CONVERGENCE OF SCHRÖDINGER OPERATOR WITH ELECTROMAGNETIC POTENTIAL

Hadeel Ali Hassen ${ }^{1,2}$, Yahea Hashem Saleem ${ }^{1}$
${ }^{1}$ University of Basrah College of education for pure science,, ${ }^{2}$ University of Thi-Qar College of education for pure science, hadeelali2007@yahoo.com ,yahea_h@mail.ru

ABSTRACT: We consider the Schrödinger operator with electromagnetic potentials
$H=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x)$ in $L^{2}\left(R^{n}\right)$ where $b_{j}(x), j=1,2, \ldots n$ and $V(x)$ are real-valued functions on $R^{n}, V \in$ $L_{l o c}^{1}\left(R^{n}\right), b \in C^{2}\left(R^{n}\right), \partial_{j}=\frac{\partial}{\partial x_{j}}$, and $i=\sqrt{-1}$. We investigate the convergence of the function $\Psi(t, x)$ in $L^{2}\left(R^{n}\right)$ which is defined by
$\Psi(t, x)=\int d \mu_{x}^{t}(\omega)\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right]\right\} \varphi(\omega(t))$
, and we research its analytic in the space $L^{2}\left(R^{n}\right)$
Keywords: Schrödinger operator, electric potential, magnetic potential, Feynman-Kac- Itô formula.

1. INTRODUCTION

The study of self-adjoint differential operators on Hilbert spaces is a central problem in the theory of partial differential operators.
Kato [4] showed on the basis of his elegant inequality that, if $V(x) \geq 0$ and $V \in L_{l o c}^{2}$, then the Schrödinger operator is essentially self-adjoint on the set of infinitely differentiable finite functions.
Gaysinsky, Goldstein[3] proved theorems of selfadjointness of the operator $H=-\Delta+V$ and its powers H^{p}. Aliev and Eyvazov [1]they showed that the Schrödinger operator under certain conditions Stummel type, imposed on the magnetic and electric potentials is an essential selfadjoint operator. K. U.Noor, H. S.Yahea in 2015[10]: they proved that the function $\Psi(t, x)$ in $L^{2}\left(R^{n}\right)$ which is defined by
$\Psi(t, x)=\int d \mu_{x}^{t}(\omega)\left\{\exp \left[-\int_{0}^{t} V(\omega(s)) d s\right]\right\} \varphi(\omega(t))$
is converges for almost every V where V is any real-valued function and discuss analytic of this function.
The first steps to proving that an operator H essential selfadjoint by using Feynman -Kac- Itô formula which the form (1) converges, analytic and smoothness. Many papers interested in the self-adjoint operators, we refer to[6-9].

In our work, we consider Schrödinger operator with electromagnetic potential
$H=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x)$,
$V: R^{n} \rightarrow R$ is the electric (scalar) potential, $b: R^{n} \rightarrow R^{n}$ is the magnetic (vector) potential where $x \in R^{n}, \partial_{j}=\frac{\partial}{\partial x_{j}}, i=$ $\sqrt{-1}$, and the domain of H denoted by $D(H)$ which is a dense subset in $L^{2}\left(R^{n}\right)$. We will show the necessary conditions which make the equation (1) function is convergent and discuss its analytic in the space $L^{2}\left(R^{n}\right)$, and we used some important theories such as Faynman-Kac-Itô formula [2] also used the Wiener integral and Itô stochastic integral to simplify some of the integrals i.e
$\exp (-t H)(x, y)=$
$\int d \mu_{x, y}^{t}(\omega)\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d x-\right.\right.$
$\left.\left.\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right]\right\}$,
$\exp (-t H) \varphi(x)=\int d \mu_{x}^{t}(\omega)$
$\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s-\right.\right.$
$\left.\left.\int_{0}^{t} V(\omega(s)) d s\right]\right\} \varphi(\omega(t))$,
for every $\varphi \in D(H)$, where $b(\omega)$ is twice continuously differentiable vector field on R^{n}, and $\operatorname{div} b=\sum_{j=1}^{n} \partial_{j} b_{j}$. $\int_{0}^{t} b(\omega(s)) d \omega$ denote the Itô stochastic integral of $b(\omega)$ with respect to n-dimensional Wiener process $\omega(s), 0<$ $s<\infty$.

2. Statement of the problem and the main result:

Convergence of the basic integral (the function $\boldsymbol{\Psi}(\boldsymbol{t}, \boldsymbol{x})$)
We will consider a random function $V(x)$ of the following form: let $\prod_{d=1}^{n}\left(a_{1 d}, a_{0 d}\right), \prod_{d=1}^{n}\left(a_{2 d}, a_{1 d}\right), \ldots$ be a system of intervals, $\lim _{m \rightarrow \infty} a_{m d}=0,1 \leq d \leq n$; suppose that every interval $\prod_{d=1}^{n}\left(a_{m d}, a_{(m-1) d}\right)$ is divided into $N(m)$ equal intervals $\prod_{d=1}^{n}\left(a_{j, m d}, a_{j-1, m d}\right)$; let $v_{j, m}(x)$ be an infinitely differentiable function which is equal to zero outside the interval $\prod_{d=1}^{n}\left(-\ell_{m d} N(m)^{-1}, \ell_{m d} N(m)^{-1}\right) \quad$ where $\quad \ell_{m d}=$ $a_{(m-1) d}-a_{m d}$, and let $V(x)$ be a random function which is equal to

$$
\begin{equation*}
v_{j-1, m}\left(x-\left(a_{j-1, m 1}, a_{j-1, m 2}, \ldots . a_{j-1, m n}\right)\right) \xi_{j-1, m} \tag{2}
\end{equation*}
$$

$+v_{j, m}\left(x-\left(a_{j, m 1}, a_{j, m 2}, \ldots . a_{j, m n}\right)\right) \xi_{j, m}$
on the interval $\prod_{d=1}^{n}\left(a_{j, m d}, a_{j-1, m d}\right)$, where $\xi_{j, m}$ is the system of independent random variables. We will show in this section that, under definite restriction of the values $\xi_{j, m}$ and under the condition of sufficiently quick tending of $N(m)$ to ∞.
We will suppose that the values $\xi_{j, m}$ have Gauss distributions with the densities
$\rho_{j, m d}(x)=\frac{e^{\frac{-x^{2}}{2 \beta_{j, m d}}}}{\sqrt{2 \pi \beta_{j, m d}}}$, where $\beta_{j, m d}$ are constant, $\beta_{j, m d} \leq \beta$.
We will suppose the function $v_{j, m}$ to be smooth, $M_{j, m}=\max \left|v_{j, m}\right|, M(m)=\max _{j} M_{j, m}$.
The basic assumption on the value $N(m)$:
$N(m) \geq \exp \left(\delta m^{2} M(m)^{2}\right)$, where $\delta>0$ is constant.
Also consider a random function $\int_{0}^{t} b(\omega(s)) d x$ denotes the Itô stochastic integral of $b(\omega)$ with respect to n dimensional Wiener process $\omega(s), 0<s<\infty$ of the following form: Let $P=\left\{0=t_{0}<t_{1}<\cdots<t_{l}=\right.$ $T\}$ be a partition such that
$b(t) \equiv b_{k}$ for $t_{k} \leq t<t_{k+1}(k=0, \ldots, l-1$, is a step process then Itô stochastic integral of $b(\omega)$ with respect to n-dimensional Wiener process $\omega(s), 0<s<\infty$ on the interval ($0, T$)
$\int_{0}^{T} b(\omega) d \omega:=\sum_{k=0}^{l-1} b_{k}\left(\omega\left(t_{k+1}\right)-\omega\left(t_{k}\right)\right)$

Proposition 2.1:

The function
$\Psi(t, x)=\int d \mu_{x}^{t}(\omega)\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega-\right.\right.$
$\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s$
$\left.\left.-\int_{0}^{t} V(\omega(s)) d s\right]\right\} \varphi(\omega)$,
converges for almost every V, b and represents a bounded intergrable function of a variable x.
In addition:-
$|\Psi(t, x)| \leq \tilde{\beta}(t, V) \cdot \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right), E \tilde{\beta}(t, V)<+\infty$
where supp $\varphi \subset[-\alpha, \alpha]^{n}$, where $\tilde{\beta}<+\infty$ is constant.

Proof:

$E_{x}\left[\int d \mu_{x}^{t}(\omega)\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega-\right.\right.\right.$
$\left.\left.\left.\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right]\right\}\right] \varphi(\omega)=$
$\int d \mu_{x}^{t}(\omega) \cdot E_{x}\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega-\right.\right.$
$\left.\left.\left.\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right]\right\}\right] \varphi(\omega)$.
Then from [5] we have
$W=V+\frac{1}{2} b . b+\frac{1}{2} i(\operatorname{div} b)$.
Thus we have
$-\frac{1}{2} i(\operatorname{div} b)-V=-W+\frac{1}{2} b . b$
Substitute the equation (2.1.2) in (2.1.1) we get
$\int d \mu_{x}^{t}(\omega) \cdot E_{x}\left\{\exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega+\right.\right.$
$\left.\left.\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s-\int_{0}^{t} W(\omega(s)) d s\right]\right\} \varphi(\omega)$
$=\int d \mu_{x}^{t}(\omega) \cdot E_{x}\left\{\exp \left(-i \int_{0}^{t} b(\omega(s))\right) d \omega\right\}$
$\times E_{x}\left\{\exp \left(\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s\right)\right\}$
$\times E_{x}\left\{\exp \left(-\int_{0}^{t} W(\omega(s)) d s\right)\right\} \varphi(\omega)$
$=\int d \mu_{x, y}^{t}(\omega)\left\{I_{1} \times I_{2} \times I_{3}\right\} \varphi(\omega)$
Now
$I_{1}=E_{x}\left\{\exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega\right)\right\}=$
$E_{x}\left\{\exp \left(-i \sum_{k=0}^{l-1} b_{k} \times\left(\omega\left(t_{k+1}\right)-\omega\left(t_{k}\right)\right)\right)\right\}$,
$=\prod_{k=0}^{l-1} E_{x}\left\{\exp \left(-i b_{k} \times\left(\omega\left(t_{k+1}\right)-\omega\left(t_{k}\right)\right)\right)\right\}$,
$\left(\omega\left(t_{k+1}\right)-\omega\left(t_{k}\right)\right) \sim N\left(0, t_{k+1}-t_{k}\right)$
Write $E_{x}\left\{\exp \left(-i b_{k} \times\left(\omega\left(t_{k+1}\right)-\omega\left(t_{k}\right)\right)\right)\right\}$
$=\int_{-\infty}^{\infty} e^{\left(-i b_{k} \times\left(\omega\left(t_{k+1}\right)-\omega\left(t_{k}\right)\right)\right)} \frac{e^{\left(\frac{-\omega^{2}}{2\left(t_{k+1}-t_{k}\right)}\right.}}{\sqrt{2 \pi\left(t_{k+1}-t_{k}\right)}} d \omega=$
$\exp \left(\frac{-\left(t_{k+1}-t_{k}\right)}{2} \times b_{k}{ }^{2}\right)$,
$I_{1}=\exp \left(\sum_{k=0}^{l-1} \frac{-\left(t_{k+1}-t_{k}\right)}{2} \times{b_{k}}^{2}\right)$.
So
$I_{2}=E_{x}\left\{\exp \left(\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s\right)\right\}$
$I_{2}=E_{x}\left\{\exp \left(\sum_{k=0}^{l-1} b_{k}^{2} \times \frac{\left(t_{k+1}-t_{k}\right)}{2}\right)\right\}$.
And
$\int_{0}^{t} W(\omega(s)) d \mathrm{~s}=\sum_{m} \sum_{j=1}^{N(m)} \int_{I(\omega, m, j)} W(\omega(s)) d s$,
where $\mathrm{I}(\omega, m, \mathrm{j})=\left\{s \in[0, t]: \omega(s) \in \prod_{d=1}^{n}\left[a_{j, m d}, a_{j+1, m d}\right)\right\}$.
If $s \in \mathrm{I}(\omega, m, \mathrm{j})$, then
$W(\omega(\mathrm{~s}))=\xi_{j, m} w_{j, m}\left(\omega(s)-\left(a_{j, m 1}, a_{j, m 2}, \ldots, a_{j, m n}\right)\right)+$ $\xi_{j+1, m} w_{j+1, m}\left(\omega(\mathrm{~s})-\left(a_{j+1, m 1}, a_{j+1, m 2}, \ldots, a_{j+1, m n}\right)\right)$,
hence
$\int_{I(\omega, m, j)} W(\omega(s)) d s=\mu_{j, m}^{I}(\omega) \xi_{j, m}+\mu_{j+1, m}^{I I}(\omega) \xi_{j+1, m}$,
(2.1.5)

Where
$\mu_{j, m}^{I}=\int_{I(\omega, m, j)} w_{j, m}\left(\omega(s)-\left(a_{j, m 1}, a_{j, m 2}, \ldots, a_{j, m n}\right)\right)$
$d s$,
$\mu_{j+1, m}^{I I}=\int_{I(\omega, m, j)} w_{j+1, m}(\omega(\mathrm{~s})-$
$\left.\left(a_{j+1, m 1}, a_{j+1, m 2}, \ldots, a_{j+1, m n}\right)\right) d s$,

$$
\begin{aligned}
\int_{0}^{t} W(\omega(s)) d s & =\sum_{m} \sum_{j} \mu_{j, m} \xi_{j, m} \\
\mu_{j, m} & =\mu_{j, m}^{I}+\mu_{j+1, m}^{I I}
\end{aligned}
$$

We now calculate the mean value of the expression $\left(I_{3}\right)$ over potentials W

$$
\begin{aligned}
I_{3} & =E_{x}\left(\exp \left(-\int_{0}^{t} W(\omega(s)) d s\right)\right) \\
& =\prod_{m} \prod_{j=1}^{N(m)} E_{x} \exp \left(-\mu_{j, m} \xi_{j, m}\right) .
\end{aligned}
$$

Write $E_{x}\left(e^{-\mu \xi}\right)=\int_{-\infty}^{\infty} e^{-\mu x} e^{\frac{-x^{2}}{2 \beta}} / \sqrt{2 \pi \beta} d x=\exp \left(\frac{\beta}{2} \mu^{2}\right)$,
if ξ has the density of distribution $e^{\frac{-x^{2}}{2 \beta}} / \sqrt{2 \pi \beta}$.
Hence
$I_{3}=E_{x}\left(\exp \left(-\int_{0}^{t} W(\omega(s)) d s\right)\right)$
$\exp \left(\beta \sum_{m} \sum_{j=1}^{N(m)} \mu_{j, m}^{2}(\omega)\right)$
we estimate the value $\mu_{j, m}^{I}(\omega)$ as follows:
$\mu_{j, m}^{I}=$
$\left.\int_{I(\omega, m, j)} w_{j, m}\left(\omega(\mathrm{~s})-\left(a_{j, m 1}, a_{j, m 2}, \ldots, a_{j, m n}\right)\right)\right) d s \leq$
$M(m) \tau_{j, m}(\omega)$,
where

$$
\begin{gathered}
M(m)=\max _{x, j}\left|w_{j, m}(x)\right| \\
\tau_{j, m}(\omega)=\int_{I(\omega, m, j)} d s=\lambda \mathrm{I}(\omega, m, \mathrm{j})
\end{gathered}
$$

λ is the Lebesgue measure. Similarly, the estimate of the values $\mu_{j+1, m}^{I I}(\omega)$. Further,

$$
\sum_{m} \sum_{j} \tau_{j, m}(\omega)=t
$$

Now we can write:-

$$
\begin{align*}
& E_{x}\left(\exp \left(-\int_{0}^{t} W(\omega(s)) d s\right) \leq\right. \\
& \exp \left(\beta_{1} \sum_{m} M(m)^{2} \sum_{j} \tau_{j, m}^{2}(\omega)\right),\left(\beta_{1}=\text { const }\right) ; \tag{2.1.6}\\
& \int \tau_{j, m}^{2}(\omega) d \mu_{x}(\omega)=\int\left[\int_{0}^{t} \chi_{j, m}\left(\omega\left(s_{1}\right)\right) d s_{1} \cdot \int_{0}^{t} \chi_{j, m}\right. \\
& \left.\quad\left(\omega\left(s_{2}\right)\right) d s_{2}\right] d \mu_{x}(\omega) \\
& =2 \int_{0}^{t} \int_{s_{1}}^{t} \int d s_{2} d s_{1} \chi_{j, m}\left(\omega\left(s_{1}\right)\right) \chi_{j, m}\left(\omega\left(s_{2}\right)\right) d \mu_{x}(\omega) \\
& =2 \int_{0}^{t} \int_{s_{1}}^{t}\left[\iint p\left(x, x_{1}, s_{1}\right) p\left(x_{1}, x_{2}, s_{2}-s_{1}\right) \chi_{j, m}\left(x_{1}\right) .\right. \\
& \left.\quad \chi_{j, m}\left(x_{2}\right) d x_{1} d x_{2}\right] d s_{1} d s_{2} \\
& =\int_{\prod_{d=1}^{n}\left[a_{j, m d}, a_{j+1, m d}\right)} \int_{\prod_{d=1}^{n}\left[a_{j, m d}, a_{j+1, m d}\right)} d x_{1} d x_{2} \\
& \quad \times\left\{\int_{0}^{t} d s_{1} \int_{s_{1}}^{t} d s_{2} \frac{e^{-\left(x-x_{1}\right)^{2} / 2 s_{1}}}{\sqrt{2 \pi s_{1}}} \cdot \frac{e^{-\left(x x_{1}-x_{2}\right)^{2} / 2 s_{2}}}{\sqrt{2 \pi\left(s_{2}-s_{1}\right)}}\right\} \\
& \quad \leq \operatorname{const} \prod_{d=1}^{n}\left(a_{j+1, m d}-a_{j, m d}\right)=\frac{c}{N(m)^{n}},
\end{align*}
$$

where $\chi_{j, m}()$ is the indicator of the set
$\prod_{d=1}^{n}\left[a_{j, m d}, a_{j+1, m d}\right), c=\mathrm{const}$, Let $\Omega_{j, m}=\left\{\omega: \tau_{j, m}^{2}(\omega)\right.$ $>\varepsilon\}$, where $\varepsilon=\varepsilon(m)$.Then, by the Čebyšev inequality, $\mu \Omega_{j, m} \leq \varepsilon^{-1} \int \tau_{j, m}^{2}(\omega) d \omega \leq \varepsilon^{-1} N(m)^{-n} c$.
Put $\Omega_{m}=U_{j} \Omega_{j, m}$ and write
$\mu \Omega_{m} \leq N(m) \max _{j} \mu\left(\Omega_{j, m}\right)=c \varepsilon^{-1} \mathrm{~N}(m)^{-(n-1)}$.
To estimate the integral at the right side of (2.1.6), we first consider finite summation by m at the exponent. Let $m=1,2, \ldots, g$. By the Hölder inequality,
$\int \exp \left(\sum_{m=1}^{g} \theta_{m}(\omega)\right) d \mu(\omega) \leq$
$\prod_{m=1}^{g}\left[\int \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega)\right]^{1 / \alpha_{m}}$
where $\alpha_{1}^{-1}+\ldots+\alpha_{g}^{-1}=1, \alpha_{j}>0$. Put $\theta_{m}(\omega)=$ $M_{m}^{2} \sum_{j} \tau_{j, m}^{2}(\omega), \alpha_{m}=\mathrm{c} m^{2}$,
where $c=c(g)=\sum_{m=1}^{g} m^{-2}$. Write
$\int \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega)=\int_{\Omega_{m}} \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega)+$ $\int_{c \Omega_{m}} \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega) ;$
$\int_{c \Omega_{m}} \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega) \leq$
$\int_{c \Omega_{m}} \exp \left(\beta_{1} c m^{2} M(m)^{2} \sum_{j=1}^{N(m)} \tau_{j, m}{ }^{2}(\omega)\right) d \mu(\omega),(2.1 .8)$
if $x \in c \Omega_{m}$, then $\tau_{j, m}^{2}<\varepsilon$, therefore, $\tau_{j, m}(\omega)<\varepsilon^{\frac{1}{2}}, \tau_{j, m}^{2}(\omega)$
$<\varepsilon^{\frac{1}{2}} \tau_{j, m}(\omega)$,

$$
\begin{equation*}
\sum \tau_{j, m}^{2}(\omega)<\varepsilon^{\frac{1}{2}} \sum \tau_{j, m}(\omega) \leq \varepsilon^{\frac{1}{2}} t \tag{2.1.9}
\end{equation*}
$$

So, if we put $\varepsilon(m)=M(m)^{-4} m^{-4}$, then we get from (2.1.7), (2.1.8) that

$$
\int_{c \Omega_{m}} \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega) \leq \exp \left(\beta_{1} c t\right)
$$

further, if $t<1$, then $\sum_{j} \tau_{j, m}(\omega) \leq 1, \sum \tau_{j, m}^{2}(\omega)<$
$\sum \tau_{j, m}(\omega) \leq t$,
$\int_{\Omega_{m}} \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega) \leq \mu\left(\Omega_{m}\right)$
$\exp \left(\beta_{1} c m^{2} M(m)^{2} t\right)$
$\leq c(\varepsilon(n))^{-1}(N(m))^{-(n-1)} \exp \left(\beta_{1} C M(m)^{2} t\right)$. (2.1.11)
According to our assumption, $N(m) \geq \exp \left(\delta m^{2} M(m)^{2}\right)$.
Hence, it follows from the estimate (2.1.11) that for t small enough

$$
\begin{equation*}
\int_{\Omega_{m}} \exp \left(\alpha_{m} \theta_{m}(\omega)\right) d \mu(\omega) \leq C_{1}, \tag{2.1.12}
\end{equation*}
$$

where C_{1} is a constant. We now conclude from (2.1.9), (2.1.11) that
$\left[\int \exp \left(\alpha_{m} \theta_{m}(x)\right) d \mu(x)\right]^{1 / \alpha_{m}} \leq \exp \left(C_{1} m^{-2}\right),(2.1 .13)$
where C_{1} is constant. Substitute the estimate (2.1.13) into (2.1.7) and pass to the limit as $\mathrm{g} \rightarrow \infty$. We get
$E_{x}\left\{\int d \mu_{x}^{t}(x)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\}<+\infty$.
In similar way we can show that, if $|y| \leq \alpha$, then
$E_{x}\left\{\int d \mu_{x}^{t}(x)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\} \leq \beta$.
$\exp \left(-\left(\sum_{k=0}^{l-1} \frac{\left(t_{k+1}-t_{k}\right)}{2}\left(b_{k}\right)^{2}\right)\right) \cdot \exp \left(\left(\sum_{k=0}^{l-1} \frac{\left(t_{k+1}-t_{k}\right)}{2}\left(b_{k}\right)^{2}\right)\right)$.
$\exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)=\beta \cdot \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$
, where $\beta<+\infty$ is a constant.
Hence, if $\varphi \in C_{0}^{\infty}$ and $\varphi(y)=0$ for $|y|>\alpha$, then we have
$E_{x}\left\{\int d \mu_{x}^{t}(\omega)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\} \varphi(\omega(t))$
$=E_{x}\left[\int_{R^{n}} d y\left\{\int d \mu_{x, y}^{t}(x)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\}\right.$
$. \varphi(y)] \leq \tilde{\beta} . \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$,
where $\tilde{\beta}<+\infty$ is constant. Now the Fubini theorem implies the above assertion. \square
Corollary2.2: Let us consider the function $\Psi(t, x)$ which define in equation (1) then we have the estimate
$E_{x}\left(|\Psi(t, x)|^{2}\right) \leq$
$M \cdot \exp \left(\sum_{k=0}^{l-1}-\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \cdot \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$
where $M<+\infty$ is constant.
Proof:
By using the equation (2.1.3) we have
$E_{x}\left(\Psi(t, x)^{2}\right)=$
$\left[\int d \mu_{x}^{t}(x) \cdot E_{x}\left\{\exp \left(-i \int_{0}^{t} b(\omega(s))\right) d \omega\right\} \times\right.$
$E_{x}\left\{\exp \left(\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s\right)\right\}$
$\left.\times E_{x}\left\{\exp \left(-\int_{0}^{t} W(\omega(s)) d s\right)\right\} \varphi(\omega)\right]^{2}$
$=\int d \mu_{x, y}^{2 t}(\gamma) \cdot E_{x}\left\{\exp \left(-2 i \int_{0}^{2 t} b(\gamma(s))\right) d \gamma\right\} \times$
$E_{x}\left\{\exp \left(\int_{0}^{2 t} b^{2}(\gamma(s)) d s\right)\right\}$
$\times E_{x}\left\{\exp \left(-2 \int_{0}^{2 t} W(\gamma(s)) d s\right)\right\} \varphi(y)$
$=\int d \mu_{x, y}^{2 t}(\gamma)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\} \varphi(y)$,
by the same method in proposition (2.1) we get the following
$E_{x}\left\{\int d \mu_{x}^{2 t}(\omega)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\}<+\infty$.

In similar way we can show that, if $|y| \leq \alpha$, then
$E_{x}\left\{\int d \mu_{x}^{2 t}(\gamma)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\} \leq M . \exp \left(\sum_{k=1}^{l-1}-2\left(t_{k+1}-\right.\right.$ $\left.\left.t_{k}\right)\left(b_{k}\right)^{2}\right)$.
$\exp \left(\sum_{k=0}^{l-1}\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \cdot \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)=M$
. $\exp \left(\sum_{k=0}^{l-1}-\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$,
where $M<+\infty$ is a constant.
Hence, if $\varphi \in C_{0}^{\infty}$ and $\varphi(y)=0$ for $|y|>\alpha$, then we have
$E_{x}\left\{\int d \mu_{x}^{2 t}(\gamma)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\} \varphi(\gamma(t))$
$=E_{x}\left[\int_{-\infty}^{\infty} d y\left\{\int d \mu_{x, y}^{2 t}(\gamma)\left\{I_{1} \cdot I_{2} \cdot I_{3}\right\}\right\} \cdot \varphi(y)\right] \leq$
$M \cdot \exp \left(\sum_{k=0}^{l-1}-\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \cdot \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$,
where $M<+\infty$ is constant.
This mean that
$E_{x}\left(|\Psi(t, x)|^{2}\right) \leq$
$M \cdot \exp \left(\sum_{k=0}^{l-1}-\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \cdot \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$
where $M<+\infty$ is constant.
3.Analytic Extension of $\Psi(t, x)$ by the Parameter t into the Domain Ret >0
To investigate properties of the function $\Psi(t, x)$, we define its analytic extension into a certain complex domain of the variable t. First, we consider the Schrödinger operator $H=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x)$ where $x \in R^{n}$, $b_{j}(x), j=1,2, \ldots, n$ and $V(x)$ are real-valued functions on $R^{n}, \partial_{j}=\frac{\partial}{\partial x_{j}}, i=\sqrt{-1}$ defined on a finite interval $[\alpha, \beta]^{n}$ with zero boundary conditions, where $V(x)$ is some continuous function defined on $[\alpha, \beta]^{n}$. By the FeynmanKac formula, if $\varphi(x)$ is a continuous function on $[\alpha, \beta]^{n}$, then
$\exp (-t H) \varphi(x)=$
$\int\left[\int d \mu_{x, y}^{t}(\omega) \chi_{[\alpha, \beta]^{n}}(\omega)\left\{\exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\right.\right.\right.$
$\left.\left.\left.\frac{1}{2} i \int_{0}^{t} \operatorname{div} b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right)\right\}\right] \varphi(y) d y$.
Let us take the advantage of the following known arguments by the Hilbert-Schmidt theorem, $\exp (-t H)$ is an integral operator with the kernel

$$
\begin{equation*}
\exp (-t H)(x, y)=\sum_{m} e^{-t E_{m}} \varphi_{m}(x) \varphi_{m}(y) \tag{3.1.1}
\end{equation*}
$$

where $\varphi_{1}, \varphi_{2}, \ldots$, is a complete orthonormal system of eigenfunctions of the operator H,

$$
H \varphi_{m}=E_{m} \varphi_{m}, m=1,2, \ldots
$$

on the other hand,
$\exp (-t H)(x, y)=\int d \mu_{x, y}^{t}(\omega)$
$\chi_{[\alpha, \beta]^{n}} \exp \left[-i \int_{0}^{t} b(\omega(s)) d x+\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s-\right.$ $\left.\int_{0}^{t} W(\omega(s)) d s\right]$,
the functions $\varphi_{m}(x)$ are continuous, the series (3.1.1) converges uniformly and the correlation

$$
\begin{equation*}
\int_{[\alpha, \beta]^{n}} d x \exp (-t H)(x, x)=\sum_{m} e^{-t E_{m}} \tag{3.1.2}
\end{equation*}
$$

takes place; in particular, the series (3.1.2) converges.
Put now $t=\tau+i \theta$. Write

$$
\begin{aligned}
& \sum_{m}\left|e^{-t E_{m}} \varphi_{m}(x) \varphi_{m}(y)\right| \\
& \quad \leq \sum_{m} e^{-\tau E_{m}}\left|\varphi_{m}(x)\right|\left|\varphi_{m}(y)\right| \\
& \quad \leq\left[\sum_{m} e^{-\tau E_{m}}\left|\varphi_{m}(x)\right|^{2}\right]^{1 / 2} \times\left[\sum_{m} e^{-\tau E_{m}}\left|\varphi_{m}(y)\right|^{2}\right]^{1 / 2} \\
& \quad=[\exp (-\tau H)(x \cdot x)]^{1 / 2} \times[\exp (-\tau H)(y, y)]^{1 / 2} .
\end{aligned}
$$

Hence the series (3.1.1) uniformly converges for x, y in
$[\alpha, \beta]^{n}, t=\tau+i \theta, \quad \tau \geq \tau_{0}>0$. Thus $\exp (-t H)(x, y)$ is extended up to an analytic function of the variable t in the indicated domain.
Let us return to the case of the potential V under consideration.
Lemma 3.1: Let $\varphi, h \in C_{0}^{\infty}$ be given, $h=0$ in a
neighborhood of the point $x=0$. Denoted by $L^{2}\left(R^{n}, d V\right)$, the set of square integrable functions (in the sense of the mean $E)$.
Put

$$
F(t, V)=\int_{R^{n}} \Psi(t, x) h(x) d x
$$

Then $F(t, V) \in L^{2}\left(R^{n},\right)$ f or every $t>0$ and mapping $t \rightarrow F(t, V) \in L^{2}\left(R^{n}, d V\right)$ can be extended up to an analytic function in the domain $t=\tau+i \theta, \tau \geq \tau_{0}>0$ with values in $L^{2}\left(R^{n}, d V\right)$.

Proof:

We check that $F \in L^{2}\left(R^{n}, d V\right)$ write
By using the estimate in (corollary 2.2) we can write
$E\left(\int_{R^{n}} d x \Psi(t, x)^{2}\right) \leq \beta \int_{-\alpha}^{\alpha} d y \int_{-\alpha}^{\alpha} d z \exp \left(-\frac{(x-\alpha)^{2}}{2 t}\right)$
$\times \exp \left(\sum_{k=0}^{l-1}-\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right)|\varphi(y)| \times|\varphi(z)|<+\infty$,

$$
\|F(t, V)\|_{L^{2}\left(R^{n}, d V\right)}^{n^{2}}=E|F(t, V)|^{2} \leq \text { const }<+\infty
$$

i.e. $F(t, V) \in L^{2}\left(R^{n}, d V\right)$.

Let $-\infty<\alpha<\beta<+\infty$. Consider the operator $H=$ $\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $R^{n}, b_{j}(x), j=1,2, \ldots, n$ and $V(x)$ are real valued functions on $R^{n}, \partial_{j}=\frac{\partial}{\partial x_{j}}, i=\sqrt{-1}$ on the interval $[\alpha, \beta]^{n}$ with zero boundary conditions. Denote is by $H_{\alpha, \beta}$ and consider the following function: $\quad \Psi_{\alpha, \beta}(t, x)=$
$\int d \mu_{x}^{t}(\omega) \exp \left[-i \int_{0}^{t} b(\omega(s)) d x+\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s-\right.$
$\left.\int_{0}^{t} W(\omega(s)) d s\right] \chi_{[\alpha, \beta]^{n}}(\omega) \varphi(\omega(t))$
$=\int d y\left[\int d \mu_{x, y}^{t}(\omega) \exp \left[-i \int_{0}^{t} b(\omega(s)) d x+\right.\right.$
$\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s$
$\left.\left.-\int_{0}^{t} W(\omega(s)) d s\right] \chi_{[\alpha, \beta]^{n}}(\omega)\right] \varphi(y)$,

$$
\begin{equation*}
\Psi_{\alpha, \beta}(t, x)=\int d y \exp \left(-t H_{\alpha, \beta}\right)(x, y) \tag{3.1.3}
\end{equation*}
$$

and also

$$
\begin{equation*}
F_{\alpha, \beta}(t, V)=\int_{R^{n}} \Psi_{\alpha, \beta}(t, x) h(x) d x \tag{3.1.4}
\end{equation*}
$$

write for $x, y \in[\alpha, \beta]^{n}$
$\exp \left(-t H_{\alpha, \beta}\right)(x, y) \leq$
$\int d \mu_{x, y}^{t}(\omega) \exp \left[-i \int_{0}^{t} b(\omega(s)) d x+\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s\right.$
$\left.-\int_{0}^{t} W(\omega(s)) d s\right] \leq$ const.
The function $\exp \left(-t H_{\alpha, \beta}\right)(x, y)$ is analytically extended in the domain $t=\tau+i \theta, \tau \geq \tau_{0}>0$. Besides,

$$
\begin{aligned}
& \left|\exp \left(-t H_{\alpha, \beta}\right)(x, y)\right| \\
& \leq\left[\exp \left(-\tau H_{\alpha, \beta}\right)(x, x)\right]^{1 / 2} \times\left[\exp \left(-\tau H_{\alpha, \beta}\right)(y, y)\right]^{1 / 2}
\end{aligned}
$$ (3.1.6)

thus we have,

$$
\begin{aligned}
& E\left|\exp \left(-t H_{\alpha, \beta}\right)(x, y)\right|^{2} \\
& \leq E\left\{\left[\exp \left(-\tau H_{\alpha, \beta}\right)(x, x)\right]\left[\exp \left(-\tau H_{\alpha, \beta}\right)(y, y)\right]\right\}
\end{aligned}
$$

$\leq\left\{E\left[\exp \left(-\tau H_{\alpha, \beta}\right)(x, x)\right]^{2}\right\}^{\frac{1}{2}}\left\{E\left[\exp \left(-\tau H_{\alpha, \beta}\right)(y, y)\right]^{2}\right\}^{\frac{1}{2}}$. (3.1.7)

It follows from (3.1.3)-(3.1.7) that $\Psi_{\alpha, \beta}(t, x)$ is analytically extended by $t, F_{\alpha, \beta}(t, V)$ is also analytically extended by t. In addition,

$$
\begin{aligned}
& E\left|F_{\alpha, \beta}(t, V)\right|^{2} \\
& =E\left|\int_{[\alpha, \beta]^{n}} \exp \left(-t H_{\alpha, \beta}\right)(x, y) \varphi(y) d y\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & E\left\{\int_{[\alpha, \beta]^{n}} \exp \left(-t H_{\alpha, \beta}\right)(x, y) \varphi(y) d y\right. \\
& \times \int_{[\alpha, \beta]^{n}} \overline{\left.\exp \left(-t H_{\alpha, \beta}\right)(x, z) \varphi(z) d z\right\}} \\
= & \int_{[\alpha, \beta]^{n}} \int_{[\alpha, \beta]^{n}} E\left\{\exp \left(-t H_{\alpha, \beta}\right)(x, y) \exp \left(-t H_{\alpha, \beta}\right)\right. \\
& \times(x, z)\} \varphi(y) \varphi(z) d y d z \\
& \leq \int_{[\alpha, \beta]^{n}} \int_{[\alpha, \beta]^{n}}\left[E\left|\exp \left(-t H_{\alpha, \beta}\right)(x, y)\right|^{2}\right]^{\frac{1}{2}} \times \\
& \quad\left[E\left|\exp \left(-t H_{\alpha, \beta}\right)(x, z)\right|^{2}\right]^{\frac{1}{2}}|\varphi(y)||\varphi(z)| d y d z
\end{aligned}
$$

(3.1.8)
further, using the relation (3.1.5) we get
$E\left[\exp \left(-\tau H_{\alpha, \beta}\right)(x, x)\right]^{2} \leq$
$E\left[\int d \mu_{x, x}^{t}(\omega) \exp \left[-i \int_{0}^{t} b(\omega(s)) d \omega+\right.\right.$
$\left.\left.\frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s-\int_{0}^{t} W(\omega(s)) d s\right]^{2}\right] \leq$
$E\left[\int d \mu_{x, x}^{t}(\omega) \exp \left(-2 i \int_{0}^{t} b(\omega(s)) d \omega+\right.\right.$
$\left.\left.\int_{0}^{t} b^{2}(\omega(s)) d s-2 \int_{0}^{t} W(\omega(s)) d s\right)\right]^{1 / 2} \quad \times$
$\left[\int d \mu_{x, x}^{t}(\omega)\right]^{1 / 2} \leq$ const $<+\infty$.
Now, it follows from (3.1.8), (3.1.9) that

$$
\begin{equation*}
\left\|F_{\alpha, \beta}(t, V)\right\|_{L^{2}\left(R^{n}, d V\right)}^{2}=E\left|F_{\alpha, \beta}(t, V)\right|^{2} \leq \mathrm{const}<+\infty . \tag{3.1.9}
\end{equation*}
$$

(3.1.10)

Let now $\alpha \rightarrow-\infty$ and $\beta \rightarrow+\infty$. By (3.1.10), $F_{\alpha, \beta}(t, V)$ satisfies the conditions of the Montel theorem on the compactness of families of analytic functions. Therefore, for a suitable choice of $\alpha_{n} \rightarrow-\infty$ and $\beta_{n} \rightarrow+\infty$, there exists the limit

$$
\underset{\beta_{n} \rightarrow+\infty}{\lim _{\beta_{n} \rightarrow-\infty}} F_{\alpha_{n}, \beta_{n}}(t, V)=\tilde{F}(t, V)
$$

uniformly in each compact subdomain $G \subset\{t=\tau+$ $\left.i \theta, \tau \geq \tau_{0}>0\right\}$, where $\widetilde{F}(t, V)$ is an analytic function with values in $L^{2}\left(R^{n}, d V\right)$.

If t is real, then it is possible to pass to the limit as
$\alpha_{n} \rightarrow-\infty, \beta_{n} \rightarrow+\infty$ in the integral in (3.1.3), (3.1.4), using the Lebesgue dominated convergence theorem, i.e.

$$
\begin{equation*}
\lim _{\beta \rightarrow+\infty}^{\alpha \rightarrow-\infty} F_{\alpha, \beta}(t, V)=F(t, V) \tag{3.1.11}
\end{equation*}
$$

The assertion of the lemma follows from (3.1.10), (3.1.11).
In the general case, we may again repeat our arguments based on the Feynman-Kac Itô formula and the Montel theorem. In this connection, one must just consider domains of the form $\left(\alpha^{\prime}, \beta^{\prime}\right)^{n} \cup\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)^{n}$, where $\alpha^{\prime}<\beta^{\prime}<0<$ $\alpha^{\prime \prime}<\beta^{\prime \prime}, \alpha^{\prime} \rightarrow-\infty, \beta^{\prime} \rightarrow 0, \alpha^{\prime \prime} \rightarrow 0, \beta^{\prime \prime} \rightarrow+\infty$, instead of the intervals $(\alpha, \beta)^{n}$, and take into account that $h(x) \equiv 0$ in a neighborhood of the point $x=0$.
Let us consider now the values of $\Psi(t, x), F_{\alpha, \beta}(t, V)$,
$F(t, V)$ defined the functions $\varphi(x), V(x)$ and $h(x)$, we have
$\|F(t, V)\|_{L^{2}\left(R^{n}, d V\right)}^{2} \leq\left\{E\left[\int_{R^{n}} \Psi(t, x)^{2} d x\right]^{2}\right\}^{\frac{1}{2}} \times$
$\left\{E\left[\int_{[\alpha, \beta]^{n}} V(x)^{2} h(x)^{2} d x\right]^{2}\right\}^{\frac{1}{2}}$
where $\operatorname{supp} h \subset(\alpha, \beta)^{n}$;

$$
\begin{aligned}
& E\left[\int_{R^{n}} \Psi(t, x)^{2} d x\right]^{2} \\
& \quad=E\left(\int_{R^{n}} \int_{R^{n}} d x d y \Psi(t, x)^{2} \Psi(t, y)^{2}\right) \\
& = \\
& \int_{R^{n}} d x \int_{R^{n}} d y\left[E \int _ { R ^ { n } } d \mu _ { x , u } ^ { t } (\omega) \left\{\operatorname { e x p } \left(-i \int_{0}^{t} b(\omega(s)) d \omega+\right.\right.\right. \\
& \frac{1}{2} \int_{0}^{t} b^{2}(\omega(s)) d s \\
& \left.\left.-\int_{0}^{t} W(\omega(s)) d s\right)\right\} \varphi(u) d u \times \int_{R^{n}} d \mu_{x, z}^{t}(\eta) \\
& \left\{\operatorname { e x p } \left(-i \int_{0}^{t} b(\eta(s)) d \eta+\frac{1}{2} \int_{0}^{t} b^{2}(\eta(s)) d s-\right.\right. \\
& \left.\left.\int_{0}^{t} W(\eta(s)) d s\right)\right\} \times \varphi(z) d z \times \\
& \int_{R^{n}} d \mu_{y, w}^{t}(\xi)\left\{\operatorname { e x p } \left(-i \int_{0}^{t} b(\xi(s)) d \xi+\frac{1}{2} \int_{0}^{t} b^{2}(\xi(s)) d s-\right.\right. \\
& \left.\left.\int_{0}^{t} W(\xi(s)) d s\right)\right\} \times \\
& \varphi(w) d w \\
& \times \\
& \int_{R^{n}} d \mu_{y, q}^{t}(\zeta)\left\{\operatorname { e x p } \left(-i \int_{0}^{t} b(\zeta(s)) d \zeta+\frac{1}{2} \int_{0}^{t} b^{2}(\zeta(s)) d s-\right.\right. \\
& \left.\left.\int_{0}^{t} W(\zeta(s)) d s\right)\right\} \\
& \times \varphi(q) d q] . \\
& \quad=
\end{aligned}
$$

$\int_{R^{n}} \int_{R^{n}} d z d u \int_{R^{n}} \int_{R^{n}} d \omega d q \times$
$E\left\{\int d \mu_{z, u}^{2 t}(\lambda) \exp \left(-i \int_{0}^{2 t} b(\lambda(s)) d \lambda+\right.\right.$
$\left.\frac{1}{2} \int_{0}^{2 t} b^{2}(\lambda(s)) d s-\int_{0}^{2 t} W(\lambda(s)) d s\right) \times$
$\int d \mu_{\omega, q}^{2 t}(\gamma) \exp \left(-i \int_{0}^{2 t} b(\gamma(s)) d \gamma+\right.$
$\frac{1}{2} \int_{0}^{2 t} b^{2}(\gamma(s)) d s-$
$\left.\int_{0}^{2 t} W(\gamma(s)) d s\right) \varphi(z) \varphi(u) \varphi(\omega) \varphi(q) ;$
$E\left\{\int d \mu_{z, u}^{2 t}(\lambda) \exp \left(-i \int_{0}^{2 t} b(\lambda(s)) d \lambda+\right.\right.$
$\left.\frac{1}{2} \int_{0}^{2 t} b^{2}(\lambda(s)) d s-\int_{0}^{2 t} W(\lambda(s)) d s\right) \times$
$\int d \mu_{\omega, q}^{2 t}(\gamma) \exp \left(-i \int_{0}^{2 t} b(\gamma(s)) d \gamma+\right.$
$\left.\left.\frac{1}{2} \int_{0}^{2 t} b^{2}(\gamma(s)) d s-\int_{0}^{2 t} W(\gamma(s)) d s\right)\right\} \leq$
$\left[E\left\{\int d \mu_{z, u}^{2 t}(\lambda) \exp \left(-i \int_{0}^{2 t} b(\lambda(s)) d \lambda+\right.\right.\right.$
$\left.\left.\left.\frac{1}{2} \int_{0}^{2 t} b^{2}(\lambda(s)) d s-\int_{0}^{2 t} W(\lambda(s)) d s\right)\right\}^{2}\right]^{\frac{1}{2}}$
\times
$\left[E\left\{\int d \mu_{z, u}^{2 t}(\gamma) \exp \left(-i \int_{0}^{2 t} b(\gamma(s)) d \gamma+\right.\right.\right.$ $\left.\left.\left.\frac{1}{2} \int_{0}^{2 t} b^{2}(\gamma(s)) d s-\int_{0}^{2 t} W(\gamma(s)) d s\right)\right\}^{2}\right]^{\frac{1}{2}} ;$
$E\left\{\int d \mu_{z, u}^{2 t}(\lambda) \exp \left(-i \int_{0}^{2 t} b(\lambda(s)) d \lambda+\right.\right.$
$\left.\left.\frac{1}{2} \int_{0}^{2 t} b^{2}(\lambda(s)) d s-\int_{0}^{2 t} W(\lambda(s)) d s\right)\right\}^{2} \leq$
$E\left[\left[\int d \mu_{z, u}^{2 t}(\lambda) \exp \left(-2 i \int_{0}^{2 t} b(\lambda(s)) d \lambda+\right.\right.\right.$
$\left.\left.\int_{0}^{2 t} b^{2}(\lambda(s)) d s-2 \int_{0}^{2 t} W(\lambda(s)) d s\right)\right] \times\left[\int d \mu_{z, u}^{2 t}(\lambda) \times\right.$
1]]
Now the estimate
$E\left[\int_{R^{n}} \Psi(t, x)^{2} d x\right]^{2} \leq$ const $<+\infty$,
follows from (3.1.12), (3.1.13) and from the estimate in (corollary 2.2).
Now, we write the expression for $V^{2}(x)$:

$$
V^{2}(x)=\sum \sum \xi_{j, m}^{2} v_{j, m}^{2}\left(x-a_{j, m}\right)
$$

and take into account that here $x \in[\alpha, \beta]^{n}$ and, therefore, the number of summands remains bounded. Since $\xi_{j, m}$ has the Gaussian distribution, we have $E\left|\xi_{j, m}\right|^{k}<+\infty$. From this, it follows that $E\left[\int_{[\alpha, \beta]^{n}} V^{2}(x) h^{2}(x) d x\right]^{2} \leq$ const, hence

$$
\left\|F_{\alpha, \beta}(t, V)\right\|_{L^{2}\left(R^{n}, d V\right)} \leq \text { const }
$$

Now, we can again apply the previous constructions and show that $F(t, V)$ is an analytic function in the mentioned domain.
Note that one can similarly get the following estimates:

$$
\begin{equation*}
\left.\int_{R^{n}} E(\Psi(t, x))^{2}|V|^{m}\right) d x \leq \text { const } \tag{3.1.14}
\end{equation*}
$$

where $m=1,2, \ldots$ and the constant depends on m.

References

1. A. R. Aliev, E. Kh. Eivazov, Essential self-adjointness of The Schrödinger operator in a magnetic field, Theo. and Math.Phy.s, Volume 2, 228-233, 2011.
2. B.Donald, The Wiener Integral and The Schrödinger operator, Bull. Amer. Math. Soc. 116,P.66-78,1965.
3. M.D. Gaysinsky ,M.S. Goldstein, Self -Adjointness of Schrödinger operator and Wiener Integral, Integr.Equat.Opera.Th., Volume 15,P.973-990,1992.
4. T. Kato, Schrödinger operators with singular potentials, Israe J. Math., 13,P135-148,1973.
5. J.Lörinczi, F.Hiroshima, V. Betz, Feynman-Kac-type theorems and Gibbs measures on path space:With applications to rigorous quantum field theory, Berlin: De Gruyter,2011.
6. O. Milatovic, Self-Adjointness, m-Accretivity, and Separability for Perturbations of Laplacian and BiLaplacian on Riemannian Manifolds, Integr. Equ. Oper. Theory, P.90-112 , 2018
7. G.Nenciua, I.Nenciu, Drift-diffusion equations on domains in Rd: Essential self-adjointness and stochastic completeness, J. of Func. Anal., P.26162654, 2017.
8. F. Portmann J. Sok, J. P. Solovej, Self-adjointness and spectral properties of Dirac operators with magnetic links, J. Math. Pures Appl., P.114-157, 2018.
9. L. L. Treust and T. O.Bonafos, Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors, Annales Henri Poincar, 2018.
10. K. N. Uliwi, Y.H.Saleem, The Convergence and Analytic of the Function $\Psi(t, x)$, IJPRET, India, Vol. 4(3), 2015, P.16-30), 2015
