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1. INTRODUCTION

Convex analysis is studied and employed widely in applied
mathematics, especially, in optimization and optimal
control (see e.g., [1-6]). Several attempts were made in the
literature to generalize and extend convex sets and convex
functions [7-26]. The class of convex sets (functions) were
generalized to the class of invex sets [7,8], the class of
preinvex functions [9,10], the class of B-vex functions [11],
and to the class of B-preinvex [12]. Recently, Youness [13]
introduced the concepts of E-convex sets (functions) and
E-convex optimization problems. Youness inspired many
researchers to extend many concepts from convex analysis
into E-convexity and applying E-convexity in optimization
problems see (e.g., [14-17]. Fulga and Perda [18]
introduced the class of E-preinvex functions by combining
the classes of preinvex and E-convex functions and also
introduced E-prequasiinvex functions. Fulga and Perda
applied the new classes to non-linear optimization
problems. On the other hand, Syau et. al. [19] defined E-B-
preinvex as a generalizations of E-convex and B-preinvex
functions. More recently, h-strongly E-convex functions
[20] was defined as a combination of strongly E-convex
functions [14] and h-convex functions [21]. In this paper,
we introduce the class of E™-b-preinvex and local E"-b-
preinvex functions by combining the classes of h-preinvex
[22] and E-B-preinvex functions. The class of b-preinvex
functions is also defined by extending the classes of h-
preinvex and B-preinvex functions. In section 2, some
preliminary definitions studied in the literature are recalled
and the new generalized convex functions are introduced.
In section 3, some properties of E™-b-preinvex functions
are discussed and two characterizations of this class are
provided using b"-preinvex and E-prequasiinvex functions
(see Propositions 3.4-3.5). We give a new characterization
of E-prequasiinvex functions using the invexity of the
level set D, (see Proposition 3.9). In section 4, we
provide some optimality properties of non-linear
optimization problems for which the functions are local
E™-b-preinvex functions and the constraint set is local E-
invex set.

2. Preliminaries

In this paper, R™denotes the n-dimensional Euclidean
space and R* be a set of non-negative real numbers. For
brevity in writing the statements, the following assumption
is needed.

Assumption Let  # D C R" and f:R" - R, h:[0,1] -
R be two real valued functions such that. Assume that
E:R" > R" Y:R"xXR" > R" , and b:R™ X R™ X

[0,1] » R* are given mappings where Ab(x,y,1) € [0,1]
forall x,y € R" and A € [0,1].

Next, some preliminaries and related concepts that to
develop the new functions are given. Throughout the paper,
D,f, E,3b and b are defined as in above Assumption
unless otherwise stated.

Definition 2.1 Let D,E,and iy are defined as in the
Assumption then, Vd,,d, € D and V4 € [0,1], D is said to
be

1. E-convex if AE(d;) + (1 —A)E(d,) € D.[13]
2. An invex set with respect to y (for short, D is an
invex w.r.t. ) if d, + AY(d,,d,) € D. [8]

3. An E-invex set w.r.t. ¢ if

E(d;) + 2(E(d,1),E(dy)) € D. [18]

4.  Alocal E-invex set w.r.t. ¢ if foreach d,,d, € D
there exists {4,,q4, € (0,1] such that

E(d;) + 2W(E(d,),E(d;)) €D VAE€E[0,{4,.q,] [18]
Definition 2.2 [18] Let H and K be two subsets of R™ and
Y is defined as in the Assumption. Then

1. H is said to be slack-invex w.r.t. K if, for every
hkeHNKand every 0<A<1 such that k+
Mp(h k) € K we get k + Ay (h, k) € H.

2. H is said to be local slack-invex w.r.t. K if, for
every h,k € HnN K there exists {p,, € (0,1] such that
VA E[O,{n ] if k+AP(h k) € K we get k + AP(h, k) €
H.

Proposition 2.3 [18] Let D and E are defined as in the
Assumption such that D is an E-invex (respectively, local
E-invex) set. Then, E(D) < D.

Definition 2.4 Let D, f,E,band 1 are defined as in the
Assumption then, vd,, d, € D and for every A1 € [0,1], f is
called

1. preinvex function w.r.t. 1 on the invex set D if,

f(dy + 2p(dy, d3)) < Af(di) + (1 = Df (dy). [9, 10]
2.

-convex function on the E-convex set D if,

fQE(dy) + (1 - DE(dy)) < Af(E(dy)) + (1 -

Df (E(d2)). [13]

3. E-preinvex function w.r.t. i on the E-invex set
D if,

f(E(dy) + AW(E(dy), E(d2))) < Af (E(dy)) + (1 -

Df (E(d)). [18]

4. B-preinvex function w.r.t. 1 on the invex set D if,
f(dz + /hp(dli dz)) < Ab(dl’ dz'/l) f(dl) + (1 -
Ab(dy, d5, ) )f (dp),

for Ab(d4,d,, 4) € [0,1] [12]
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5. E-B-preinvex function w.r.t. i on the E-invex set 1. f is said to be E"-b-preinvex function on D if for
Dw.rt if, eachd,,d, € D,andeach 0 <1 <1

f(E(dy) + W(E(dy), E(dy))) <

Ab(dy, d, A) f(E(d1)) + (1 = Ab(dy,dp, 2) )f (E(d2)),
for Ab(d;,d,, A) € [0,1]. [19]

6. E-prequasiinvex w.r.t. i on the E-invex set D if,
fE(dy) + Mp(E(dy), E(dy))) <

max{f (E(d,)), f(E(d2))}. [18]

Remark 2.5 For simplicity in appearance

1. We omit in the proofs and calculations the
parentheses from E(x), and writing it instead as FEx
whenever it seems convenient.

2. E-invex set w.rt. ¥ and (preinvex, E-preinvex, B-
preinvex, E-B-preinvex, E-prequasiinvex) functions w.r.t.
Y will be called E-invex set, (preinvex, E-preinvex, B-
preinvex, E-B-preinvex, E-prequasiinvex) functions.

3. We discard the argument of the mapping b and
express b(x,y,A) as b wherever it appears in the paper.
Definition 2.6 A function f: R™ — R is called

1. sublinear if f(a,x; + a1x;) < a.f (%) +
ayf(xy) Vxi,x; ER" and aq, @, ER. [1]

2. idempotent if f2(x) = f(x) Vx € R™ [23]
3. non-decreasing if whenever x, y € R™ such that

x=sy(ie,x <y, Vi=1,..,n)weget f(x) < f(y).
[24, Definition 5.2.1]

n the literature, different types of y-level sets associated
with f and E are defined. Some of these sets are listed
below.

Definition 2.7 Let y € R. Then,

1. D, ={d € D:f(d) <v}. [1]
2. E-D, = {d € D: f(Ed) < y}. [16]
3. D,y ={E(d) € E(D):f(Ed) <y}. [16]

Next, the definition of h-convex introduced in [21] is

recalled. Noting that, in [25,26] other versions of h-convex
functions are defined.
Definition 2.8 [21] Let h:[0,1] = R be a function. Then
f:D - R is said to be h-convex function if for each
diy,d, €D, and each 0<A<1 we have f(Ad;+
(1 —-Ad;) < h(Df (d1) + h(1 = D)f (d).

By making use of a non-negative h-convex function

and a preinvex function, Matloka in 2014 introduced the
class of h-preinvex function.
Definition 2.9 [22] Let h:[0,1] — R be a positive function.
Then a positive function f: D — R is said to be h-preinvex
on the invex set D if for each d;,d, € D, and each 0 <
A <1 we have f(d, + AP(dy,dy)) < h(A)f(dy) +h(1 -
Df (dy).

By extending the definitions of B-preinvex and h-
preinvex functions, we introduce the b"-preinvex function
as follows.

Definition 2.10 Let D, f, b,y and h are defined as in the
Assumption such that D is an invex set. Then f is said to be
b"-preinvex function on D if for each d,,d, € D, and each
0<1<1

f(dz + 2Y(dy, d3)) < h(Ab)f(dy) + h(1 — Ab)f (d2).

Using the definitions of h-preinvex function and E-B-
preinvex function, we define the E"-b-preinvex and local
E™-b-preinvex functions.

Definition 2.11 Let D, f, E, b, and h are defined as in the
Assumption such that D is an E-invex set. Then

f(Ed, + W(Edy, Ed;)) < h(Ab)f(Ed,) + h(1 —

Ab)f(Ed,).
2. f is said to be local E"-b-preinvex function on D
if for each d,,d, €D there exists A4 ,q4, €

(0, Za,a, | such that VA € [0, Aq,.q, |

f (Ed2 + /hp(Edl,Edz)) < h(Ab)f(Ed,) + h(1 —

Ab)f (Ed,),

where {4,,q4, € (0,1].

Note that b"-preinvex and E"-b-preinvex functions are
considered as extentions of B-preinvex and E-B-preinvex
functions, respectively in the following sense.

Remark 2.12 If h = I the identity function. Then

1. Every B-preinvex function is b"-preinvex
function.
2. Every E-B-preinvex function is E"-b-preinvex.

Next, we show an example of E"-b-preinvex function
that is not E-B-preinvex .
Example 2.13 Let f,E:R > R andy: R X R - R are
defined as follows.

1 x € [-2,0]
fe) = {% otherwise '
_(x—y x,y € [=2,0] or x,y € (0,2]
Y(x,y) = { y—x otherwise
and E(x) =e* Vx€R. Assume that h:[0,1] - R is

defined as h(1) =24 VA€ [0,1]and D =[-22] S R.
We observe that f is E"-b-preinvex on D but not E-B-
preinvex function on D. Indeed, consider x,y € (0,2] such
that x =2, y=0.7 and and A2 =1. Then y(e*,e”) =
e¥ — e*. Hence,

f(Ey+/1 lp(Ex,Ey)) = f(ey +

Ap(e*,e¥ ))
=f(e + (e —e*))
=f(—e* +2e¥) =1
On the other hand,
Abf(Ex) + (1 — Ab)f(Ey) = Abf(e*) + (1 — Ab)f(e?)

1 1 1

=w()+a-m()=1
This shows, f (Ey + 2 (Ex, Ey)) > Abf (Ex) +
(1 — Ab)f (Ey) which means f is not E-B-preinvex on D.
Next, we show that f is E"-b-preinvex on D. Direct
calculations yields D = [—2,2] is an E-invex set. Now,
considering x,y € [—2,2] and A € [0,1], we have four
possible cases:
Case (1): If x,y>0, ie, x,y€(0,2] and e*,e” €
1,e?];

then f(Ey + Mp(Ex, Ey)) = f(ey + AP(e*, e” ))
such that

X _ o,y X oY
pem.e) = (7 ezl
Now,

f (ey + Ap(e*,e” ))

_ f(e¥ +A(e* —e¥)) e*, e’ € (1,,2]

_{f(ey +A(e¥ —e¥)) 0.w.

(f(le* + (1 = Ne?) e*,e¥ € (1,,2]

_{f(—/lex + (1 4+ 1)e?) 0.W. '
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1 e*, e’ € (1,,2]

:{1 or % 0.w. '
and

R(AD)f(Ex) + h(1 — Ab)f (Ey) = 2Abf (%) +
2(1— Ab)f(e¥) = 22b (%) +2(1 = Ab) (g) =1.
Case (2): If x,y <0, ie, x,y€[-2,0] and e* e €
[0.1,1]. This means y(e*,e¥ ) = e* — e¥, then

£ (Ey + Mb(Ex,E)) = f(e? +A(e* ~ e*))

= f(Ae* + (1 —De¥) =,

and

h(Ab)f(Ex) + h(1 — Ab)f(Ey) = 2Abf(e*) +
2(1 - b)f(e?) = 2ab(3)+2(1-2b) (3) = 1.
Case (3): Ifx >0,y <0,ie,x € (0,2]andy € [-2,0].
Then e* € (1,e?] and e” € [e~?, 1] this means
Y(Ex, Ey) = e¥ —e*. Thus,

f(Ey + AW (Ex, Ey)) = f(ey + A(e¥ — e"))

= f(=2e* + (1 + De”) =§ ori,

and h(Ab)f (Ex) + h(1 — Ab)f (Ey) = 2Abf(e¥) +
2(1-2b) =22b (3) +2(1 - 2p) (3) = 1.
Case (4): If <0, y>0;ie, xe[-2,0] and y € [0,2].
Then e*€[0.1,1] and €Y € (1,e?]. This means
Y(Ex,Ey) = e¥ —e*,

then f (Ey + W (Ex, Ey)) =f (ey + Ap(e*,e” ))

= f(=Ae* + (1+ De¥) =+,

and R(AB) f(Ex) + h(1 — Ab)f(Ey) = 2Abf(e¥) +
2(1— Ab)f(e¥) = 22b G) +2(1 - Ab) G) =1,
In all cases, we have f (Ey + AW (Ex, Ey)) <

h(Ab)f(Ex) + h(1 — Ab)f(Ey) as it is required to show.
| |

3. Some properties of E"-b-preinvex functions
In this section, we discuss some basic properties of E"-b-
preinvex functions. We start first by showing that the class
of E"-b-preinvex functions is closed under non-negative
scalar multiplication and addition. Same property holds for
classical convex functions.
Proposition 3.1 Let D,f,E ,b 3b and h are defined as in
the Assumption. Assume that g: R™ — R be a function such
that D is an E-invex and f, g are E"-b-preinvex functions,
then af + Bg is an E™-b-preinvex function. Va, 8 > 0.
Proof. Let d;,d, €D, and A€ [0,1]. Set u=Ed, +
Mp(Ed,, Ed,) € D. Using the fact that fand g are E"-b-
preinvex functions, we obtain
(af +Bg)w) = af (W) + Bg(w) < ah(Ab)f(Ed,) +
ah(1 —Ab)f(Ed,) + fh(Ab)g(Ed;) + Bh(1 —
Ab)g(Ed,),

= h(Ab)(af + Bg)(Ed,) + h(1 — Ab)(af + Bg )(Ed,).
Hence, af + Bg is an E*-b-preinvexon D. m
Proposition 3.2 Let Let D, E 3, b and h are defined as in
the Assumption such that D is an E-invex set and h is
positive, f;: R®™ — R is bounded from above for each i €
A. Define, f: R®™ — R such that f = sup;es fi- If fi iS
E™-b-preinvex function on D w.r.t. the same v, b, h for
each i € A, then f is E™-b-preinvex on D .
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Proof. Since f; is a E"-b-preinvex on Vi € A, then, for
eachd,,d, € Dand 0 < 1 < 1 we have

fi (Edy + 2p(Edy, Edy)) < h(Ab)f(Ed,) +
h(1 —Ab)f;(Ed,) Vi € A
Taking the supremum to the right-hand side of the
inequality above, we get

fi (Edy + 2p(Eds, Ed,)) < sup [h(Ab)f,(Ed,) +
ieA

h(1 —Ab)f;(Ed,)] Vi € A.
Then,

supf; (Ed; + 2p(Ed;, Edy))
ieA

< sup[h(Ab)f;(Ed,)
ieA

+ h(1 — Ab)fi(Ed,) ].
From the fact that h is positive and supM and supN are
finite, we get sup(M + N) =supM +supN. Thus, the last
inequality yields, f(Ed, + W(Ed,, Edy)) <
h(Ab) sup f;(Edy) + h(1 — Ab) sup f;(Ed;)

ieA iEA

= h(Ab)f(Ed,) + h(1 — Ab)f(Ed,;).
Then, we get f is an E"-b-preinvex. [ ]
The composite property is also held if f is an E"-b-
preinvex function as we show next.
Proposition 3.3 Let D,f,E,y¥,b and h are defined as in the
Assumption such that D is an E-invex and f is an E"-b-
preinvex on D. Assume that G: R — R is a non-decreasing
sublinear function. Then G o f is an E™-b-preinvex on D.
Proof. Let d;,d, € D, and 4 € [0,1]. Since, f is E"-b-
preinvex on the E-invex set D, then
Ed, + 2W(Ed,,Ed,) € D and
f(Ed, + W(Ed,,Ed,)) < h(Ab)f(Ed,) + h(1 —
Ab)f (Edy),
G (f (Ed2 + Aw(Edl,Edz)» < G(h(Ab)f(Edy) +
h(1 — Ab)f (Edy)).
The last inequality holds because G is a non-decreasing
function. Using the sublinearity assumption of G, the right-
hand side of the last inequality yields,
G(f (Ed2 + At/)(Edl,Edz))) < h(Ab)G(f(Ed,)) +
h(1 = Ab)G(f (Ed,)),
i.e., (Gof)(Ed, + W(Ed,,Ed,)) < h(Ab)(Gof)(Ed,) +
h(1 — Ab)(Gof)(Ed,).
Thus, Gof is a E"-b-preinvexon D. m
The next propositions provide necessary and sufficient
conditions for £ to be an E"-b-preinvex function.
Proposition 3.4 Let D, f, E,,b and h are defined as in the
Assumption such that D is an E-invex set and E(D) is an
invex. Then, a function fis E"-b-preinvex on D if and
only if its restriction f: E(D) — R is b"-preinvex on E (D).
Proof. Let d;,d, € E(D) then there exist d,d, € D such
that d;, = Ed, and d, = Ed,. Since E(D) is an invex set
then d, + A (d;,d,) € E(D). First, we prove f is b"-
preinvex on E(D) where f(d) = f(d) vd € E(D). From
the definition of f and the assumption on f, we get
f(dz + Zp(dy, dp) = f(d; + (dy, d5))
= £ (Ed, + 2(Edy, Edy))
< h(Ab)f(Edy) + h(1—
Ab)f (Edy)
= h(b)f (d;) + h(1 - Ab)f(d;)
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= h(Ab)f(d;) + h(1 — 2b)f(dy).
Thus, f is b™-preinvex on E(D). For obtaining the reverse
implication, we use the definition of f and the assumption
on f, vA € [0,1] and Ab € [0,1] we have
f(Edy + 2p(Edy, Edy)) = f (d + p(dy,d3))
< h(Ab)f(dy) + h(1 -

Ab)f(dz)
= h(Ab)f(Edy) + h(1 — Ab)f(Ed,),
which implies that £ is E™-b-preinvex on D. [

Proposition 3.5 Let D, f, E,y,b and h are defined as in the
Assumption such that D is an E-invex set. Assume that
h(a) < a VYa € [0,1], h is a non-negative function, and
h(1) = 1.Then, f is E"-b-preinvex on D for some b and h
if and only if f is an E-prequasiinvex on D.

Proof. Let f be an E"-b-preinvex on D w.r.t. some b and
h. Note that for all d;,d, € D, 1 € [0,1] and Ab € [0,1] we
have

f(Edy + 2p(Edy, Edy))
< h(Ab)f(Ed,) + h(1 — Ab)f(Ed,)

From the assumptions on h, the right-hand side of the
above inequality becomes

f (Ed, + 2p(Edy, Ed,)) < Abf(Edy) + (1 - Ab)f (Edy)

< max{f(Ed,), f(Ed,)},

where the right-hand side of the last inequality obtained by
considering A4b =1 or 0. This yields that f is an E-

prequasiinvex on D. Assume now that f is an E-
prequasiinvex on D and define b(dy,d,, 1) by

b(dl'dZvl) =
% if L€ (0,1] and f(Ed,) = f(Ed,)
0 if 1=0 or f(Edy) < f(Ed,)
Ab(dy,dy, 2) =

1 if A€ (0,1] and f(Ed,) = f(Ed,)

1)
0 if 2=0 or f(Edy) <f(Ed,)
From the assumption on f, f(Ed2 +/11/)(Ed1,Ed2)) <

max{f(Ed,), f(Ed,)}. To show f is E"-b-preinvex on D
for some b, it is enough to prove that
max{f (Ed,), f(Ed,)} = h(Ab)f (Ed,) + h(1 —
Ab)f(Edy) )
If max{f(Ed,),f(Ed;)} = f(Ed,) , hence from (1),
Ab = 1.Then h(Ab)f(Ed,) + h(1 — Ab)f(Ed,)
=h(1)f(Ed,) + h(0)f(Ed;)

= f(Ed,) = max{f(Ed,), f(Ed;)} (3)
where we used, in (3), the fact that h(1) = 1 and h(0) <
0 (which forces h(0) =0).On the other hand, if
max{f(Ed,), f(Ed,;)} = f(Ed,),i.e., Ab =0.Then
h(Ab)f(Edy) + h(1 — Ab)f(Ed,)

= h(0)f(Ed,) + h(D)f (Ed;)

= f(Ed,) =max{f(Ed,), f(Ed;)} (4)
From (3) and (4), we obtain (2) which implies that f is E"-
b-preinvex on D w.r.t. some b. ]

Some properties related to the y-level sets are given
next. First, two necessary conditions for f to be E"*-b-
preinvex using the invexity of the level set D, zand the
slack invexity of the level set D, respectively, are stated
as follows.

Proposition 3.6 Let D, f, E,,b and h are defined as in the

Assumption such that D is an E-invex set and E(D) is an

invex set. Assume that h(a) < a Va € [0,1], h is a non-

negative function. If f is E"-b-preinvex on D. Then Dy, is

an invex set for all y € R.

Proof. Let y € R and let Ed;,Ed, € D,,; such that

f(Edy) <y and f(Ed,) <y. Since E(D) is an invex set

then Ed, + AY(Ed,,Ed, ) € E(D) (5)

From the assumption property on f and h, we have

f(Ed, + =n(Edy, Ed, )) < h(Ab)f(Ed,y) +

h(1 - Ab)f (Ed,)

<Ay+{A-A)y=y (6)

From (5) and (6), we get Ed, + AY(Edy,Ed; ) € Dy .

Therefore, D, is an invex set as required. m

Proposition 3.7 Let D, f, E,,b and h are defined as in the

Assumption such that D is an E-invex set. Assume also that

h is sublinear function and h(1) = 1. If f is E"-b-preinvex

on D. Then D, is a slack invex set w.r.t. E(D) forally €

R.

Proof. Let w,u€D,NE(D) and A €[0,1] such that

u,u € EMD), f(w) <y, f() <y,and
u+Apu,u)eEEMD)CSD (7
Since f is E"-b-preinvex on D, then

f (@ + 2w, @) < h@AB)f (W) + h(1 — Ab)f (@)

Since h is sublinear and h(1) = 1, the right-hand side of
the above inequality yields

< h(Ab)f(w) + h(Df (@) — h(Ab)f (W) <. ®)
From (7) and (8) we get & + Ayp(u,u) € D, as required to
prove.

Another necessary condition for f to be E"-b-
preinvex using the E-invexity of the level set E-D,, is
given next.

Proposition 3.8 Let D, f, E,y,b and h are defined as in the
Assumption such that D is an E-invex set w.r.t. E o and f
is an E"-b-preinvex on D. Assume that E is linear and
idempotent, h is sublinear, and h(1) = 1. Then, E-D,, is an
E-invex set w.r.t. E oy for each y € R.

Proof. Let y €R and dy,d, € E-D,. Then f(Ed,) <y

and f(Ed,) <y. Since D is an E-invex set w.rt. E oy
then Ed, + A(E o y)(Ed,,Ed,) € D 9)
and fE (Edy + A(E o ) (Edy, Edy)) = f(E?d; +

A(E? o) (Edy, Edy)) = f(Ed, + A(E o $)(Edy, Edy)
where we used in the last statements the assumptions on E.
Applying now the assumptions on f and h, the last equality
yields
< h(Ab)f(Edy) + h(1 —Ab)f(Edy) < y. (10)

From (9) and (10), we have E-D, isan E-invex set w.r.t.
Eoy. m

Next proposition introduces a characterization of E-
prequasiinvex function.
Proposition 3.9 Let D, f, E,y,b and h are defined as in the
Assumption such that D is an E-invex set and E(D) is an
invex set. Then f is an E-prequasiinvex if and only if D, .
is an invex set.
Proof. First, we prove that D, , is an invex set. Lety € R
and let EdqEd, €D,, such that f(Ed;) <y and
f(Ed,) <y. Since E(D) is an invex set and D is an E-
invex set, then for each A € [0,1] we have
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Ed, + WWY(Ed,Ed, ) € E(D) S D (11)
From the hypothesis, f isan E-prequasiinvex on D. Then
f(Ed, + Mp(Ed;y, Edy ) < max{f(Ed,), f(Ed,)} <
y (12)
Using (11) and (12), we obtain Ed, + AY(Ed, Ed,) €
D, .. Letus now show that f is an E-prequasiinvex on D.
Let d,,d, €D, 2€[0,1] and y € R. By setting y =
max{f(Ed,), f(Ed;)}, we conclude Ed; Ed, €D,,.
Since D, . is an invex set . Then, Ed, + AY(Ed,,Ed, ) €
D, . and

f(Edy + 2p(Edy, Edy ) < v = max{f (Ex), f (Ey)},
where, from Proposition 2.3, Ed, + AY(Ed,, Ed, ) € D.
This shows f is E-prequasiinvex. |
4. Applications to local E*-b-preinvex non-
linear optimization problems
In this section, we consider the following non-linear
optimization problem which will be denoted as (NLP)
min f(d)
s.t. g;(d) < b,
d €D,
where D,f and E are defined as in the Assumption,
beR Vi=1,..r, and gi: DS R* — R be a real-
valued functions Vi =1,...,r such that D is a local E-
invex set and f and g; are local E"-b-preinvex functions on
D Vi=1,..,r. The problem (NLP) is referred to as local
E™-b-preinvex optimization problem.
Remark 4.1 In the Problem (NLP), if D is an E-invex set
and f, g; Vi=1,..,r are E"-b-preinvex functions on D
then the Problem (NLP) is called E"-b-preinvex
optimization problem.
Definition 4.2 In the Problem (NLP)
1.
he set of feasible solutions is denoted by
F={deD:g;i(d)<b;,i=1,..,r}

2. The set of all optimal solutions (or global
minimum) is denoted by argminyf and is defined as
argmingf ={d* € D: f(d*) < f(d) Vvd € D}.
3. A point d* € R" is said to be local minimum if
there exists &€>0 such that f(d*) <f(d) vde
B(d*,e) n D,where B(d*,&) ={d eR" : ||d —d*|| < €}
is the neighborhood of d* with radius ¢.

Under certain assumptions, the feasible set and the set
of the optimal values of the Problem (NLP) are local slack
E-invex w.r.t. E(D) as we show in the next propositions.
Proposition 4.3 Let D, f, E,,b and h are defined as in the
Assumption such that E(D) is a local invex and F N
E(D) # ¢. assume that h is a sublinear and h(1) = 1.
Then the set of feasible solutions F of the problem (NLP) is
local slack E-invex w.r.t. E(D).

Proof. Let d,,d, € FNE(D), ie. dy,d,, then there
existsd, ,d, € D such that d; = Ed, ,d, = Ed, . From
the local invexity of E(D) there exists {4, ,q, € (0,1] such
that d; + Ay(dy,d;) € E(D) for each A€ [0, {4 .a, |-
From Proposition 2.3, E(D)< D, hence, d;+
Mp(dy,d;) € D. We need to show that d; + A (dy, d;) €
F. Fix i € {1,2,..,r}. Since g; is local E"-b-preinvex,
then there exists Afil,dz €[0, {4,.a,] such that Vi€
[0, 24, 4, |

gi(dy + 2(dy, d3)) < h(Ab)g;(dy) + h(1 — Ab) g;(d,)

i=1,..,r
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Then, using the assumptions on h, the last inequality yields
< h(Ab)g;(Ex) + h(1 — Ab)g;(Ey) < b;.
Take 2 = miny e, {4y, 4, 3. Then, from the definition
of the feasible set we obtain
d, + M(dy, d;) € FvA € [0,1] asrequired. m
Proposition 4.4 Let D, f, E,,b and h are defined as in the
Assumption such that E(D) is a local invex. If h is a
sublinear and h(1) = 1. Then the set of argmin,f of the
problem (NLP) is a local slack E-invex w.r.t. E(D).
Proof. Let dy,d, € argminyf NE(D) then f(dy) =
f(dz) = f*. Using Proposition 4.3, there exists 2 € (0,1]
such that VA € [0,4] we have d; + yp(dy,d;) € E(D).
Using the local-E"-b-preinvexity of f yields there exists
A, €[01] such that va € [0,4.], f(d; + w(d5,d;)) <

h(Ab)f(d;) + h(1 — Ab)f (d;)
< h@Ab)f*+ h()f* — h(Ab)f" = f™.

By taking 2 = min{1, 4.}, we get f(d; + Ap(dy,d3)) =
f*. Thus, dy +Ay(dy,d;) € argminyf for any A€
[0,7]. =

In the Problem (NLP), a sufficient condition for a local
minimum to be global is given in the following result.
Proposition 4.5 Let D, f, E,y,b and h are defined as in the
Assumption. Assume h is a sublinear and h(1) = 1. If
d* € intF be a local minimum point for f and F < E(D).
Then d* is a global minimum of the problem (NLP).
Proof. Let d* c intF ¢ F < E(D) is a local minmum
point then there exists € > 0 such that B(d*, &) c E(D)
and f(d)<f(d) vdeU=B(d"e)nF. (13)
To complete the proof, it is enough to show that f(d*) <
f(d) vd € F\U. On contrary, assume that there isd € F ,
d # ¢ suchthat f(d) < f(d*). (14)
From (13), d ¢ B(d",&) and ||d — d*|| = &. Let d; ,d, €
D such that d = Ed, ,d* = Ed,. Since D is a local E-
invex, there exists (g,4; € (0,1] such that vie

[0, {aqy0a; |

Ed, + W(Ed,,Ed,) €D

From the assumption of Problem (NLP), f is a local E"-b-
preinvex on D, hence there exists
(o, (a;,a; ]Jsuch that VA € [0, /1&1,5; 1,
f(Ed, + 2Y(Edy, Edy)) < h(Ab)f(Edy) + h(1 —
Ab)f (Eds).
Applying (14) and the assumptions on h, the last inequality
gives
f@ + 2p(d,d7)) < h(Ab)f(d) + h(Df(d) —
h(Ab)f (d")

< h(b)f(d") + f(d*) — h(Ab)f(d*) =
f(d). (15)
If ¥(d,d*) = 0. Then for any 1 € [0, Az,,4; ], it yields
f (d* + Alp(a,d*)) = f(d*) which contradicts (15). If

Y(d,d*) # 0. Choose &> 0 sufficiently small such that

/1‘71,&; €

£ = . o e
Tw@a] <1 _Set A =min{ A, 4 @] }. _Then for
any A€(0,4] we get |d*—[d"+Mp(d,d)]||=
A (d, d)|| < 2l d)| < e,

ie d*+Ay(d,d*) €B (d",e) c E(D). Using the last
asseration and the fact that F c E(D), then we are in
condition of applying Proposition 4.3, i.e., d* +
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Mp(d,d*) € F. Again (15) contradicts the fact that d is a
local minimum on F. [

Remark 4.6 Propositions 4.3-4.5 are held in case (NLP) is
E™-b-preinvex optimization problem as follows.
Proposition 4.7 Consider E™-b-preinvex optimization
problem (NLP). Then

1.

et D, f,E,y,b and h are defined as in the Assumption such
that E(D) isan invex and F N E(D) # ¢. assume that h is
a sublinear and h(1) = 1. Then the set of feasible solutions
F of problem (NLP) is slack E-invex w.r.t. E(D).

2.

et D, f,E,y,b and h are defined as in the Assumption such
that E(D) is an invex set. If h is a sublinear and h(1) = 1.
Then the set of argmin, f of the problem (NLP) is slack
E-invex w.r.t. E(D).

3.

et D,f,E,yp,band hare defined as in the Assumption.
Assume h is a sublinear and h(1) = 1. If d* € intF be a
local minimum point for f and F c E(D). Then d* is a
global minimum of the problem (NLP).
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