A NEW SUBCLASS OF BI-UNIVALENT FUNCTIONS

Faisal Al-kasasbeh

Department of Mathematics and Statistics, Faculty of Science - Mu'tah University

Karak 61710 P.O. Pox(7) Jordan

E-mail: kassasbeh13@yahoo.com

ABSTRACT. A new subclass of bi-univalent analytic functions is introduced and discussed. The second and third coefficient bounds are obtained. Two particular cases are deduced. The Fekete-Szego inequality for the subclass is calculated.

2010 Mathematics Subject Classification: 30C45. 30C50.30C80

Keywords: Bi-univalent function; Starlike functions symmetric with respect to points; Differential operator D_{λ} ; Fekete-Szego inequality

1 INTRODUCTION

Let A denote the class of all analytic functions which are defined in the unit disc $U = \{z : |z| < 1\}$ and can be written in the form;

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, a_n \in \mathbb{C}.$$

Let *S* be the class of all normalized analytic univalent functions in *A*, and let *P* be a class of all functions with positive real part for which $\varphi \in P$ if $\varphi(w) = \frac{1+w}{1-w}$, w(0) = 0, and |w(z)| < 1 which maps the unit disk U onto a region starlike with respect to 1 and is symmetric with respect to the real axis. In this article, S^* and *K* respectively denote the subcasses of starlike and convex functions in *S*. An analytic function *f* is subordinate to an analytic function *g*, written $f \prec g$, if there is an analytic function *w* with $|w(z)| \leq |z|$ such that f = (g(w)). If *g* is univalent, then $f \prec g$ if and only if f(0) = g(0) and

$$\begin{split} f(\mathbf{U}) &\subseteq g(\mathbf{U}). \text{ A function } f \in S_s^*(\alpha) \text{ is strongly} \\ \text{starlike of order } \alpha(0 < \alpha \leq 1) \text{ if} \\ \left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| &< \frac{\alpha\pi}{2}, \text{ for } z \in \mathbf{U}. \text{ Alternatively,} \\ f &\in S_s^*(\alpha) \text{ if } \frac{zf'(z)}{f(z)} \prec (\frac{1+z}{1-z})^{\alpha}. \text{ A subclass } S_s(\varphi) \\ \text{of starlike functions with respect to symmetric points} \\ \text{satisfies the condition } \frac{zf'(z)}{f(z) - f(-z)} \prec \varphi(z), \text{ for all} \\ z \in \mathbf{U}. \text{ And a subclass } K_s(\varphi) \text{ of } S \text{ is a convex} \\ \text{function with respect to symmetric points satisfies the} \end{split}$$

condition $\frac{(zf'(z))'}{(f(z)-f(-z))'} \prec \varphi(z), \text{ for all } z \in \mathbf{U}.$

The Koebe one-quarter theorem [2] ensures that the image of U under every univalent function $f \in A$ contains a disk of radius 1/4. Thus every univalent function f has

an inverse f^{-1} satisfying

$$f^{-1}(f(z)) = z, (z \in U)$$
 and

$$f^{-1}(f(w)) = w, (|w| < r_0(f), r_0(f) \ge 1/4),$$

where (1.1)
$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - \cdots,$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions defined in the unit disk U. In 1967, Lewin[1] introduced the class Σ of bi-univalent functions and he proved the second coefficient for a function f in (1.1). Several authors have studied many valuable and interesting results of bi-univalent functions such as Brannan and Taha[7], Ma-Minda[16], Srivastava et al.[4, 5, 19], Frasin and Aouf [3] and others, even with various generalizations as appeared in many literatures and articles[10-18].

Lemma 1.1 [8] If $p \in P$ such that Re(p(z) > 0 and

$$p(z) = 1 + \sum_{i=2}^{\infty} p_i z^i$$
, then $|p_i| \le 2$.

In this paper, the followings mappings K_0 and K_1 are defined by

$$\begin{split} K_0(f(z)) &= \frac{f(z) - f(-z)}{2} = z + \sum_{k=1}^{\infty} a_{2k+1} z^{2k+1}, \\ K_1(f(z)) &= \frac{f'(z) - f'(-z)}{2} = 2 \sum_{k=1}^{\infty} k a_{2k} z^{2k-1}, \end{split}$$

And

$$D_{\lambda}f(z) = f(z) + \lambda z f'(z)$$
$$= 1 + \sum_{k=1}^{\infty} (k+1)(1+k\lambda)a_{k+1}z^{k}$$

Lemma1.2[16].*If* $f(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is an analytic function with positive real part in U, then

$$|c_{3} - vc_{2}^{2}| \leq \begin{cases} -4v + 2 & if \quad v \leq 0\\ 2 & if \quad 0 \leq v \leq 1\\ 4v - 2 & if \quad 1 \leq v \end{cases}$$

When $\nu > 1$ or $\nu < 0$, the equality holds if and only if $p_1(z) = \frac{1+z}{1-z}$ or one of its rotations. If $0 < \nu < 1$,

then the equality holds if and only if $p_1(z) = \frac{1+z^2}{1-z^2}$. If v = 0, the equality holds if and only if $p_1(z) = \frac{1+z^2}{1-z^2}$.

$$p_1(z) = (-\gamma) \frac{1}{1-z} + (-\gamma) \frac{1}{1+z}$$
, for $(0 \le \gamma \le 1)$ or

one of its rotations. If $\nu = 1$, the equality holds when the reciprocal of one of the functions such that the equality holds in the case of $\nu = 0$. Also the above upper bound is sharp, and it can be improved as follows when $0 < \nu < 1$:

$$|c_3 - vc_2^2| + v |c_1| \le 2 \quad (0 < v \le \frac{1}{2})$$

And $|c_3 - vc_2^2| + (1 - v) |c_1| \le 2, \quad (\frac{1}{2} < v < 1)$

within the above operators, we introduce a new generlization of some classes of strongly starlike and strongly convex functions.

Definition 1.3 . A function $f \in A$ is in the class $SC(\lambda, \varphi)$ for $0 \le \lambda \le 1$ if

$$\frac{z\left(\mathrm{D}_{\lambda}f\left(z\right)\right)}{(1-\lambda)K_{0}(f\left(z\right))+\lambda z\,K_{1}(f\left(z\right))}\prec\varphi(z\,).$$

The class $SC(\lambda, \varphi)$ is a generalization of various subclasses of strongly starlike and convex functions with respect to symmetric points, it is easy to note that if $\lambda = 0$ then $SC((0,\varphi)) \equiv S_s(\varphi)$ due to [9] Also, if $\lambda = 1$ then $SC(1,\varphi(z)) \equiv K_s(\varphi)$ due to [9]. Our object of this paper is introducing a new subclass of a function f in the class Σ and finding estimates on the coefficients $|a_2|$ and $|a_3|$ for them.

2 The main results.

Consider the analytic function with positive real part $\varphi \in P$ is given by

$$\varphi(w) = 1 + \varphi_1 z + \varphi_2 z^2 + \dots$$

And the p,q,u and v are defined by

$$p(z) = \left(\frac{1+u(z)}{1-u(z)}\right) = 1 + p_1 z + p_2 z^2 + \dots$$

and $q(z) = \left(\frac{1+v(z)}{1-v(z)}\right) = 1 + q_1 z + q_2 z^2 + \dots$

if and only if

$$u(z) = \left(\frac{p(z)-1}{p(z)+1}\right) = \frac{1}{2} \left[p_1 z + (p_2 - \frac{p_1^2}{2})z^2 + \dots\right] \quad \text{and}$$

$$v(z) = \left(\frac{q(z)-1}{q(z)+1}\right) = \frac{1}{2} \left[q_1 z + (q_2 - \frac{q_1^2}{2})z^2 + \dots\right]$$

Then p and q are analytic in U with p(0) = q(0) = 1, Re(p(z),q(z)) > 0 for $z \in U$ then $|p_i| \le 2$ and $|q_i| \le 2$. Also,

$$\varphi(u(z)) = \varphi\left(\frac{p(z)-1}{p(z)+1}\right) = 1 + \frac{1}{2}\varphi_1 p_1 z$$

+ $\frac{1}{2}\left(\varphi_1\left((p_2 - \frac{p_1^2}{2}\right) + \frac{1}{2}p_1^2\varphi_2\right) z^2 + \dots$ (2.1) and

$$\varphi(u(w)) = \varphi\left(\frac{q(w) - 1}{q(w) + 1}\right) = 1 + \frac{1}{2}\varphi_{1}q_{1}w$$
$$+ \frac{1}{2}\left(\varphi_{1}\left((q_{2} - \frac{q_{1}^{2}}{2}\right) + \frac{1}{2}q_{1}^{2}\varphi_{2}\right)w^{2} + \dots \quad (2.2)$$

Definition 2.1 A function $f \in A$ given by (1.1) is said to be in the subclass $SC_{\Sigma}(\lambda, \varphi)$ for $0 \le \lambda \le 1$ if it satisfies

$$\frac{z \left(\mathbf{D}_{\lambda} f\left(z \right) \right)}{(1 - \lambda) K_{0}(f\left(z \right)) + \lambda z K_{1}(f\left(z \right))} \prec \varphi(z),$$

for $z \in \mathbf{U}$ (2.3) • • •
and

$$\frac{w(D_{\lambda}g(w))}{(1-\lambda)K_{0}(g(w)) + \lambda w K_{1}(g(w))} \prec \varphi(w),$$

for $w \in U$ (2.4)

where $g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - ...,$ The coefficient bounds for a function f in the class $SC_{\Sigma}(\lambda, \varphi)$ which is analytic in the open disc U are estimated.

Theorem 2.2 If a function $f \in SC_{\Sigma}(\lambda, \phi)$ for $0 \le \lambda \le 1$, then

$$|a_2| \le \sqrt{\frac{\varphi'(0)}{(2+7\lambda) + 2(2\varphi'(0) - \varphi''(0))}}$$
 (2.5)

and

C

$$|a_{3}| \leq \frac{\phi(0)}{(2+7\lambda)} + \frac{\phi(0)}{(2+7\lambda) + 2(2\phi(0) - \phi'(0))}$$
(2.6)

Proof. There are three functions p, q and $\varphi \in P$ such that

$$\frac{z \left(\mathsf{D}_{\lambda} f\left(z \right) \right)}{1 - \lambda K_0(f\left(z \right)) + \lambda z \, K_1(f\left(z \right))} = \left(\varphi(p(z)) \right)^{\alpha}$$

It follows from (2.1) and (2.2) that

$$2a_2 = \frac{1}{2}\varphi_1 p_1 \tag{2.7}$$

$$(2+7\lambda)a_3 = \frac{1}{2}\left(\varphi_1\left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{2}p_1^2\varphi_2\right) (2.8)$$

$$-2a_2 = \frac{1}{2}\varphi_1 q_1 \tag{2.9}$$

and

$$(2+7\lambda)(2a_2^2-a_3) = \frac{1}{2} \left(\varphi_1 \left(q_2 - \frac{q_1^2}{2} \right) + \frac{1}{2}q_1^2 \varphi_2 \right)$$
(2.10)

From (2.7) and (2.9) we have

$$p_1 = -q_1$$
 and $32a_2^2 = \varphi_1^2(p_1^2 + q_1^2)$

(2.11)From (2.8) and (2.10) we get

$$2(2+7\lambda)a_{2}^{2} = \frac{1}{2}\left(\varphi_{1}\left(p_{2} - \frac{p_{1}^{2}}{2}\right) + \frac{1}{2}p_{1}^{2}\varphi_{2}\right)$$
$$= \frac{1}{2}\left(\varphi_{1}\left(q_{2} - \frac{q_{1}^{2}}{2}\right) + \frac{1}{2}q_{1}^{2}\varphi_{2}\right)$$
And

And

$$2(2+7\lambda)a_2^2 = \frac{1}{2} \left(\varphi_1 \left((q_2 + p_2) - 16a_2^2 \right) + 16a_2^2 \varphi_2 \right) \text{Then}$$
$$a_2^2 = \frac{\varphi_1 (q_2 + p_2)}{4(2+7\lambda) + 16(\varphi_1 - \varphi_2)}$$

Since $|P_2| \le 2$ and $|q_2| \le 2$ By Lemma 1.1, then

$$|a_2| \le \sqrt{\frac{\varphi'(0)}{(2+7\lambda) + 2(2\varphi'(0) - \varphi''(0))}}$$

in order to estemiate $|a_3|$, we use the equations (2.8) and (2.9) to have

$$2(2+7\lambda)a_{3} - 2(2+7\lambda)a_{2}^{2}$$

$$= \frac{1}{2} \left(\varphi_{1} \left(p_{2} - \frac{p_{1}^{2}}{2} \right) + \frac{1}{2} p_{1}^{2} \varphi_{2} \right)$$

$$- \frac{1}{2} \left(\varphi_{1} \left(q_{2} - \frac{q_{1}^{2}}{2} \right) + \frac{1}{2} q_{1}^{2} \varphi_{2} \right)$$

and
$$p_1^2 = q_1^2$$
, then

$$a_3 = \frac{\varphi_1(p_2 - q_2)}{4(2 + 7\lambda)} + a_2^2$$

And

ISSN 1013-5316;CODEN: SINTE 8

$$|a_{3}| \le \frac{\phi'(0)}{(2+7\lambda)} + \frac{\phi'(0)}{(2+7\lambda) + 2(2\phi'(0) - \phi''(0))}$$

This complete the proof of the theorem. W The Fekete-Szego inequality resulte for a univalent normalized functions $f \in SC_{\Sigma}(\lambda, \varphi)$ is obtained.

Theorem2.3 Let
$$\varphi(w) = 1 + \varphi_1 z + \varphi_2 z^2 + \cdots$$
 such that

$$\varphi(0) > 0 \text{ and } f \in SC_{\Sigma}(\lambda, \varphi) \text{ for } 0 \le \lambda \le 1. \text{ Then}$$

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{\varphi'(0)}{(2+7\lambda)} - \mu \frac{(\varphi'(0))^{2}}{4(2+7\lambda)} &, & \text{if } \mu \leq \varepsilon_{1} \\ \frac{\varphi'(0)}{(2+7\lambda)} &, & \text{if } \varepsilon_{1} \leq \mu \leq \varepsilon_{2} \text{ where} \\ -\frac{\varphi'(0)}{(2+7\lambda)} + \mu \frac{(\varphi'(0))^{2}}{4(2+7\lambda)} &, & \text{if } \mu \geq \varepsilon_{2} \end{cases}$$

$$\varepsilon_{1} = \frac{(\varphi'(0) - \varphi''(0))(2+7\lambda)}{(\varphi'(0))^{2}} \text{ and}$$

$$\varepsilon_{2} = \frac{(\varphi'(0) + \varphi''(0))(2+7\lambda)}{(\varphi'(0))^{2}}$$

Proof:Let $\varphi(u(z)) = \xi(z) = 1 + \xi_1 z + \xi_2 z^2 + \cdots$. Then by (2.1)

$$1 + \xi_1 z + \xi_2 z^2 + \dots = 1 + \frac{1}{2} \varphi_1 p_1 z$$
$$+ \frac{1}{2} \left(\varphi_1 \left((p_2 - \frac{p_1^2}{2}) + \frac{1}{2} p_1^2 \varphi_2 \right) z^2 + \dots \right)$$

Therefore $\xi_1 = \varphi_1 p_1$ and

$$\xi_2 = \frac{1}{2} \left(\varphi_1 \left((p_2 - \frac{p_1^2}{2}) + \frac{1}{2} p_1^2 \varphi_2 \right) \right).$$

From
$$(2.8)$$
 and (2.10) we get

$$a_{2} = \frac{\varphi_{1}p_{1}}{4(2+7\lambda)} \quad \text{and}$$

$$a_{3} = \frac{\varphi_{1}(p_{2} - \frac{p_{1}^{2}}{2}) + \frac{1}{2}p_{1}^{2}\varphi_{2}}{2(2+7\lambda)}$$

Thus

$$a_{3} - \mu a_{2}^{2} = \frac{\varphi_{1}}{2(2+7\lambda)} (p_{2} - \frac{p_{1}^{2}}{2}) + \frac{\varphi_{2}p_{1}^{2}}{4(2+7\lambda)} - \mu \frac{p_{1}^{2}\varphi_{1}^{2}}{16(2+7\lambda)^{2}}$$

$$=\frac{\varphi_1}{2(2+7\lambda)}[p_2-p_1^2(\frac{1}{2}(1-\frac{\varphi_2}{\varphi_1}-\mu\frac{\varphi_1}{4(2+7\lambda)}))]$$

Therefore

Assume that

$$a_3 - \mu a_2^2 = \frac{\varphi(0)}{2(2+7\lambda)} (p_2 - p_1^2 \upsilon)$$

 $\varepsilon_{2} = \frac{(\phi(0) + \phi(0))(2 + 7\lambda)}{(\phi(0))^{2}}.$

where $v = \frac{1}{2} (1 - \frac{\varphi''(0)}{\varphi'(0)} - \mu \frac{\varphi'(0)}{4(2+7\lambda)}).$

$$\varepsilon_{1} = \frac{(\phi'(0) - \phi''(0))(2 + 7\lambda)}{(\phi'(0))^{2}}$$

and

So that, if
$$\mu \leq \varepsilon_1$$
 then

$$|a_3 - \mu a_2^2| \le \frac{\varphi''(0)}{(2+7\lambda)} - \mu \frac{(\varphi'(0))^2}{4(2+7\lambda)}$$

and if $\varepsilon_1 \le \mu \le \varepsilon_2$ then

$$|a_3 - \mu a_2^2| \le \frac{\varphi''(0)}{(2+7\lambda)}$$

also, if $\mu \ge \varepsilon_2$ then

$$|a_3 - \mu a_2^2| \le -\frac{\varphi''(0)}{(2+7\lambda)} + \mu \frac{(\varphi'(0))^2}{4(2+7\lambda)}$$

Discussing the equality in the above bounds needs to define the following operators:

(*i*)
$$\gamma_{\psi} = \frac{zM'_{\psi_n}(z)}{K_0(M_{\psi_n}(z))} = \psi(z^{n-1}),$$

 $M'_{\psi_n}(0) - 1 = 0 = M_{\psi_n}(0).$

(ii)
$$\gamma_{\sigma} = \frac{zJ'_{\sigma}(z)}{K_0(J_{\sigma}(z))} = \psi(\frac{z(z+\sigma)}{1+\sigma z}),$$
$$J'_{\sigma}(0) - 1 = 0 = J_{\sigma}(0) \text{ for } (0 \le \psi \le 1).$$

where the operators γ_{ψ} , γ_{σ} and $\gamma_{-\sigma}$ are in SC₂(λ, ϕ).

By Lemma 1.2, if $\mu = \varepsilon_1$ then the equality holds if and only if $\gamma_{\sigma} = f$ or one of its rotations. If $\mu = \varepsilon_2$ then the equality holds if and only if $H_{\sigma} = f$ or one of its rotations. If $\varepsilon_1 < \mu < \varepsilon_2$ then the equality holds if and only if $M_{\psi_3} = f$ or one of its rotations. And if $\mu > \varepsilon_2$ or $\mu < \varepsilon_1$ then the equality holds if and only if $M_{\psi_2} = f$ or one of its rotations. W

In particular, the function φ in the class of strongly starlike functions of order $\alpha(0 < \alpha \le 1)$ can be written

$$\varphi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} = 1 + 2\alpha z + 2\alpha^2 z^2 + \dots$$

Then $\varphi_1 = 2\alpha$ and $\varphi_2 = 2\alpha^2$.

Corollary2.4. If a function
$$f \in SC(\lambda, \left(\frac{1+z}{1-z}\right)^{\alpha})$$
 for
 $0 \le \lambda \le 1$ and $0 < \alpha \le 1$ then
 $|a_2| \le \sqrt{\frac{2\alpha}{(2+7\lambda)+8\alpha(1-\alpha^2)}}$
and $|a_3| \le \frac{2\alpha}{(2+7\lambda)} + \frac{2\alpha}{(2+7\lambda)+8\alpha(1-\alpha)}$

And for the value of $0 \le \beta < 1$ in the function

$$\varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$$
$$= 1 + 2(1 - \beta)z + 2(1 - \beta)z^{2} + \dots$$

we have $\phi_1 = \phi_2 = 2(1 - \beta)$.

Corollary2.5. *If* a function $f \in SC(\lambda, \frac{1+(1-2\beta)z}{1-z})$ for $0 \le \lambda \le 1$ and $0 \le \beta < 1$ then

$$\mid a_{2} \mid \leq \sqrt{\frac{2(1-\beta)}{(2+7\lambda)}} \quad and \quad \mid a_{3} \mid \leq \frac{4(1-\beta)}{(2+7\lambda)}.$$

The last result is the Hanklel determinante $H_1(2) = |a_3 - a_2^2|$, Feket-Szeg \ddot{o} functional for $\mu = 1$, for q = 2 and n = 1.

Corollary2.6 Let $f \in SC_{\Sigma}(\lambda, \varphi)$ for $0 \le \lambda \le 1$ and $\varphi(z) = 1 + \varphi_1 z + \varphi_2 z^2 + \cdots$. Then $|a_3 - a_2^2| \le \frac{\varphi''(0)}{2 + 7\lambda}$

ACHNOWLEDGMENT.

The author thanks the referees for their useful suggestions to improve this paper.

REFERENCES

- [1] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, (1967).
- [2]Duren,P.,S. *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, (1983).
- [3] Frasin, B. and Aouf, M., New subclasses of biunivalent functions, Appl. Math. Letters.24(9), 1569-1573, (2011).
- [4] Srivastava,-H, Q., Xu, Y. and. Gui, C., Coefficient estimates for a certain subclass of analytic and biunivalent functions, Appl. Math. Letters 25, 990-994 ,(2012).
- [5] Srivastava, H., Mishra, A. and Gochhayat, P., *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett. 23 ,1188-1192, (2010).
- [16] Ma, C. and Minda, D., A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis, 157-169, Conf. Proc. Lecture Notes Anal. I Int. Press, Cambridge, MA. (1992).
- [7] Brannan, D. and Taha, T., On some classes of biunivalent functions, Math. Anal. and Its Appli., Kuwait. KFAS Proceedings Series, 3, 53-60, (1985).
- [8] Pommerenke, C., *Univalent Functions*, Vandenhoeck and Rupercht, Gtingen, (1975).
- [9] Ravichandran, V., *Starlike and convex functions with respect to conjugate points*, Acta Math. Acad. Paedagog, 20(1), 31-37, (2004).
- [10] Zaprawa, P., Estimates of Initial Coefficients for Bi-Univalent Functions, Abs. and Appl. Analy, Article ID 357480, 6 pages, (2014).
- [11] Porwal, S. and Darus, On a new subclass of biunivalent functions, J. of Egy. Math.Soc., 21, 190-193,(2013).
- [12] Deniz, E., Certain Subclasses of Bi-Univalent Functions satisfying subordinate conditions, J. of Classical Analy., 2(1), 49-60, (2013).

- [13] Tang, H., Deng, G. and Li, S., *Coefficient estimates* for new subclasses of Ma-Minda bi-univalent functions, Journal of Inequalities and Applications, 2013:317,(2013).
- [14] Xiao, I and An-Ping W., Two New Subclasses of Bi-Univalent Functions, Int. Math. Forum, 7(30), 1495 -1504, (2012).
- [15] Altinkaya, S. and Yalcinc, S., Coefficient Estimates for Certain Subclasses of Bi-Univalent Functions, Le Math. Vol., 71(2), 53-61, (2016).
- [16] Ma, W. and Minda, D., A unified treatment of some special classes of univalent functions, Proc. of Conf. on Complex Anal., 157-169, (1994).
- [17] Murugusundaramoorthy, G., Magesh, N. and Prameela, V., *Coefficient Bounds for Certain Subclasses of Bi-Univalent Function*, Abstract and Appl. Analy., Volume 2013, Article ID 573017, 3 pages,(2013).
- [18] Magesh, N. and Yamini, J., Coefficient Estimates for a Certain General Subclass of Analytic and Bi-Univalent Functions, Appl. Math., 5, 1047-1052,(2014)
- [19] Srivastava, H., G. Murugusundaramoorthy, G. and Magesh, N., Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. of Math. Analysis, 1 (2), 67-73, (2013).
- [20] Xiao, H. and Xu, Q, Coefficient estimates for the generalized subclass of analytic and bi-univalent functions, Europ. J. of Pure and appli. Math., 10(4), 638-644, (2017).