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ABSTRACT: We consider the Schrödinger operator with electromagnetic potentials 

  ∑
 

 
.      ( )/

 

  ( ) 
    in    (  ) where   ( )          and  ( ) are real-valued functions on   ,   

    
 (  ),     (  ),    

 

   
 , and   √    We investigate  the convergence of the function   (   ) in    (  ) which 

is defined by  

 (   )   ∫   
 ( ) *    ,  ∫  ( ( ))

 

 
   

 

 
 ∫      ( ( ))

 

 
   ∫  ( ( ))

 

 
  -+ ( ( ))                               …(1) 

,and we research its analytic in the space   (  )  
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1. INTRODUCTION 

The study of self-adjoint differential operators on Hilbert 

spaces is a central problem in the theory of partial 

differential operators. 

Kato [4] showed on the basis of his elegant inequality that, 

if  ( )    and       
  , then the Schrödinger operator 

is essentially self-adjoint on the set of infinitely 
differentiable finite functions. 
Gaysinsky, Goldstein[3 ] proved theorems of self-

adjointness of the operator        and its powers   . 

Aliev and Eyvazov [1]they showed that the Schrödinger 

operator under certain conditions Stummel type, imposed 

on the magnetic and electric potentials is an essential self-

adjoint operator. K. U.Noor, H. S.Yahea in   2015[10]: they  

proved that the function  (   ) in   (  ) which is defined 

by  

 (   )  ∫   
 ( )*    , ∫  ( ( ))

 

 
  -+ ( ( ))  

 is converges for almost every   where    is any real-valued 

function and discuss analytic of this function.  
   The first steps to proving that an operator   essential self-

adjoint by using Feynman -Kac- It ̂ formula which the form 

(1) converges, analytic and smoothness. Many papers 

interested in the self-adjoint operators, we refer to[6-9]. 

    In our work, we consider Schrödinger operator with 

electromagnetic potential 

  ∑
 

 
(      ( ))

   ( )  
     

       is the electric (scalar) potential,         is 

the magnetic (vector) potential where     ,     
 

   
,   

√  , and the domain of   denoted by  ( ) which is a 

dense subset in   (  ).  We will show the necessary 

conditions which make the equation (1) function is 

convergent and discuss its analytic in the space   (  ), and 

we used some important  theories such as Faynman-Kac-It ̂ 

formula [2] also used the Wiener integral and It ̂ stochastic 

integral to simplify some of the integrals i.e 

   (   ) (   )       

∫      
 ( )2   0  ∫  ( ( ))

 

 
   

 

 
 ∫     ( ( ))

 

 
   ∫  ( ( ))

 

 
  13,    

      (   )  ( )  ∫   
 ( ) 

 2   0  ∫  ( ( ))
 

 
   

 

 
 ∫     ( ( ))

 

 
   

∫  ( ( ))
 

 
  13 ( ( ))  

for every    ( ), where  ( ) is twice continuously 

differentiable vector field on   , and        ∑     
 
   . 

∫  ( ( ))
 

 
   denote the It ̂ stochastic integral of  ( ) 

with respect to  -dimensional Wiener process  ( )   
    . 
2. Statement of the problem and the main result:  

Convergence of the basic integral (the function  (   )) 
      We will consider a random function   ( ) of the 

following form: let ∏ (       )
 
    ∏ (       )

 
      be 

a system of intervals,                  ; 

suppose that every interval ∏ (     (   ) )
 
    is divided 

into  ( ) equal intervals ∏ (     
 
           ); let     ( ) 

be an infinitely differentiable function which is equal to 

zero outside the interval 

∏ (      ( )        ( )  ) 
    where     

 (   )        and let  ( ) be a random function which 

is equal to 

                      (  (                         ))        

     (  (                   ))                      (2) 

on the interval ∏ (             )
 
      where      is the 

system of independent random variables. We will show in 

this section that, under definite restriction of the values      

and under the condition of sufficiently quick tending of 

 ( ) to  . 

We will suppose that the values     have Gauss 

distributions with the densities 

     ( ) 
 

   

      

√       

 , where       are constant,        . 

We will suppose the function      to be smooth, 

    =max|    |,  ( )          . 

The basic assumption on the value  ( ):  
  ( )      (    ( ) ), where     is constant. 

    Also consider a random function   ∫  ( ( ))
 

 
   denotes 

the It ̂ stochastic integral of  ( ) with respect to  -

dimensional Wiener process  ( )       of the 

following form: Let     *                   
  + be a partition such that 

 ( )       for             (            –   , is a step 

process then It ̂ stochastic integral of  ( ) with respect to 

 -dimensional Wiener process  ( )       on the 

interval (0, T) 

∫  ( )   ∑   (
   
   

 

 
 (    )   (  ))  
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 Proposition 2.1: 

The function 

 (   )  ∫   
 ( ) 2   0  ∫  ( ( ))

 

 
   

 

 
 ∫      ( ( ))

 

 
     

 ∫  ( ( ))  
 

 
13  ( )   

converges for almost every  ,   and represents a bounded 

intergrable function of a variable    
In addition:- 

 | (   ) |   ̃(   )    . 
(   ) 

  
/     ̃(   )     

where       ⊂,    -   where  ̃     is constant.  

Proof: 

  ,∫    
 ( ) 2   0  ∫  ( ( ))

 

 
   

 

 
 ∫      ( ( ))

 

 
     ∫  ( ( ))  

 

 
131  ( )    

∫    
 ( )   2   0  ∫  ( ( ))

 

 
   

 

 
 ∫      ( ( ))

 

 
     ∫  ( ( ))  

 

 
131  ( )    (2.1.1)  

Then from [5] we have                   

    
 

 
    

 

 
 (     )   

Thus we have  

 
 

 
 (     )       

 

 
                  (2.1.2) 

Substitute the equation (2.1.2) in (2.1.1) we get 

∫    
 ( )   2   0  ∫  ( ( ))

 

 
   

 

 
∫   ( ( ))
 

 
    ∫  ( ( ))  

 

 
13  ( )  

 ∫   
 ( )   2   .  ∫  ( ( ))

 

 
/   3  

   2   .
 

 
∫   ( ( ))
 

 
  /3  

   2   . ∫  ( ( ))  
 

 
/3 ( )       (2.1.3) 

 ∫     
 ( )*        + ( )  

Now   

     2   .  ∫  ( ( ))
 

 
  /3  

  2   .   ∑   
   
    ( (    )   (  ))/3   

 ∏   2   . –     ( (    )   (  ))/3
   
         

( (    )   (  ))  (         )  

Write   2   . –     ( (    )   (  ))/3    

 ∫  . –    ( 
(    )  (  ))/ 

  

 
(

   

 (       )
)

√  (       )
    

    (
 (       )

 
   

 ), 

      .∑
 (       )

 
   

    
   /                                                                                                      

So  

     2   .
 

 
∫   ( ( ))
 

 
  /3  

     2   . ∑   
     

   
(       )

 
/3                                          

And  

∫  ( ( ))
 

 
 s=∑ ∑ ∫  ( ( ))  

 (     )

 ( )
    ,    (2.1.4)                      

where I( , ,j)={  [0, ]:  ( )  ∏ ,             )
 
   }. 

If     I( , ,j), then 

  ( (s)) =           ( ( )  (                    )) + 

              ( (s) (                          )), 

 hence 

  ∫  ( ( ))
 (        )

 s=    
  ( )     +       

   ( )       ,      

(2.1.5) 

Where 

     
 = ∫      ( ( )  (                    ))  (        )

 

  , 

      
  =∫       ( ( )   (        )

(                          ))   ,  

                    ∫  ( ( ))
 

 
  =∑ ∑           , 

                                           =     
  +       

  . 

We now calculate the mean value of the expression (  ) 

over potentials   

            .   ( ∫  ( ( ))
 

 
  )/  

            ∏ ∏      
 ( )
    (           )   

Write   ( 
   )  ∫     

 

  
  

   

  

√   
⁄         (

 

 
  ), 

if   has the density of distribution  
   

  

√   
⁄   

Hence  

      .   ( ∫  ( ( ))
 

 
  )/  

   . ∑ ∑     
  ( )

    ( )/  

we estimate the value     
 ( ) as follows:  

     
   

∫     ( ( )  (                    )) ) (        )
     

 ( )    ( ), 

where  

                      ( )        |    ( )|, 

                  ( )= ∫   
 (        )

 = I(   , j), 

   is the Lebesgue measure. Similarly, the estimate of the 

values       
  ( ). Further, 

                         ∑ ∑     ( )       

Now  we can write:-  

  .   ( ∫  ( ( ))
 

 
  /  

   .  ∑  ( )  ∑     
 

 ( )/, (  =     );    (2.1.6) 

∫     
 ( )    ( )  ∫, ∫     

 

 
( (  ))    .∫     

 

 
  

           ( (  ))   ]    ( )              

         ∫ ∫ ∫   
 

  

 

 
          ( (  ))      ( (  ))    ( )  

         ∫ ∫ ,
 

  

 

 
 ∬ (x,  ,   )  (  ,  ,     )     (  ).               

               (  )      ]       

          ∫ ∫       ∏ , 
                )∏ , 

                )
 

               {∫    
 

 
∫    
 

  

  (    )
    ⁄

√    
  
  (     )

    ⁄

√  (     )
}    

                  ∏ (             )
 
   = 

 

 ( ) 
, 

where     ( ) is the indicator of the set 

∏ , 
                ),         , Let      ={ :     

 ( ) 

  }, where    ( ).Then, by the Čebyšev inequality,  

          ∫     
 ( )        ( )   . 

Put    = ⋃       and write 

     ( )      (    )=     N( ) (   ). 

 To estimate the integral at the right side of (2.1.6), we first 

consider finite summation by   at the exponent. Let 

  1,2,…, . By the H ̈lder inequality, 
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∫    (∑   
 
    ( ))   ( )   

∏ ,∫    (    ( ))   ( )- 
 
  ⁄ 

              (2.1.7) 

where   
  +…+   

  =1,      . Put   ( )= 

  
 ∑     

 
 ( ),    = c   , 

where    ( )=∑     
   . Write 

 ∫    (    ( ))   ( )=∫    (    ( ))  
   ( )  

∫    (    ( ))   
  ( );    

∫    (    ( ))   
   ( )   

∫    (        ( ) ∑     
 ( ))

 ( )
      

  ( ), (2.1.8)                                                                                                                                                                                         

if      , then     
   , therefore,     ( )   

 
 ,     

 ( ) 

  
 
      ( ), 

                   ∑     
 ( )   

 
 ∑    ( )   

 
          (2.1.9) 

So, if we put  ( )= ( )     , then we get from (2.1.7), 

(2.1.8) that 

      ∫    (    ( ))   
   ( )      (    )   (2.1.10) 

further, if    , then ∑     ( )   1, ∑     
 ( )  

∑     ( )   ,  

 ∫    (    ( )  
)   ( )  (  ) 

   (        ( )  ) 

    ( ( ))
  
( ( ))

 (   )
   (      ( )  ).  (2.1.11)             

According to our assumption,  ( )     (    ( ) ). 

Hence, it follows from the estimate (2.1.11) that for    small 

enough 

              ∫    (    ( )  
)   ( )    ,       (2.1.12)                

where    is a constant. We now conclude from (2.1.9), 

(2.1.11) that 

 ,∫    (    ( ))   ( )-
 
  ⁄       (      ),  (2.1.13) 

where    is constant. Substitute the estimate (2.1.13) into 

(2.1.7) and pass to the limit as g  . We get  

  {∫    
 ( )*        +}       

In similar way we can show that, if | |   , then  

   {∫    
 ( )*        +}     

   ( .∑
(       )

 
(  )

    
   /)     (.∑

(       )

 
(  )

    
   /)  

   . 
(   ) 

  
/       . 

(   ) 

  
/  

, where      is a constant. 

Hence, if     
  and  ( )=0 for | |   , then we have 

   {∫    
 ( )*        +} ( ( )) 

 =  [∫   
  

2∫      
 ( )*        +3 

. ( )-   ̃    . 
(   ) 

  
/   

 where  ̃     is constant. Now the Fubini theorem 

implies the above assertion.   □ 

Corollary2.2: Let  us consider the function   (   ) which 

define in equation (1) then we have the estimate  

  (| (   )|
 )  

     (∑  (       )(  )
    

   )     . 
(   ) 

  
/  

 where      is constant. 
Proof : 

By using the equation (2.1.3) we have 

  ( (   )
 )    

,∫    
 ( )   2   .  ∫  ( ( ))

 

 
/   3  

  2   .
 

 
∫    ( ( ))
 

 
  /3  

   2   . ∫  ( ( ))  
 

 
/3 ( )1

 

   

   

 ∫     
  ( )   2   .   ∫  ( ( ))

  

 
/   3  

  2   .∫    ( ( ))
  

 
  /3  

   2   .  ∫  ( ( ))  
  

 
/3 ( )  

 ∫     
  ( )*        + ( )    

by the same method in proposition (2.1) we get the 

following 

  {∫    
  ( )*        +}       

In similar way we can show that, if | |   , then                

  {∫    
  ( )*        +}       (∑   (     

   
   

  )(  )
 )  

   (∑ (       )(  )
    

   )     . 
(   ) 

  
/     

    (∑  (       )(  )
    

   )    . 
(   ) 

  
/, 

where      is a constant. 

Hence, if     
  and  ( )=0 for | |   , then we have 

   {∫    
  ( )*        +} ( ( )) 

 =  [∫   
 

  
2∫      

  ( )*        +3   ( )-  

     (∑  (       )(  )
    

   )     . 
(   ) 

  
/  

 where      is constant. 

This mean that  

  (| (   )|
 )  

     (∑  (       )(  )
    

   )     . 
(   ) 

  
/  

 where      is constant. 

3.Analytic Extension of  (   ) by the Parameter   into 

the Domain       

   To investigate properties of the function  (   ), we 

define its analytic extension into a certain complex domain 

of the variable  . First, we consider the Schrödinger 

operator   ∑
 

 
(      ( ))

   ( ) 
    where      , 

  ( )            and  ( ) are real-valued functions on 

   ,    
 

   
 ,  √   defined on a finite interval ,   -  

with zero boundary conditions, where  ( ) is some 

continuous function defined on ,   -   By the Feynman-

Kac formula, if  ( ) is a continuous function on,   - , 

then  

    (   )  ( )=  

∫ 0∫      
 ( ) ,   - ( ) 2   .  ∫  ( ( ))

 

 
   

 

 
 ∫      ( ( ))

 

 
   ∫  ( ( ))

 

 
  /31   ( )  .  

     Let us take the advantage of the following known 

arguments by the Hilbert-Schmidt theorem,    (   ) is an 

integral operator with the kernel               
       (   ) (   )  ∑         ( )  ( )      (3.1.1) 
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where          is a complete orthonormal system of 

eigenfunctions of the operator  ,  

                                               

on the other hand, 

   (   ) (   )   ∫     
 ( ) 

 ,   -     ,  ∫  ( ( ))
 

 
   

 

 
∫    ( ( ))
 

 
   

∫  ( ( ))
 

 
  -,     

the functions   ( )are continuous, the series (3.1.1) 

converges uniformly and the correlation 

     ∫      (   ) (   )
,   - 

 ∑              (3.1.2) 

takes place; in particular,  the  series (3.1.2) converges. 

Put now       . Write  

    ∑ |       ( )  ( )|   

         ∑       |  ( )||  ( )|  

          ,∑      |  ( )|
 

 -
 
 ⁄  ,∑      |  ( )|

 
 -

 
 ⁄   

        =,    (   )(   )-
 
 ⁄  ,    (   )(   )-

 
 ⁄ . 

Hence the series (3.1.1) uniformly converges for     in 

,   - ,                   Thus     (   )(   ) is 

extended up to an analytic function of the variable   in the 

indicated domain. 

   Let us return to the case of the potential   under 

consideration. 

Lemma 3.1: Let       
 be given,  =0 in a 

neighborhood of the point  =0. Denoted by   (     )  the 

set of square integrable functions (in the sense of the mean 

 ). 

Put 

                          (   )=∫  (   ) ( )  
  

. 

Then  (   )    (   )f or every    and mapping 

   (   )    (     ) can be extended up to an analytic 

function in the domain       ,        with values 

in   (     )  

Proof: 

We check that     (     ) write  

By using the estimate in (corollary 2.2) we can write  

E(∫     (   ) )
  

  ∫   ∫   
 

  

 

  
   . 

(   ) 

  
/ 

    (∑  (       )(  )
    

   ) | ( )|  | ( )|       

            ‖ (   )‖  (     )
   | (   )|          ,  

i.e.  (   )    (     )  
   Let            Consider the operator   

∑
 

 
(      ( ))

   ( ) 
    where   (          )  

      ( )            and  ( ) are real valued 

functions on   ,    
 

   
 ,  √    on the interval ,   -  

with zero boundary conditions. Denote is by      and 

consider the following function:                (   )  

∫    
 ( )    ,  ∫  ( ( ))

 

 
   

 

 
∫   ( ( ))
 

 
   

∫  ( ( ))
 

 
  - ,   - ( ) ( ( )) 

  =∫  [∫     
 ( )    0  ∫  ( ( ))

 

 
   

 

 
∫   ( ( ))
 

 
   

 ∫  ( ( ))
 

 
  1  ,   - ( )1 ( )   

 

             (   )  ∫     (      ) (   )      (3.1.3) 

and also 

               (   )  ∫     (   ) ( )    
          (3.1.4) 

write for     ,   -  

      

   (      ) (   )  

∫     
 ( )    0  ∫  ( ( ))

 

 
   

 

 
∫   ( ( ))
 

 
     

 ∫  ( ( ))
 

 
  1                                       (3.1.5)  

  The function    (      ) (   ) is analytically extended 

in the domain       ,         Besides, 

    |   (      ) (   )| 

     ,   (      ) (   )-
 
 ⁄  ,   (      ) (   )-

 
 ⁄                 

(3.1.6) 

thus we have,  

    |   (      ) (   )|
 
  

       *,   (      ) (   )][    (      ) (   )-} 

    

 * ,   (      ) (   )-
 +

 

 * ,   (      ) (   )-
 +

 

            

(3.1.7) 

It follows from (3.1.3)-(3.1.7) that     (   ) is analytically 

extended by  ,     (   ) is also analytically extended by  . 

In addition,  

    |    (   )|
 
  

       |∫    (      ) (   ) ( )  ,   - 
|
 

    

 

  {∫    (      ) (   ) ( )  ,   - 
  

        ∫    (      ) (   ) ( )  +
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

,   - 
  

 ∫ ∫  *
,   - ,   - 

   (      ) (   )    (      )                

       (   )+ ( ) ( )     

      ∫ ∫ , 
,   - ,   - 

|   (      ) (   )|
 
-
 

    

        , |   (      ) (   )|
 
-
 

 | ( )|| ( )|                                      

(3.1.8)                

further, using the relation (3.1.5) we get 

   [   (      ) (   )]
 
    

 [∫      
 ( )    0  ∫  ( ( ))

 

 
   

 

 
∫   ( ( ))
 

 
   ∫  ( ( ))

 

 
  1

 

]    

 0∫     
 ( )    .   ∫  ( ( ))

 

 
   

∫   ( ( ))
 

 
    ∫  ( ( ))

 

 
  /1

 
 ⁄

      

[∫     
 ( )]

 
 ⁄  
                        (3.1.9) 

  Now, it follows from (3.1.8), (3.1.9) that 

    ‖    (   )‖  (     )
 

= |    (   )|
 
 const            

(3.1.10) 

    Let now      and     . By (3.1.10),     (   ) 

satisfies the conditions of the Montel theorem on the 

compactness of families of analytic functions. Therefore, 

for a suitable choice of        and      , there 

exists the limit 

                                

     
      (   )= ̃(   ) 

uniformly in each compact subdomain  ⊂ *    
         +  where  ̃(   )is an analytic function with 

values in   (     ) . 
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   If    is real, then it is possible to pass to the limit as 

     ,       in the integral in (3.1.3), (3.1.4), 

using the Lebesgue dominated convergence theorem, i.e.      

                 
    

    (   )   (   )                     (3.1.11) 

The assertion of the lemma follows from (3.1.10), (3.1.11) . 

In the general case, we may again repeat our arguments 

based on the Feynman-Kac It ̂ formula and the Montel 

theorem. In this connection, one must just consider domains 

of the form (     )  (       )   where         
                                     instead of 

the intervals (   )   and take into account that  ( )    in 

a neighborhood of the point     . 

Let us consider now the values of  (   ),     (   ), 

 (   ) defined the functions  ( )   ( ) and  ( ), we 

have 

‖ (   )‖  (     )
  * ,∫  (   )   

  
- +

 

  

* ,∫  ( )  ( ) 
,   - 

  - +
 

   

where        ⊂(   )   

   [∫  (   )   - 
  

 

       (∫ ∫      (   )  (   ) 
    

)        

 

∫   ∫   0 ∫      
 

  
( ) 2   .  ∫  ( ( ))

 

 
   

    

 

 
∫   ( ( ))
 

 
    

 ∫  ( ( ))
 

 
  /3  ( )   ∫      

 
  

( )   

2   .  ∫  ( ( ))
 

 
   

 

 
∫   ( ( ))
 

 
   

∫  ( ( ))
 

 
  /3   ( )     

∫      
 

  
( ) 2   .  ∫  ( ( ))

 

 
   

 

 
∫    ( ( ))
 

 
   

∫  ( ( ))
 

 
  /3    

 ( )     
 

∫      
 

  
( ) 2   .  ∫  ( ( ))

 

 
   

 

 
∫   ( ( ))
 

 
   

∫  ( ( ))
 

 
  /3  

  ( )  -   
     

∫ ∫      ∫ ∫       
        

 *∫     
  ( )    .  ∫  ( ( ))

  

 
       

 

 
∫   ( ( ))
  

 
   ∫  ( ( ))

  

 
  /  

∫     
  ( )    .  ∫  ( ( ))

  

 
     

 

 
∫   ( ( ))
  

 
   

∫  ( ( ))  
  

 
/ ( ) ( ) ( ) ( )         (3.1.12) 

 

 *∫     
  ( )    .  ∫  ( ( ))

  

 
   

 

 
∫   ( ( ))
  

 
   ∫  ( ( ))

  

 
  /   

  ∫      
  ( )    .  ∫  ( ( ))

  

 
   

 

 
∫   ( ( ))
  

 
   ∫  ( ( ))

  

 
  /+     

0 2∫      
  ( )    .  ∫  ( ( ))

  

 
   

 

 
∫   ( ( ))
  

 
   ∫  ( ( ))

  

 
  /3

 

]

 

 
  

 

0 2∫      
  ( )    .  ∫  ( ( ))

  

 
   

 

 
∫   ( ( ))
  

 
   ∫  ( ( ))

  

 
  /3

 

]

 

 
 ; 

 {∫      
  ( )    (  ∫  ( ( ))

  

 
   

 

 
∫   ( ( ))
  

 
   ∫  ( ( ))

  

 
  /3

 

     

  [0 ∫      
  ( )    .   ∫  ( ( ))

  

 
   

∫   ( ( ))
  

 
    ∫  ( ( ))

  

 
  / 1  [∫     

  ( )  

 ]1                                                                     (3.1.13) 

   Now the estimate 

 [∫  (   )   -          
  

, 

follows from (3.1.12), (3.1.13) and from the estimate in  

(corollary 2.2). 

  Now, we write the expression for   ( ): 

                       ( )=∑∑    
     

 (      ) 

and take into account that here   ,   -  and, therefore, 

the number of summands remains bounded. Since      has 

the  Gaussian distribution, we have  |    |
 
   . From 

this, it follows that  ,∫   ( )  ( )  
,   - 

-       , 

hence 

‖    (   )‖  (     )
        

  Now, we can again apply the previous constructions and 

show that  (   ) is an analytic function in the mentioned 

domain.  

Note that one can similarly get the following estimates:  

           ∫  ( (   )) | | )          
  

        (3.1.14) 

where   1,2,… and the constant depends on   .     □ 

 

References 
1. A. R. Aliev, E. Kh. Eivazov, Essential self-adjointness 

of The Schrödinger operator in a magnetic field, Theo. 

and Math.Phy.s , Volume 2, 228-233, 2011. 

2. B.Donald, The Wiener Integral and The Schrödinger 
operator, Bull. Amer. Math. Soc. 116,P.66-78,1965. 

3. M.D. Gaysinsky ,M.S. Goldstein, Self -Adjointness of 

Schrödinger operator and Wiener Integral, 

Integr.Equat.Opera.Th., Volume 15,P.973-990,1992.      
4. T. Kato, Schrödinger operators with singular 

potentials, Israe J. Math., 13,P135-148,1973. 
5.                                           -Kac-type 

theorems and Gibbs measures on path space:With 
applications to rigorous quantum field theory, 
Berlin: De Gruyter,2011. 

6. O. Milatovic, Self-Adjointness, m-Accretivity, and 
Separability for Perturbations of Laplacian and Bi-
Laplacian on Riemannian Manifolds, Integr. Equ. 
Oper. Theory, P.90-112 , 2018  

7.  G.Nenciua, I.Nenciu, Drift-diffusion equations on 
domains in Rd: Essential self-adjointness and 
stochastic completeness, J. of Func. Anal., P.2616-
2654, 2017. 

8. F. Portmann ,J. Sok, J. P. Solovej, Self-adjointness and 
spectral properties of Dirac operators with 
magnetic links, J. Math. Pures Appl., P.114-157, 
2018. 

https://doi.org/10.1007%2Fs11232-011-0017-y
https://doi.org/10.1007%2Fs11232-011-0017-y


308 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(2),303-308,2019 

March-April 

9. L. L. Treust and T. O.Bonafos, Self-Adjointness of 
Dirac Operators with Infinite Mass Boundary 
Conditions in Sectors, Annales Henri Poincar, 2018.  

10. K. N. Uliwi, Y.H.Saleem, The Convergence and 

Analytic of the Function  (   ), IJPRET, India, Vol. 

4(3), 2015,  P.16-30), 2015 
 Reed M. and Simon B., Methods of modern mathematical 

physics, Academic Press, 

roll Functional analysis 1972. vol.2 Fourier ARM. and Simon 

B., Methods of modern mathematical physics, Academic Press, 

roll Functional analysis 197 


