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1. INTRODUCTION 
Convex analysis is studied and employed widely in applied 

mathematics, especially, in optimization and optimal 

control (see e.g., [1-6]). Several attempts were made in the 

literature to generalize and extend convex sets and convex 

functions [7-26]. The class of convex sets (functions) were 

generalized to the class of invex sets [7,8],  the class of 

preinvex functions [9,10], the class of  -vex functions [11], 

and to the class of  -preinvex [12]. Recently, Youness [13] 

introduced the concepts of  -convex sets (functions) and 

 -convex optimization problems. Youness inspired many 

researchers to extend many concepts from convex analysis 

into  -convexity and applying  -convexity in optimization 

problems see (e.g., [14-17]. Fulga and Perda [18] 

introduced the class of  -preinvex functions by combining 

the classes of preinvex and  -convex functions and also 

introduced  -prequasiinvex functions. Fulga and Perda 

applied the new classes to non-linear optimization 

problems. On the other hand, Syau et. al. [19] defined  - -

preinvex as a generalizations of  -convex and  -preinvex 

functions. More recently,  -strongly  -convex functions 

[20] was defined as a combination of strongly  -convex 

functions [14] and  -convex functions [21].  In this paper, 

we introduce the class of   - -preinvex and local   - -

preinvex functions by combining the classes of  -preinvex 

[22] and  - -preinvex functions. The class of   -preinvex 

functions is also defined by extending the classes of   -

preinvex and  -preinvex functions. In section 2, some 

preliminary definitions studied in the literature are recalled 

and the new generalized convex functions are introduced. 

In section 3, some properties of   - -preinvex functions 

are discussed and two characterizations of this class are 

provided using   -preinvex and  -prequasiinvex functions 

(see Propositions 3.4-3.5). We give a new characterization 

of   -prequasiinvex functions using the invexity of the 

level set       (see Proposition 3.9). In section 4, we 

provide some optimality properties of non-linear 

optimization problems for which the functions are  local 

  - -preinvex functions and the constraint set is local  -

invex set. 

2. Preliminaries 
In this paper,     denotes the  -dimensional Euclidean 

space and    be a set of non-negative real numbers. For 

brevity in writing the statements, the following assumption 

is needed. 
Assumption Let ∅       and                  
  be two real valued functions such that. Assume that 

        𝜓          , and          

         are given mappings where                 
for all        and        . 
 Next, some preliminaries and related concepts that to 

develop the new functions are given. Throughout the paper, 

        𝜓  and   are defined as in above Assumption  

unless otherwise stated. 

Definition 2.1 Let      and 𝜓 are defined as in the 

Assumption then,          and         ,   is said to 

be  

1.  -convex if                     . [13] 

2. An invex set with respect to 𝜓 (for short,   is an 

invex w.r.t. 𝜓) if      𝜓         . [8] 

3. An  -invex set w.r.t. 𝜓 if  

       𝜓               . [18] 

4. A local  -invex set w.r.t. 𝜓 if for each         

there exists    
   

       such that 

       𝜓                           
   

 . [18] 

Definition 2.2 [18] Let   and   be two subsets of    and 

𝜓 is defined as in the Assumption. Then  

1.   is said to be slack-invex w.r.t.   if, for every 

        and every       such that   
 𝜓        we get    𝜓         
2.   is said to be local slack-invex w.r.t.   if, for 

every         there exists            such that 

            if    𝜓        we get    𝜓      
   
Proposition 2.3 [18] Let   and   are defined as in the 

Assumption such that   is an  -invex (respectively, local 

 -invex) set. Then,        . 

Definition 2.4 Let         and 𝜓 are defined as in the 

Assumption then,          and for every        ,   is 

called 

1. preinvex function w.r.t. 𝜓 on the invex set   if, 

       𝜓                         ).  [9, 10] 

2.  
-convex function on the  -convex set   if, 
                                   
         ).  [13] 

3.  -preinvex function w.r.t. 𝜓 on the  -invex set 

  if, 

          𝜓                            
         ). [18] 

4.  -preinvex function w.r.t. 𝜓 on the invex set   if, 

       𝜓                               
                  ),  

for                    [12] 
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5.  - -preinvex function w.r.t. 𝜓 on the  -invex set 

  w.r.t. 𝜓 if, 

 

         𝜓               
                                              ), 

for                  .  [19] 

6.  -prequasiinvex w.r.t. 𝜓 on the   -invex set   if, 

         𝜓(           )  

                       .  [18] 

Remark 2.5  For simplicity in appearance 

1. We omit in the proofs and calculations the 

parentheses from     , and writing it instead as     

whenever it seems convenient.   

2.  -invex set w.r.t. 𝜓 and (preinvex,  -preinvex,  -

preinvex,  - -preinvex,  -prequasiinvex) functions w.r.t. 

𝜓  will be called   -invex set, (preinvex,  -preinvex,  -

preinvex,  - -preinvex,  -prequasiinvex) functions. 

3. We discard the argument of the mapping   and 

express           as   wherever it appears in the paper. 

Definition 2.6 A function         is called  

1. sublinear if                      
                   and        .     [1] 

2. idempotent if                    .  [23] 

3. non-decreasing if whenever        such that 

    (i.e.,               ) we get                
[24, Definition 5.2.1] 

n the literature, different types of  -level sets associated 

with   and   are defined. Some of these sets are listed 

below. 

Definition 2.7 Let    . Then,  

1.                .  [1] 

2.  -                .  [16] 

3.                          .   [16] 

      Next,  the definition of  -convex introduced in [21] is 

recalled. Noting that, in [25,26] other versions of  -convex 

functions are defined. 

Definition 2.8 [21] Let           be a function. Then 

      is said to be  -convex function if for each 

       , and each        we have       
                             ).  

      By making use of a non-negative  -convex function 

and a preinvex function, Matloka in 2014  introduced the 

class of  -preinvex function. 

Definition 2.9 [22] Let           be a positive function. 

Then a positive function       is said to be  -preinvex 

on the invex set   if for each        , and each    

    we have       𝜓                       
      ).  

     By extending the definitions of  -preinvex and  -

preinvex functions, we introduce the    -preinvex function 

as follows. 

Definition 2.10 Let       𝜓 and   are defined as in the 

Assumption such that   is an invex set. Then   is said to be 

  -preinvex function on   if for each        , and each  

      

        𝜓                                . 
     Using the definitions of  -preinvex  function and  - -

preinvex function, we define the    - -preinvex and local 

  - -preinvex functions. 

Definition 2.11 Let         𝜓 and   are defined as in the 

Assumption such that   is an  -invex set. Then 

1.   is said to be   - -preinvex function on   if for 

each        , and each        

       𝜓                           
         . 

2.   is said to be local   - -preinvex function on   

if for each         there exists     
   

  

(      
   

] such that             
   

    

 (     𝜓         )                  

         , 
where     

   
      .  

Note that   -preinvex and   - -preinvex functions are 

considered as extentions of  -preinvex and  - -preinvex 

functions, respectively in the following sense. 

Remark 2.12 If     the identity function. Then 

1. Every  -preinvex function is   -preinvex 

function. 

2. Every  - -preinvex function is   - -preinvex. 

     Next, we show an example of   - -preinvex function 

that is not  - -preinvex . 

Example 2.13 Let          and 𝜓       are 

defined as follows. 

     {
                             
 

 
                              

 ,   

  𝜓      {
                                        

                                                        
 

and                . Assume that           is 

defined as                    and            . 

We observe that   is   - -preinvex on   but not  - -

preinvex function on  . Indeed, consider           such 

that    ,       and and    . Then 𝜓        
     . Hence, 

                    (      𝜓       )    (    

 𝜓         ) 

                                                                           

                                                                        . 

On the other hand,  

                                         

                                                (
 

 
)        (

 

 
)  

 

 
.  

This shows,  (      𝜓       )          

            which means   is not  - -preinvex on  . 

Next, we show that   is   - -preinvex on  . Direct 

calculations yields          is an  -invex set. Now, 

considering            and        , we have four 

possible cases: 

 Case (1): If       , i.e.,  ,        and       
      ; 

 then   (    𝜓       )    (     𝜓         ) 

such that 

 𝜓          {
                                                    

                                                               
, 

Now,  

 (     𝜓         )

 {
 (              )                        

 (             )                                   
 

                                              

={
                                        

                                                 
,  
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={
                                    

     
 

 
                                   

, 

and  

                                  

                 (
 

 
)         (

 

 
)   . 

Case (2): If      , i.e.,            and       

       . This means 𝜓               , then 

   (    𝜓       )                   

                                                     
 

 
,  

and 

                                   

                    (
 

 
)         (

 

 
)   . 

Case (3): If     ,    , i.e.,         and         . 
Then            and            this means 

𝜓             . Thus, 

   (    𝜓       )    (            ) 

                                                   
 

 
  or  , 

 and                                   

            (
 

 
)         (

 

 
)   . 

Case (4): If    ,    ; i.e.,          and        . 
Then            and           . This means 

𝜓             , 

 then  (    𝜓       )    (     𝜓         ) 

                                                            
 

 
, 

and                                   

                  (
 

 
)         (

 

 
)   , 

In all cases, we have  (    𝜓       )  

                        as it is required to show.      

■ 

3. Some properties of   - -preinvex functions              
In this section, we discuss some basic properties of   - -

preinvex functions. We start first by showing that the class 

of   - -preinvex functions is closed under non-negative 

scalar multiplication and addition. Same property holds for 

classical convex functions. 
Proposition 3.1 Let  , ,  ,  ,𝜓  and   are defined as in 

the Assumption. Assume that        be a function such 

that   is an  -invex and  ,   are   - -preinvex functions, 

then       is an   - -preinvex function.        . 

Proof.  Let        , and        . Set       

 𝜓           . Using the fact that   and   are   - -

preinvex functions, we obtain  

(     )(                            
                                  
         ,                               

                                          . 

Hence,       is an   - -preinvex on  .  ■ 

Proposition 3.2 Let Let  ,   ,𝜓   and   are defined as in 

the Assumption such that   is an  -invex set and   is 

positive,     
    is bounded from above for each   

 . Define,          such that           . If      is 

  - -preinvex function on   w.r.t. the same 𝜓,  ,   for 

each    , then   is   - -preinvex on   . 

 Proof. Since    is a   - -preinvex on      , then, for 

each         and       we have 

  (     𝜓         )               

                              . 

Taking the supremum to the right-hand side of the 

inequality above, we get  

  (     𝜓         )     
   

               

                               . 

Then,  

   
   

  (     𝜓         )

    
   

             

                            
From the fact that   is positive and sup  and  up  are 

finite, we get          sup  sup .  Thus, the last 

inequality yields,        𝜓           
         

   
                    

   
           

                                                          . 

Then, we get   is an   - -preinvex. ■ 

      The composite property is also held if   is an   - -

preinvex  function as we show next. 

Proposition 3.3 Let  , ,  𝜓,   and   are defined as in the 

Assumption such that   is an  -invex and   is an   - -

preinvex on  . Assume that       is a non-decreasing 

sublinear function. Then     is an   - -preinvex on  . 

Proof. Let        , and        . Since,   is   - -

preinvex on the  -invex set  , then 

     𝜓            and 

        𝜓                           
         , 

   ( (     𝜓         ))                

                
The last inequality holds because   is a non-decreasing 

function. Using the sublinearity assumption of  ,  the right-

hand side of the last inequality yields, 

   (     𝜓         )                 

                , 

i.e.,            𝜓                           
                   
Thus,     is a   - -preinvex on  .  ■ 

       The next propositions provide necessary and sufficient 

conditions for   to be an   - -preinvex function. 

Proposition 3.4 Let       𝜓,  and   are defined as in the 

Assumption such that   is an  -invex set and      is an 

invex. Then, a function   is   - -preinvex  on   if and 

only if its restriction  ̃        is   -preinvex on       

Proof. Let    ̃   ̃       then there exist   ,     such 

that   ̃      and   ̃     . Since      is an invex set 

then   ̃    𝜓   ̃   ̃       . First, we prove  ̃  is   -

preinvex on      where  ̃( ̃)   ( ̃)     ̃      . From 

the definition of  ̃ and the assumption on  , we get 

 ̃(  ̃    𝜓   ̃   ̃ )      ̃   𝜓   ̃   ̃   

                                     (     𝜓         ) 

                                                     
          

                                         (  ̃)           (  ̃) 
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                                          ̃(  ̃)           ̃(  ̃)                                                                        

Thus,  ̃ is   -preinvex on     . For obtaining the reverse 

implication, we use the definition of   and the assumption 

on  ̃,           and          we have 

 (     𝜓         )   ̃ (  ̃    𝜓(  ̃   ̃)) 

                                                      ̃(  ̃)       

    ̃(  ̃) 

                                      
which implies that     is   - -preinvex  on  .          ■ 

Proposition 3.5 Let       𝜓,  and   are defined as in the 

Assumption such that   is an  -invex set. Assume that 

               ,    is a non-negative function, and 

      .Then,   is   - -preinvex on   for some   and   

if and only if   is an  -prequasiinvex on    
Proof. Let   be an   - -preinvex on   w.r.t. some   and 

 . Note that for all        ,         and          we 

have 

 (     𝜓         )

                            

From the assumptions on  , the right-hand side of the 

above inequality becomes 

 (     𝜓         )                        

                                                                 , 
where the right-hand side of the last inequality obtained by 

considering      or  . This yields that    is an  -

prequasiinvex on  .  Assume now that   is an  -

prequasiinvex on   and  define             by 

     

           

{

 

 
                                             

 
                                                   

 

 

            

{
                                             

 
                                                 

            (1) 

From the assumption on  ,  (     𝜓         )  

                   . To show   is   - -preinvex on   

for some  , it is enough to prove that  

                                     
                          (2) 

If                           , hence from (1), 

    .Then                            

                       

                                (3) 

where we used, in (3),  the fact that        and       
  (which forces       ).On the other hand, if 

                         , i.e.,      . Then 

                          
                       

                                    max                     (4) 

From (3) and (4), we obtain (2) which implies that   is   -

 -preinvex on   w.r.t. some          ■ 

       Some properties related to the  -level sets are given 

next. First,  two necessary conditions for   to be   - -

preinvex using the invexity of the level set     and the 

slack invexity of the level set   , respectively,  are stated 

as follows.  

Proposition 3.6 Let       𝜓,  and   are defined as in the 

Assumption such that   is an  -invex set and      is an 

invex set. Assume that                ,    is a non-

negative function. If   is   - -preinvex on  . Then      is 

an invex set for all    . 

Proof. Let     and let    ,         such that 

         and         . Since      is an invex set 

then       𝜓                       (5) 

From the assumption property on   and  , we have 

                                 
                                                                                                                                                                 

                         (6) 

From (5) and (6), we get      𝜓               . 

Therefore,       is an invex set as required. ■ 

Proposition 3.7 Let       𝜓,  and   are defined as in the 

Assumption such that   is an  -invex set. Assume also that  

  is sublinear function and       . If   is   - -preinvex 

on  . Then    is a slack invex set w.r.t.       for all   

 . 

Proof.  Let  , ̅          and         such that 

 , ̅      ,       ,    ̅   , and 

   ̅   𝜓    ̅                (7) 

 Since   is   - -preinvex on  , then 

 ( ̅   𝜓    ̅ )                      ̅  

Since   is sublinear and       , the right-hand side of 

the above inequality yields                                                                    
                  ̅          ̅   .          (8)   

From (7) and (8) we get  ̅   𝜓    ̅     as required to 

prove. ■ 

          Another necessary condition for   to be   - -

preinvex using the   -invexity of the level set  -   is 

given next. 

Proposition 3.8 Let       𝜓,  and   are defined as in the 

Assumption such that   is an  -invex set w.r.t.   𝜓 and   

is an   - -preinvex on  . Assume that   is linear and 

idempotent,   is sublinear, and       . Then,  -   is an 

 -invex set w.r.t.   𝜓 for each    . 

Proof. Let     and         -  . Then           

and          . Since   is an  -invex set w.r.t.   𝜓  

then         𝜓                    (9) 

and     (     (  𝜓)         )   (     

     𝜓)                  (  𝜓)          

where we used in the last statements the assumptions on  . 

Applying now the assumptions on   and  , the last equality 

yields 

                                           .    (10) 

From (9) and (10), we have  -    is an  -invex set w.r.t. 

  𝜓. ■ 

      Next proposition introduces a characterization of   -

prequasiinvex function. 

Proposition 3.9 Let       𝜓,  and   are defined as in the 

Assumption such that   is an  -invex set and      is an 

invex set. Then   is an  -prequasiinvex if and only if       

is an invex set. 

Proof. First, we prove that        is an invex set. Let     

and let    ,         such that          and 

        . Since      is an invex set and   is an  -

invex set, then for each         we have 
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     𝜓                             (11) 

From the hypothesis,    is an  -prequasiinvex on  . Then  

 (     𝜓          )                     

  (12)    

Using (11) and (12), we obtain      𝜓           
    .  Let us now show that   is an  -prequasiinvex on  . 

Let        ,         and    . By setting   
                  , we conclude              

. 

Since      is an invex set . Then,      𝜓           

     and  

 (     𝜓          )                     , 

where, from Proposition 2.3,      𝜓            . 

This shows   is  -prequasiinvex.       ■ 

4. Applications to local   - -preinvex non-

linear optimization problems 
In this section, we consider the following non-linear 

optimization problem which will be denoted as (NLP) 

         

                               ,                

     , 

where     and   are defined as in the Assumption, 

               , and             be a real-

valued functions           such that   is a local  -

invex set and   and    are local   - -preinvex functions on 

            . The problem (NLP) is referred to as local 

  - -preinvex optimization problem.  

Remark 4.1 In the Problem (NLP), if   is an  -invex set 

and  ,                 are   - -preinvex functions on   

then the Problem (NLP) is called   - -preinvex 

optimization problem. 

Definition 4.2 In the Problem (NLP)  

1. T

he set of feasible solutions is denoted by  

                           
2. The set of all optimal solutions (or global 

minimum) is denoted by          and is defined as 

                                    
3. A point       is said to be local minimum if 

there exists     such that                  
           where               :             
is the neighborhood of    with radius  .  
       Under certain assumptions, the feasible set and the set 

of the optimal values of the Problem (NLP) are local slack 

 -invex w.r.t.      as we show in the next propositions.  

Proposition 4.3 Let       𝜓,  and   are defined as in the 

Assumption such that      is a local invex and    
      . assume that   is a sublinear and       . 

Then the set of feasible solutions   of the problem (NLP) is 

local slack  -invex  w.r.t.     . 

Proof. Let    ̃   ̃         , i.e.    ̃   ̃,  then there 

exists           such that   ̃         ̃      . From 

the local invexity of      there exists     
   

        such 

that   ̃   𝜓(   ̃   ̃)       for each   [      
   

]. 

From Proposition 2.3,       , hence,   ̃  

 𝜓(   ̃   ̃)   . We need to show that   ̃   𝜓(   ̃   ̃)  

 .  Fix            . Since    is local   - -preinvex, 

then there exists    

       [0,     
   

  such that    

      

        

     ̃   𝜓(   ̃   ̃)         (  ̃)              ̃  

Then, using the assumptions on  , the last inequality yields  

                                                         
  Take    ̅                

       . Then, from the definition 

of the feasible set we obtain 

   ̃   𝜓(   ̃   ̃)       [    ̅] as required.      ■ 

Proposition 4.4 Let       𝜓,  and   are defined as in the 

Assumption such that      is a local invex. If   is a 

sublinear and       . Then the set of          of the 

problem (NLP) is a local slack  -invex w.r.t.     . 

Proof. Let    ̃   ̃                 then  (  ̃)  

 (  ̃)    . Using Proposition 4.3, there exists   ̅        

such that         ̅  we have   ̃   𝜓(   ̃   ̃)      . 

Using the local-  - -preinvexity of   yields  there exists 

         such that          ,  (  ̃   𝜓(   ̃   ̃))  

      (  ̃)             ̃  

                                             . 

By taking   ̃         ̅,    , we get     ̃   𝜓(   ̃   ̃)  

  . Thus,   ̃   𝜓(   ̃   ̃)             for any   

 [    ̃]      ■     ■ 

      In the Problem (NLP), a sufficient condition for a local 

minimum to be global is given in the following result. 

Proposition 4.5 Let       𝜓,  and   are defined as in the 

Assumption. Assume   is a sublinear and       .  If 

        be a local minimum point for   and       . 

Then    is a global minimum of the problem (NLP). 

Proof. Let                is a local minmum 

point then there exists     such that              

and                             .     (13) 

To complete the proof, it is enough to show that       
             . On contrary, assume that there is  ̅    , 

 ̅     such that    ̅       .     (14)  

From (13),   ̅          and  | ̅    |   . Let      ̌   ̌   

  such that  ̅      ̌   
     ̌. Since   is a local  -

invex, there exists     ̌
    ̌        such that    

       ̌
    ̌    

   ̌   𝜓(   ̌    ̌)    

From the assumption of Problem (NLP),    is a local   - -

preinvex on  , hence there exists     ̌
    ̌   

       ̌
    ̌  such that             ̌

    ̌   , 

     ̌   𝜓(   ̌    ̌)        (   ̌)      

        ̌ . 

Applying (14) and the assumptions on  , the last inequality 

gives 

      𝜓( ̅   )        ( ̅)                        

                      

                                     
     .    (15) 

If 𝜓( ̅   )   . Then for any          ̌
    ̌   , it yields 

 (    𝜓( ̅   ))        which  contradicts (15). If 

𝜓( ̅   )   . Choose       sufficiently small such that 
  

‖𝜓  ̅    ‖
  . Set  ̅           ̌

    ̌   
  

‖𝜓  ̅    ‖
  . Then for 

any       ̅  we get ‖        𝜓( ̅   ) ‖  

‖ 𝜓  ̅    ‖   ̅‖𝜓  ̅    ‖   , 

i.e     𝜓( ̅   )              . Using the last 

asseration and the fact that       , then we are in 

condition of applying Proposition 4.3, i.e.,     
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 𝜓( ̅   )   . Again  (15) contradicts the fact that    is a 

local minimum on  .  ■ 

Remark 4.6 Propositions 4.3-4.5 are held in case (NLP) is 

  - -preinvex optimization problem as follows. 

Proposition 4.7 Consider   - -preinvex optimization 

problem (NLP).  Then 

1. L

et       𝜓,  and   are defined as in the Assumption such 

that      is an invex and          . assume that   is 

a sublinear and       . Then the set of feasible solutions 

  of problem (NLP) is slack  -invex  w.r.t.     . 

2. L

et       𝜓,  and   are defined as in the Assumption such 

that      is an invex set. If   is a sublinear and       . 

Then the set of          of the problem (NLP) is  slack 

 -invex w.r.t.     . 

3. L

et       𝜓,  and   are defined as in the Assumption. 

Assume   is a sublinear and       .  If         be a 

local minimum point for   and       . Then    is a 

global minimum of the problem (NLP). 
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