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1  INTRODUCTION 

Let A  denote the class of all analytic functions which 

are defined in the unit disc = { :| |< 1}z zU  and can be 

written in the form; 
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 Let S  be the class of all normalized analytic univalent 

functions in A , and let P  be a class of all functions with 

positive real part for which P   if 
1

( ) =
1

w
w

w





 , 

(0) = 0w , and | ( ) |< 1w z  which maps the unit disk 

U  onto a region starlike with respect to 1 and is 

symmetric with respect to the real axis. In this article, 
*S  

and K  respectively denote the subcasses of starlike and 

convex functions in .S  An analytic function f is 

subordinate to an analytic function g, written f g , if 

there is an analytic function w  with | ( ) | | |w z z  such 

that = ( ( ))f g w . If g  is univalent, then f g  if and 

only if (0) = (0)f g  and  

 

( ) ( )f gU U . A function 
* ( )sf S   is strongly 

starlike of order (0 < 1)    if 

( )
( ) < ,

( ) 2

zf z
arg
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 for z U . Alternatively, 
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. A subclass ( )sS   

of starlike functions with respect to symmetric points 

satisfies the condition 
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, for all 

z U . And a subclass ( )sK   of S  is a convex 

function with respect to symmetric points satisfies the 

condition 
( ( ))

( )
( ( ) ( ))

zf z
z
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, for all z U . 

The Koebe one-quarter theorem [2] ensures that the image 

of U  under every univalent function f A  contains a 

disk of radius 1/ 4 . Thus every univalent function f has 

an inverse 
1f 
 satisfying  

              
1( ( )) = , ( )f f z z z and U  

             
1

0 0( ( )) = ,(| |< ( ), ( ) 1/ 4),f f w w w r f r f 

where              
1 2 2 3

2 2 3( ) = (2 ) ,f w w a w a a w      

 A function f A  is said to be bi-univalent in U  if both 

f  and 
1f 
 are univalent in U . Let   denote the class 

of bi-univalent functions defined in the unit disk U . In 

1967, Lewin[1] introduced the class   of bi-univalent 

functions and he proved the second coefficient for a 

function f  in (1.1). Several authors have studied many 

valuable and interesting results of bi-univalent functions 

such as Brannan and Taha[7], Ma-Minda[16], Srivastava et 

al.[4, 5, 19], Frasin and Aouf [3] and others, even with 

various generalizations as appeared in many literatures and 

articles[10-18].  

Lemma 1.1 [8] If p P  such that ( ( ) > 0Re p z  and 

=2

( ) = 1 i

i

i

p z p z


 , then | | 2ip  .  

 In this paper, the followings mappings 0K  and 1K  are 

defined by 

                         

( ) ( ) 2 1
( ( )) = =

0 2 1=12

f z f z k
K f z z a z

kk

  
 


,                      

( ) ( ) 2 1
( ( )) = = 2

1 2=12
,

f z f z k
K f z k a z

kk

   
  

And 

' ''
( ) = ( ) ( )

= 1 ( 1)(1 ) .
1=1

f z f z z f z

k
k k a z

kk








  



D

 

Lemma1.2[16].If 
2

( ) = 1
1 2

f z c z c z       is an 

analytic function with positive real part in U , then  
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 When > 1  or < 0 , the equality holds if and only if 

1

1
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1

z
p z
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 or one of its rotations. If 0 < < 1 , 

then the equality holds if and only if 

2
1

( ) =
1 2

1

z
p z
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. If 

= 0 , the equality holds if and only if 

1 1 1 1
( ) = ( ) ( )

1 2 1 2 1

z z
p z
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, for (0 1)   or 

one of its rotations. If = 1 , the equality holds when the 

reciprocal of one of the functions such that the equality 

holds in the case of = 0 . Also the above upper bound is 

sharp, and it can be improved as follows when 0 < < 1 :  

12
| | | | 2 (0 < )

3 2 1 2
c c c       

 And 
12

| | (1 ) | | 2, ( < < 1)
3 2 1 2

c c c       

within the above operators, we introduce a new 

generlization of some classes of strongly starlike and 

strongly convex funtions. 

Definition 1.3 . A function f A  is in the class 

( , ) SC  for 0 1   if  

( ( ))
( ).

(1 ) ( ( )) ( ( ))
0 1

z f z
z

K f z z K f z
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The class ( , ) SC  is a generalization of various 

subclasses of strongly starlike and convex functions with 

respect to symmetric points, it is easy to note that if = 0  

then ((0, )) ( )Ss SC  due to [9] Also, if = 1  then 

(1, ( )) ( )z Ks SC  due to [9]. Our object of this paper 

is introducing a new subclass of a function f  in the class 

  and finding estimates on the coefficients | |
2

a  

and | |
3

a  for them. 

2  The main results. 

     Consider the analytic function with positive real part 

P   is given by  
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 Then p  and q  are analytic in U  with (0) = (0) = 1p q , 

( ( ), ( )) > 0Re p z q z  for z U  then | | 2p
i
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| | 2q
i
 . Also,  
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 Definition 2.1 A function f A  given by (1.1) is said to 

be in the subclass ( , ) SC  for 0 1   if it satisfies  
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where
1 2 2 3

( ) = ( ) = (2 ) ...,
2 2 3

g w f w w a w a a w


     

The coefficient bounds for a function f  in the class 

( , ) SC  which is analytic in the open disc U  are 

estimated.  

Theorem 2.2 If a function ( , )f   SC  for 0 1   , 

then  
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 (2.6)                                        

Proof. There are three functions ,p q and P   such that  
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 and   
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 It follows from (2.1) and (2.2) that  

     
1
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2 1 12
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From (2.7) and (2.9) we have  
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 in order to estemiate | |
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a , we use the equations (2.8) and 

(2.9) to have  
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This complete the proof of the theorem. W  

The Fekete-Szego inequality resulte for a univalent 

normalized functions ( , )f   SC  is obtained .  

Theorem2.3 Let 
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Discussing the equality in the above bounds needs to 

define the following operators:  
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where the operators ,    and    are in ( , ) SC . 

By Lemma 1.2, if =
1

   then the equality holds if and 

only if = f  or one of its rotations. If =
2

   then the 

equality holds if and only if =H f  or one of its 

rotations. If < <
1 2
    then the equality holds if and 

only if =
3

M f  or one of its rotations. And if >
2

   

or <
1

   then the equality holds if and only if =
2

M f  

or one of its rotations. W 

 In particular, the function   in the class of strongly 

starlike functions of order (0 < 1)    can be written  
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      The last resulte is the Hanklel determinante 

2
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for = 2q  and = 1n . 
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