed_1) + h(1 - \lambda b) f(Ed_2) \\ \text{If } \max \{f(Ed_1), f(Ed_2)\} &= f(Ed_1) \\ \lambda b &= 1. \text{Then } h(\lambda b) f(Ed_1) + h(1 - \lambda b) f(Ed_2) \\ &= h(1) f(Ed_1) + h(0) f(Ed_2) \end{split}$$

 $= f(Ed_1) = \max\{f(Ed_1), f(Ed_2)\}$ (3) where we used, in (3), the fact that h(1) = 1 and $h(0) \le 0$ (which forces h(0) = 0).On the other hand, if $\max\{f(Ed_1), f(Ed_2)\} = f(Ed_2)$, i.e., $\lambda b = 0$. Then $h(\lambda b)f(Ed_1) + h(1 - \lambda b)f(Ed_2)$

$$= h(0)f(Ed_1) + h(1)f(Ed_2)$$

= f(Ed_2) = max{f(Ed_1), f(Ed_2)} (4

From (3) and (4), we obtain (2) which implies that f is E^h -*b*-preinvex on D w.r.t. some b.

Some properties related to the γ -level sets are given next. First, two necessary conditions for f to be E^h -bpreinvex using the invexity of the level set $D_{\gamma'E}$ and the slack invexity of the level set D_{γ} , respectively, are stated as follows. **Proposition 3.6** Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set and E(D) is an invex set. Assume that $h(\alpha) \le \alpha \ \forall \alpha \in [0,1]$, h is a nonnegative function. If f is E^h -b-preinvex on D. Then $D_{\gamma,E}$ is an invex set for all $\gamma \in \mathbb{R}$.

Proof. Let $\gamma \in \mathbb{R}$ and let $Ed_1, Ed_2 \in D_{\gamma,E}$ such that $f(Ed_1) \leq \gamma$ and $f(Ed_2) \leq \gamma$. Since E(D) is an invex set then $Ed_2 + \lambda \psi(Ed_1, Ed_2) \in E(D)$ (5) From the assumption property on *f* and *h*, we have $f(Ed_2 + \lambda \eta(Ed_1, Ed_2)) \leq h(\lambda b)f(Ed_1) + b$

 $h(1 - \lambda b)f(Ed_2) = \gamma$ $\leq \lambda b\gamma + (1 - \lambda b)\gamma = \gamma$ (6)
From (5) and (6), we get $Ed_2 + \lambda \psi(Ed_1, Ed_2) \in D_{\gamma,E}$.

Therefore, $D_{\gamma'E}$ is an invex set as required.

Proposition 3.7 Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set. Assume also that h is sublinear function and h(1) = 1. If f is E^h -b-preinvex on D. Then D_{γ} is a slack invex set w.r.t. E(D) for all $\gamma \in \mathbb{R}$.

Proof. Let $u, \overline{u} \in D_{\gamma} \cap E(D)$ and $\lambda \in [0,1]$ such that $u, \overline{u} \in E(D), f(u) \le \gamma, f(\overline{u}) \le \gamma$, and

$$\bar{u} + \lambda \psi(u, \bar{u}) \in E(D) \subseteq D$$
Since f is E^h -b-preinvex on D, then
(7)

$$f\left(\bar{u} + \lambda\psi(u,\bar{u})\right) \le h(\lambda b)f(u) + h(1-\lambda b)f(\bar{u})$$

Since h is sublinear and h(1) = 1, the right-hand side of the above inequality yields

 $\leq h(\lambda b)f(u) + h(1)f(\bar{u}) - h(\lambda b)f(\bar{u}) \leq \gamma.$ (8) From (7) and (8) we get $\bar{u} + \lambda \psi(u, \bar{u}) \in D_{\gamma}$ as required to prove.

Another necessary condition for f to be E^{h} -b-preinvex using the E-invexity of the level set E- D_{γ} is given next.

Proposition 3.8 Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set w.r.t. $E \circ \psi$ and f is an E^h -b-preinvex on D. Assume that E is linear and idempotent, h is sublinear, and h(1) = 1. Then, E- D_{γ} is an E-invex set w.r.t. $E \circ \psi$ for each $\gamma \in \mathbb{R}$.

Proof. Let $\gamma \in \mathbb{R}$ and $d_1, d_2 \in E \cdot D_{\gamma}$. Then $f(Ed_1) \leq \gamma$ and $f(Ed_2) \leq \gamma$. Since *D* is an *E*-invex set w.r.t. $E \circ \psi$ then $Ed_2 + \lambda(E \circ \psi)(Ed_1, Ed_2) \in D$ (9)

and $f(E(Ed_2 + \lambda(E \circ \psi)(Ed_1, Ed_2))) = f(E^2d_2 + \lambda(E \circ \psi)(Ed_1, Ed_2))$

 $\lambda(E^2 \circ \psi)(Ed_1, Ed_2)) = f(Ed_2 + \lambda(E \circ \psi)(Ed_1, Ed_2))$ where we used in the last statements the assumptions on *E*. Applying now the assumptions on *f* and *h*, the last equality yields

 $\leq h(\lambda b)f(Ed_1) + h(1 - \lambda b)f(Ed_2) \leq \gamma.$ (10) From (9) and (10), we have $E - D_{\gamma}$ is an *E*-invex set w.r.t. $E \circ \psi.$

Next proposition introduces a characterization of *E*-prequasiinvex function.

Proposition 3.9 Let D, f, E, ψ, b and h are defined as in the Assumption such that D is an E-invex set and E(D) is an invex set. Then f is an E-prequasiinvex if and only if $D_{\gamma, E}$ is an invex set.

Proof. First, we prove that $D_{\gamma,E}$ is an invex set. Let $\gamma \in \mathbb{R}$ and let $Ed_1, Ed_2 \in D_{\gamma,E}$ such that $f(Ed_1) \leq \gamma$ and $f(Ed_2) \leq \gamma$. Since E(D) is an invex set and D is an *E*-invex set, then for each $\lambda \in [0,1]$ we have

Using (11) and (12), we obtain $Ed_2 + \lambda \psi(Ed_1, Ed_2) \in D_{\gamma,E}$. Let us now show that *f* is an *E*-prequasiinvex on *D*. Let $d_1, d_2 \in D$, $\lambda \in [0,1]$ and $\gamma \in \mathbb{R}$. By setting $\gamma = \max\{f(Ed_1), f(Ed_2)\}$, we conclude $Ed_1, Ed_2 \in D_{\gamma,E}$. Since $D_{\gamma,E}$ is an invex set . Then, $Ed_2 + \lambda \psi(Ed_1, Ed_2) \in D_{\gamma,E}$ and

 $f(Ed_2 + \lambda \psi(Ed_1, Ed_2)) \le \gamma = \max\{f(Ex), f(Ey)\},\$

where, from Proposition 2.3, $Ed_2 + \lambda \psi(Ed_1, Ed_2) \in D$. This shows *f* is *E*-prequasiinvex.

4. Applications to local *E^h*-*b*-preinvex nonlinear optimization problems

In this section, we consider the following non-linear optimization problem which will be denoted as (NLP)

$$\begin{array}{l} \min f(d) \\ s.t. \quad g_i(d) \leq b_i, \quad i = 1, .., r \\ \quad d \in D, \end{array}$$

where D, f and E are defined as in the Assumption, $b_i \in \mathbb{R} \quad \forall i = 1, ..., r$, and $g_i: D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a realvalued functions $\forall i = 1, ..., r$ such that D is a local Einvex set and f and g_i are local E^h -b-preinvex functions on $D \quad \forall i = 1, ..., r$. The problem (NLP) is referred to as local E^h -b-preinvex optimization problem.

Remark 4.1 In the Problem (NLP), if *D* is an *E*-invex set and $f, g_i \quad \forall i = 1, ..., r$ are E^h -*b*-preinvex functions on *D* then the Problem (NLP) is called E^h -*b*-preinvex optimization problem.

Definition 4.2 In the Problem (NLP) 1.

he set of feasible solutions is denoted by

 $F = \{d \in D: g_i(d) \le b_i, i = 1, ..., r\}$

2. The set of all optimal solutions (or global minimum) is denoted by $argmin_D f$ and is defined as $argmin_D f = \{d^* \in D: f(d^*) \le f(d) \; \forall d \in D\}.$

3. A point $d^* \in \mathbb{R}^n$ is said to be local minimum if there exists $\varepsilon > 0$ such that $f(d^*) \le f(d) \quad \forall d \in B(d^*, \varepsilon) \cap D$, where $B(d^*, \varepsilon) = \{d \in \mathbb{R}^n : ||d - d^*|| < \varepsilon\}$ is the neighborhood of d^* with radius ε .

Under certain assumptions, the feasible set and the set of the optimal values of the Problem (NLP) are local slack E-invex w.r.t. E(D) as we show in the next propositions.

Proposition 4.3 Let D, f, E, ψ, b and h are defined as in the Assumption such that E(D) is a local invex and $F \cap E(D) \neq \phi$. assume that h is a sublinear and h(1) = 1. Then the set of feasible solutions F of the problem (NLP) is local slack E-invex w.r.t. E(D).

Proof. Let $\widetilde{d_1}, \widetilde{d_2} \in F \cap E(D)$, i.e. $\widetilde{d_1}, \widetilde{d_2}$, then there exists $d_1, d_2 \in D$ such that $\widetilde{d_1} = Ed_1, \widetilde{d_2} = Ed_2$. From the local invexity of E(D) there exists $\zeta_{d_1'd_2} \in (0,1]$ such that $\widetilde{d_1} + \lambda\psi(\widetilde{d_1}, \widetilde{d_2}) \in E(D)$ for each $\lambda \in [0, \zeta_{d_1'd_2}]$. From Proposition 2.3, $E(D) \subseteq D$, hence, $\widetilde{d_1} + \lambda\psi(\widetilde{d_1}, \widetilde{d_2}) \in D$. We need to show that $\widetilde{d_1} + \lambda\psi(\widetilde{d_1}, \widetilde{d_2}) \in F$. Fix $i \in \{1, 2, ..., r\}$. Since g_i is local E^h -b-preinvex, then there exists $\lambda_{d_1', d_2}^i \in [0, \zeta_{d_1'd_2}]$ such that $\forall \lambda \in [0, \lambda_{d_1'd_2}^i]$

$$g_i(\widetilde{d_1} + \lambda \psi(\widetilde{d_1}, \widetilde{d_2})) \le h(\lambda b)g_i(\widetilde{d_1}) + h(1 - \lambda b)g_i(\widetilde{d_2})$$

Then, using the assumptions on *h*, the last inequality yields $\leq h(\lambda b)g_i(Ex) + h(1 - \lambda b)g_i(Ey) \leq b_i.$

Take $\overline{\lambda} = \min_{1 \le i \le r} \{ \lambda_{d_1}^i, d_2 \}$. Then, from the definition of the feasible set we obtain

 $\widetilde{d_1} + \lambda \psi(\widetilde{d_1}, \widetilde{d_2}) \in F \ \forall \lambda \in [0, \overline{\lambda}] \text{ as required.}$

Proposition 4.4 Let D, f, E, ψ, b and h are defined as in the Assumption such that E(D) is a local invex. If h is a sublinear and h(1) = 1. Then the set of $argmin_D f$ of the problem (NLP) is a local slack *E*-invex w.r.t. E(D).

Proof. Let $\widetilde{d_1}, \widetilde{d_2} \in argmin_D f \cap E(D)$ then $f(d_1) = f(\widetilde{d_2}) = f^*$. Using Proposition 4.3, there exists $\overline{\lambda} \in (0,1]$ such that $\forall \lambda \in [0, \overline{\lambda}]$ we have $\widetilde{d_1} + \lambda \psi(\widetilde{d_1}, \widetilde{d_2}) \in E(D)$. Using the local- E^h -*b*-preinvexity of f yields there exists $\lambda_{\circ} \in [0,1]$ such that $\forall \lambda \in [0, \lambda_{\circ}], f(\widetilde{d_1} + \lambda \psi(\widetilde{d_1}, \widetilde{d_2})) \leq h(\lambda b)f(\widetilde{d_1}) + h(1 - \lambda b)f(\widetilde{d_2})$

 $\leq h(\lambda b)f^* + h(1)f^* - h(\lambda b)f^* = f^*.$ By taking $\tilde{\lambda} = \min\{\bar{\lambda}, \lambda_o\}$, we get $f(\tilde{d}_1 + \lambda \psi(\tilde{d}_1, \tilde{d}_2)) = f^*.$ Thus, $\tilde{d}_1 + \lambda \psi(\tilde{d}_1, \tilde{d}_2) \in argmin_D f$ for any $\lambda \in [0, \tilde{\lambda}].$

In the Problem (NLP), a sufficient condition for a local minimum to be global is given in the following result.

Proposition 4.5 Let D, f, E, ψ, b and h are defined as in the Assumption. Assume h is a sublinear and h(1) = 1. If $d^* \in intF$ be a local minimum point for f and $F \subset E(D)$. Then d^* is a global minimum of the problem (NLP). **Proof.** Let $d^* \subset intF \subset F \subset E(D)$ is a local minimum

point then there exists $\varepsilon > 0$ such that $B(d^*, \varepsilon) \subset E(D)$

and $f(d^*) \le f(d) \quad \forall d \in U = B(d^*, \varepsilon) \cap F$. (13) To complete the proof, it is enough to show that $f(d^*) \le f(d) \quad \forall d \in F \setminus U$. On contrary, assume that there is $\overline{d} \in F$,

 $\bar{d} \neq d_{\Gamma}^*$ such that $f(\bar{d}) < f(d^*)$. (14)

From (13), $\overline{d} \notin B(d^*, \varepsilon)$ and $||\overline{d} - d^*|| \ge \varepsilon$. Let $d_1, d_2 \in D$ such that $\overline{d} = E d_1, d^* = E d_2$. Since *D* is a local *E*-invex, there exists $\zeta_{d_1'd_2} \in (0,1]$ such that $\forall \lambda \in [0, \zeta_{d_1'd_2}]$

$$E\widecheck{d_2} + \lambda\psi(E\widecheck{d_1}, E\widecheck{d_2}) \in D$$

From the assumption of Problem (NLP), f is a local E^{h} -b-preinvex on D, hence there exists $\lambda_{\widetilde{d_1},\widetilde{d_2}} \in (0, \zeta_{\widetilde{d_1},\widetilde{d_2}}]$ such that $\forall \lambda \in [0, \lambda_{\widetilde{d_1},\widetilde{d_2}}]$,

 $f(Ed_{2} + \lambda \psi(Ed_{1}, Ed_{2})) \le h(\lambda b)f(Ed_{1}) + h(1 - \lambda b)f(Ed_{2}).$

Applying (14) and the assumptions on h, the last inequality gives

$$f(d^* + \lambda \psi(\bar{d}, d^*)) \le h(\lambda b) f(\bar{d}) + h(1) f(d^*) - h(\lambda b) f(d^*) < h(\lambda b) f(d^*) + f(d^*) - h(\lambda b) f(d^*) =$$

 $f(d^*)$. (15)

If $\psi(\bar{d}, d^*) = 0$. Then for any $\lambda \in [0, \lambda_{\bar{d}_1, \bar{d}_2}]$, it yields $f\left(d^* + \lambda\psi(\bar{d}, d^*)\right) = f(d^*)$ which contradicts (15). If $\psi(\bar{d}, d^*) \neq 0$. Choose $\varepsilon > 0$ sufficiently small such that $\frac{\varepsilon}{\|\psi(\bar{d}, d^*)\|} \leq 1$. Set $\bar{\lambda} = \min\{\lambda_{\bar{d}_1, \bar{d}_2}, \frac{\varepsilon}{\|\psi(\bar{d}, d^*)\|}\}$. Then for any $\lambda \in (0, \bar{\lambda}]$ we get $\|d^* - [d^* + \lambda\psi(\bar{d}, d^*)]\| = \|\lambda\psi(\bar{d}, d^*)\| \leq \bar{\lambda}\|\psi(\bar{d}, d^*)\| \leq \varepsilon$,

i.e $d^* + \lambda \psi(\bar{d}, d^*) \in B$ $(d^*, \varepsilon) \subset E(D)$. Using the last asseration and the fact that $F \subset E(D)$, then we are in condition of applying Proposition 4.3, i.e., $d^* + d^*$

 $\lambda \psi(\bar{d}, d^*) \in F$. Again (15) contradicts the fact that d^* is a local minimum on *F*.

Remark 4.6 Propositions 4.3-4.5 are held in case (NLP) is E^{h} -*b*-preinvex optimization problem as follows.

Proposition 4.7 Consider E^h -*b*-preinvex optimization problem (NLP). Then

1.

et D, f, E, ψ, b and h are defined as in the Assumption such that E(D) is an invex and $F \cap E(D) \neq \phi$. assume that h is a sublinear and h(1) = 1. Then the set of feasible solutions F of problem (NLP) is slack E-invex w.r.t. E(D). 2.

et D, f, E, ψ, b and h are defined as in the Assumption such that E(D) is an invex set. If h is a sublinear and h(1) = 1. Then the set of $argmin_D f$ of the problem (NLP) is slack E-invex w.r.t. E(D).

3.

et D, f, E, ψ, b and h are defined as in the Assumption. Assume h is a sublinear and h(1) = 1. If $d^* \in intF$ be a local minimum point for f and $F \subset E(D)$. Then d^* is a global minimum of the problem (NLP).

REFERENCES

- [1] R. T. Rockafellar, Convex Analysis, *Princeton University Press*, Princeton, 1970.
- [2] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis, and Minimization Algorithms I: Fundamentals, *Springer-Verlag*, Berlin, 1993.
- [3] C. Zalinescu, Convex Analysis in General Vector Spaces, *World Scientific*, Singapore, 2002.
- [4] J. M. Borwein, A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, *Springer-Verlag*, New York, 2006.
- [5] R. S. Burachik, S. N. Majeed, Strong duality for generalized monotropic programming in infinite dimensions, *Journal of Mathematical Analysis and Applications*, 400, 541–557, 2013.
- [6] R. S. Burachik, C. Y. Kaya, S. N. Majeed, A Duality approach for solving control-constrained linearquadratic optimal control problems, *SIAM Journal on Control and Optimization* 52, 3, 1423-1456, 2014.
- [7] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80, 545-550, 1981.
- [8] A. Ben Israel, B. Mond, What is invexity?, Journal of Australian Mathematical Society, 28, 1-9, 1986.
- [9] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math.Anal. Appl. 136, 29-38, 1988.
- [10] T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical programming, *Bull. Austral. Math. Soc.* 38, 177-189, 1988.
- [11] C. Bector, C. Singh, B-vex functions, Journal of Optimization Theory and Applications, 71, 2, 237-253, 1991.
- [12] S. K. Suneja, C. Singh, C. R. Bector, Generalization of preinvex and B-vex functions, *Journal of Optimization Theory and Applications*, 76, 577-587, 1993.
- [13] E. A. Youness, E--convex sets, E-convex functions, and E-convex programming, Journal of Optimization Theory and Applications, 102, 439-450, 1999.
- [14] E. A. Youness, T. Emam, Strongly E-convex sets and strongly E-convex functions, Journal of Interdisciplinary Mathematics, 8, 1, 107-117, 2005.

- [15] X. Chen, Some properties of semi-*E*-convex functions and semi-*E*-convex programming, *The Eighth International Symposium on Operations Research and Its Applications (ISORA'09)*, 20-22, 2009.
- [16] M. Soleimani-damaneh, E-convexity and its generalizations, International Journal of Computer Mathematics, 88, 16, 3335-3349, 2011.
- [17] S. N. Majeed, M. I. Abd Al-Majeed, On convex functions, *E*-convex functions and their generalizations: applications to non-linear optimization problems, *International Journal of Pure and Applied Mathematics*, 116, 3, 655-673, 2017.
- [18] C. Fulga, V. preda, Nonlinear programming with *E*-preinvex and local *E*-preinvex functions, *European Journal of Operational Research*, 192, 737-743, 2009.
- [19] Y. R. Syau, L. Jia, E. S. Lee, Generalizations of Econvex and B-vex functions, Computers and Mathematics with Applications, 58, 711-716, 2009.
- [20] D. Marian, h-strongly E-convex functions, Revue D'analyse Numérique ET De Théorie DE L'approximation, 40, 1, 47-51, 2011.
- [21] A. Házy, Bernstein-Doetsch type results for *h*-convex functions, *Mathematical Inequalities and Applications*, 14, 3, 499-508, 2011.
- [22] M. Matloka, Inequalities for *h*-preinvex functions, *App. Math. Comput.* 234, 52-57, 2014.
- [23] J. S. Grace, P. Thangavelu, Properties of E-convex sets, *Tamsui Oxford Journal of Mathematical Sciences*, 25, 1-7, 2009.
- [24] A. Cambini, L. Martein, Generalized Convexity and Optimization: Theory and Applications, *Springer-Verlag*, Berlin, 2009.
- [25] S. Varošance, On h-convexity, Journal of Mathematical Analysis and Applications, 326, 303-311, 2007.
- [26] M. Bombardelli, S. Varošance, Properties of *h*-convex functions related to the Hermite-Hadamard-Fejér inequalities, *Computers and Mathematics with Applications*, 58, 1869-1877, 2009.