ON WEAKER FORMS OF WALC-Spaces

Reyadh Delfi Ali

Department of Mathematics, College of Education for Pure Sciences Kerbala University, Iraq.

reyadhdelphi@gmail.com

ABSTRACT: The purpose of this paper, we present a new definition of four weaker forms of WALC – spaces $(AL_s - spaces \quad s = 1,2,3,4)$ and Study and find their relationships with some other classes of topological spaces as well as among themselves.

KEYWORDS: LC - space, ALC - space, WALC - space, Lindelöf, almost Lindelöf, locally Lindelöf spaces

1. INTRODUCTION

In 2002, Sarsak [16] introduced the concept of

ALC – spaces as spaces M in which $\forall K \subseteq M$

which is almost Lindelöf in M is closed.

In 2008, Hdeib and Sarsak [7] introduced the concept of weakly ALC – spaces as spaces M in which \forall almost Lindelöf K \subseteq M is closed. Note that

 $ALC - spaces \Rightarrow$ Weakly $ALC - spaces \Rightarrow$ LC - spaces.

In this research we give we present a new definition of four weaker forms of WALC - spaces and we continue the investigation of more relationships.

2.Preliminaries Definition2.1:

A space M is an LC if \forall Lindelöf K \subseteq M is close is closed [4], [11]. Also LC - space As is called L - closed [5], [6], [8] and [9].

Definition 2.2[18]:

A space M is a KC if \forall compact $K \subseteq M$ is closed, for example the usual topology (R, Γ_U) is a KC.

Definition 2.3[7] :

A space M is cid - space if \forall countable $K \subseteq M$ is closed and discrete.

Definition2.4 [10]:

A space M is P if $\forall G_{\sigma} - open$ set in M is open. Definition 2.5[1]:

Al space M is called a Q-set if $\forall C \subseteq M$ is an $F_{\sigma}-closed$ sets.

Definition2.6 [2]: A space M is called a weak P if any countable union of regular closed sets is closed. M is a weak $P \iff \forall \{O_k : k \in \Lambda\}$ of open sets,

 $cl\left(\bigcup_{k\in\Lambda}O_k\right) = \bigcup_{k\in\Lambda}clO_k$

Definition 2.7: A space M is almost Lindelöf if \forall open cover Ω of M \exists a countable subfamily $\psi \subset \Omega$ such that $\mathbf{M} = \bigcup_{O \in \psi} \overline{O}$. From the definition that Lindelöf space \Rightarrow almost Lindelöf [3], [17]. If N is an almost Lindelöf subspace of a space M, then N is

almost Lindelöf in M but not conversely [16].

Definition2.8[2]: A topological space M is locally Lindelöf (resp. weakly locally Lindelöf) if \forall point of M has a closed Lindelöf (resp. Lindelöf) neighborhood. From the definition that every locally Lindelöf space \Rightarrow a weakly locally Lindelöf and the converse is not true. **Definition2.9 [2]:**

A space M is called

(1) an L_1 if \forall Lindelöf F_{σ} – closed is closed.

(2) an L_2 if $K \subseteq M$ is Lindelöf, then clK is Lindelöf.

(3) an
$$L_3$$
 if \forall Lindelöf $K \subseteq M$ is an F_{σ} - closed.

(4) an L_4 if $K \subseteq M$ is Lindelöf, then \exists Lindelöf F_{σ} - closed B with $K \subseteq B \subseteq clK$.

Theorem2.10[2]:

(i)
$$LC-space \Rightarrow L_s = 1,2,3,4.$$

(ii) $Q - set \text{ space} \Rightarrow L_3$.

(iii) hereditarily Lindelöf $L_3 - space \Rightarrow Q - set$.

(iv) Every $T_1 L_1$ – space is cid.

Corollary2.11[14]:

(i)
$$L_1Q - set$$
 space $\Rightarrow cid$. (ii) $L_1L_3 - space \Rightarrow cid$.

(iii) Hausdorff L_1 space $\Rightarrow cid$.(iv) $L_1 \quad KC - \text{space}$ $\Rightarrow cid$.

Corollary2.12[14]: Every $Q-set L_1-space$ is an LC.

Theorem2.13[14]:

For a Lindelöf L_3 – space M, M is an LC. \Leftrightarrow M is a P.

Corollary2.14[13]: $P - space \implies \text{weak } P$.

Theorem 2.15[12]: A regular almost Lindelöf space is Lindelöf.

Theorem2.16 [15]: For a Hausdorff Lindelöf space M,

M is a $P \Leftrightarrow M$ is an L_1 and an $L_2 \Leftrightarrow M$ is an $LC \Leftrightarrow M$ is an WALC.

Corollary2.17 [13]: For a Lindelöf space M,

 $M \text{ is locally Lindelöf } \Leftrightarrow M \text{ is a weakly locally Lindelöf}$

Theorem2.18 [2]: For locally Lindelöf space M, M is an $L_1 \iff M$ is a P.

Corollary2.19 [7]: a Hausdorff weak $P - space \implies$ WALC.

Theorem2.20 [19]: If $B \subseteq N \subseteq M$, where $N \subset M$ is a clopen, then B is almost Lindelöf in $N \Leftrightarrow B$ is almost Lindelöf in M.

Theorem2.21[13]:

For a locally Lindelöf Q - set space M, M is an LC.

 $\Leftrightarrow M \text{ is a } P . \Leftrightarrow M \text{ is an } L_1.$

Corollary2.22[13]:

For a weakly locally Lindelöf $L_2 - space M$, M is

an $L_1 - space \, \Rightarrow M$ is a P.

Theorem2.23 [15]: For a regular space M, M is an $LC \Leftrightarrow M$ is an WALC.

Theorem 2.24[14]: For a Lindelöf space M, M is an $L_1 \Leftrightarrow$ M is a P.

Theorem2.25 [12]: Every clopen subset of almost Lindelöf M is almost Lindelöf.

3. ON WEAKER FORMS OF WALC-Spaces

Definition3.1: A space M is called

(1) an AL_1 if \forall almost Lindelöf F_{σ} – closed is closed.

(2) an AL_2 if $K \subseteq M$ is almost Lindelöf, then clK is almost Lindelöf.

(3) an AL_3 if \forall almost Lindelöf $K \subseteq M$ is an F_{σ} – closed .

(4) an AL_4 if $K \subseteq M$ is almost Lindelöf, then \exists almost Lindelöf F_{σ} - closed B with

 $K \subseteq B \subseteq cl K \, . \quad \text{Some results are directly from the} \\ \text{Definition3.1.}$

Theorem3.2:

(i) $WALC - space \Rightarrow AL_s = 1,2,3,4.$ (ii) $AL_1 AL_3 - space \Rightarrow WALC.$

(iii) $AL_1 AL_4 - space \Rightarrow AL_2$.

(iv) $AL_2 - space \implies AL_4$ and $AL_3 - space$ $\implies AL_4$.

Proof. (i) Where if i = 1, let K be an almost Lindelöf $F_{\sigma} - closed$ in M,

which is an WALC - space, then K is a closed so M is $AL_1 - space$.

If i = 2, let $K \subseteq M$ be an almost Lindelöf, which is an WALC, so K is a closed i.e. K = clK, then clK is an almost Lindelöf, hence M is an $AL_2 - space$.

If i=3, let $K \subseteq M$ be an almost Lindelöf, which is an WALC-space, so K is a closed so K is an $F_{\sigma}-closed$. If i=4, let K be an almost Lindelöf subset in M, which is an WALC - space, then K is a closed so K is an $F_{\sigma} - closed$ set, take B=K then B is an almost Lindelöf $F_{\sigma} - closed$ subset and so $K \subseteq K = B \subseteq clK$, hence M is an $AL_4 - space$.

(ii) If K is an almost Lindelöf subset in M , which is an $AL_3-space\,,$

 $\label{eq:kappa} \begin{array}{l} \mbox{then}\,K \ \ \mbox{is an} \ \ F_{\sigma}-closed \ \ , \ \mbox{and}\ M \ \mbox{is an} \ AL_{\rm l} \, , \\ \mbox{so} \ \ K \ \ \mbox{a closed, hence} \end{array}$

M is an WALC - spaces.

(iii) If $K \subseteq M$ is an almost Lindelöf, which is an AL_4 , then $\exists a$ set B which is an almost Lindelöf $F_{\sigma} - closed \ni K \subseteq B \subseteq clK$, B is closed set, (M is an AL_1), then B = clK, so clK is an almost Lindelöf, hence M is an $AL_2 - space$. (iv) Obvious.

Corollary3.3:

(i) If (M, Γ) is an AL_1 $AL_3 - space$, then (M, Γ) is an LC.

(ii) If (M, Γ) is an AL_1 $AL_3 - space$, then (M, Γ) is a *KC*.

(iii) If (M, Γ) is an AL_1 $AL_3 - space$, then (M, Γ) is *Cid*.

(iv) If (M, Γ) is an $AL_1 AL_3 - space$, then (M, Γ) is a locally LC.

Example3.4:

let (R, Γ_U) be usual topology, then (R, Γ_U) is an $AL_2 - space$ but neither $AL_3 - space$ nor WALC - space R is an $AL_2 - space$ since if $K \subseteq R$ is a almost Lindelöf, R is a Lindelöf space, then CIK is a Lindelöf subspace, so CIK is a almost Lindelöf, hence R is an $AL_2 - space$. R is not an $AL_3 - space$, since Q^C is a Lindelöf, so Q^C is a almost Lindelöf to prove Q^C is not $F_\sigma - closed$, suppose that Q^C is $F_\sigma - closed$ so Q is $G_\sigma - open$ i.e. $Q = \bigcap_{i=1}^{\infty} O_i$, where O_i is an open set in R, $Q \subseteq O_i$, for each i, but the only open set containing Q is R, i.e. $O_i = R$, for each i $Q = \bigcap_{i=1}^{\infty} O_i = \bigcap R = R$ which is a contradiction, so Q is not $G_\sigma - open$, therefore Q^C is not $F_\sigma - closed$ Now to prove R is not an

257

WALC - space, suppose it is an WALC - space, since Q^{C} is a almost Lindelöf in R, then Q^{C} is closed, so Q is open which is a contradiction, so R is not an WALC - space.

Theorem3.5:

For a hereditarily compact Hausdorff space M, M is an $W\!ALC \iff M$ is an $AL_1 AL_2$.

Proof. (a) \Rightarrow (b) : This is clear by Theorem 3.2(i). (b) \Rightarrow (a) : Let $K \subseteq M$ be an almost

Lindelöf, and $y
ot\in K$.

Since M is Hausdorff, for each $z \in \mathbf{K}$ there exists a clopen set

 O_z containing z with $y \notin clO_z$. Clearly $\{O_z : z \in K\}$ is cover of K, and therefore \exists a countable set $E \subseteq K$ such

that $\mathbf{K} \subseteq \bigcup_{z \in \mathbf{E}} clO_z = \bigcup_{z \in \mathbf{E}} O_z$. For each $z \in \mathbf{E}$, $\mathbf{K} \cap clO_z$ is almost Lindelöf

and so $cl(K \cap clO_z)$ is

a lmost Lindelöf since M is an $AL_2 - space$. Furthermore, if

$$W = \bigcup_{z \in E} cl(K \cap clO_z), \text{then } W \text{ is}$$

almostLindelöf

$$F_{\sigma}$$
 – closed, since M is an AL_1 – space, W is a

closed almost Lindelöf set not containing y .So $y \notin clK$. Hence K is closed in M.

Theorem3.6:

For a T_3 – space M, M is an LC. \Leftrightarrow M is an AL_1 AL_2 .

Proof. (a) \Longrightarrow (b): This is obvious by Theorem 2.23 and Theorem 3.2(i).

(b) \Longrightarrow (a): Let K be a Lindelöf subset of M ,and $y \notin K$.Since M is

Hausdorff, for each $z \in \mathbf{K}$ there exists an open set O_z containing z

with $y \notin clO_z$. Clearly $\{O_z : z \in K\}$ is cover of K ,and therefore $\exists a$

countable set $E \subseteq K$ such that $K \subseteq \bigcup_{z \in E} clO_z$. For

each $z \in E$, $K \cap clO_z$ is

Lindelöf and $K \bigcap clO_z$ is almost Lindelöf and so $cl(K \bigcap clO_z)$ is almost

Lindelöf since M is an $AL_2 - space$.

Furthermore, if $W = \bigcup_{z \in E} cl(K \cap clO_z), \text{then } W \text{ is almost Lindelöf}$ $F_{\tau} - closed,$

thus W is a closed almost Lindelöf not containing y (M is an AL_1).

So $y \notin cl K$. Hence K is closed in M.

<u>Corollary3.7</u>: For a T_3 – space M, M is an WALC – space . \Leftrightarrow M is an AL_1 AL_2 .

Proof. This is clear by Theorem 3.2 (i) and Theorem 3.6. **Corollary3.8:**

For a hereditarily compact Hausdorff Lindelöf space M, M is a $P \Leftrightarrow M$ is an $L_1 L_2 \Leftrightarrow M$ is an $LC \Leftrightarrow M$

 $\text{ is an } \textit{WALC}. \Leftrightarrow \ \mathbf{M} \ \text{ is an } \textit{AL}_1 \ \textit{AL}_2.$

Proof. This is clear by Theorem 2.16and Theorem 3.5.

$$_{4.}AL_{1} - Spaces$$

<u>Theorem4.1</u>: Every $AL_1 - space$ is an $L_1 - space$.

Proof. Let $K \subseteq M$ be a Lindelöf F_{σ} - closed, therefore K is an almost

Lindelöf F_{σ} – *closed*, which is an AL_1 – *space*, then K is a closed,hence M

is $L_1 - space$.

<u>Theorem4.2</u>: For a regular space M, M is an AL_1 – space. $\Leftrightarrow M$ is an L_1 – space.

Proof. (a) \Longrightarrow (b): This is clear by Theorem 4.1.

(b) \Longrightarrow (a): Let $K \subseteq M$ be an almost Lindelöf F_{σ} - closed, therefore

K is a Lindelöf F_{σ} - closed subset of M (M is a regular),

so K is a closed (M is an L_1), so M is an AL_1 .

Corollary4.3:

(i) Every $AL_1Q - set$ space is cid.(ii) Every AL_1 Hausdorff space is cid.

(iii) Every AL_1 KC -space is cid.(iv) Every AL_1AL_3 space is cid.

(v) Every $T_1 AL_1$ space is *cid*.

Proof. This is obvious Theorem 4.1, Corollary 2.11 and Theorem 2.10(iv).

Corollary4.4: $P - space \Rightarrow AL_1$.

Proof. This is clear by Definition.3.1.

Corollary4.5: $Q - set AL_1 - space \Rightarrow LC$.

Proof. This is clear Theorem 4.1 and Corollary 2.12.

Theorem4.6: For a Q-set space M, M is an $WALC \Leftrightarrow M$ is an AL_1 .

Proof. (a) \implies (b): This is clear by Theorem 3.2(i).

(b) \Longrightarrow (a): Let $K \subseteq M$ be an almost Lindelöf, therefore K is an almost Lindelöf F_{σ} - closed set (M is a Q-set), thus K is a closed (M is an AL_1), so M is an WALC.

Theorem4.7:

For a locally Lindelöf space M, M is an $AL_1 \Leftrightarrow M$ is a $P \Leftrightarrow M$ is an L_1 .

Proof. (a) \Rightarrow (b): Let $\mathbf{B} \subseteq \mathbf{M}$ be an F_{σ} - closed. If $y \notin \mathbf{B}$ choose a closed Lindelöf neighborhood O of y. Then $O \cap \mathbf{B}$ is an almost Lindelöf F_{σ} - closed in \mathbf{M} and thus closed, (\mathbf{M} is an $AL_1 - space$). Hence

 $O - (O \cap B)$ is a neighborhood of y disjoint from B .therefore

B is closed and hence is a P – *space* .The remainder of theory proves by Corollary 4.4 and Theorem 2.18

Theorem 4.8: Every Huasdorff P-space is an WALC-space.

Proof. Let K be an almost Lindelöf subset in M, and let $y \notin K$. Then for each $z \in K$ \exists two disjoint open sets U_z , $V_z \rightarrow y \in U_z$ and $z \in V_z$

with $y \notin clV_z$ (as M is Hausdorff). Clearly $\{V_z : z \in K\}$ is cover of K and since K is almost Lindelöf in M,

there exist $z_{1,}$ $z_{2,}$ $\dots \in \mathbf{K}$ such that $\mathbf{K} \subset \bigcup_{i \in \omega} clV_{z_i}$.

Let $U = \bigcap_{i \in \omega} U_{z_i}$ so U is an open neighborhood of y

which is disjoint from $K \mbox{ (as } M \mbox{ is a } P \mbox{). Hence } K \mbox{ is closed in } M \mbox{ .}$

Corollary 4.9:

For a Hausdorff locally Lindelöf space $\,M\,\,$ the following are equivalent:

.(a) M is an LC-space .(b) M is an $L_1-space$. (c) M is a P-space .

(d) M is a weak P-space.(e) M is an $AL_1 - space$.(f) M is an WALC - space.

Proof. This is clear Theorem 2.10(i), Theorem 2.18, Corollary 2.14 Theorem 4.7, Theorem 4.8 Theorem 3.2(i) and Corollary 2.19.

Theorem4.10: The property AL_1 is hereditary on clopen sets.

Proof. If N is clopen F_{σ} - closed subspace of M, suppose that K is an almost Lindelöf and F_{σ} - closed subset of N, then K is an almost Lindelöf

subset of M by Theorem 2.20and $K = \bigcup_{i \in \omega} B_i^*$ such

that $\{\mathbf{B}_i^*\}$ a family of closed subsets in N.Let $\mathbf{B}_i^* = \mathbf{N} \bigcap \mathbf{B}_i$ where \mathbf{B}_i is closed subsets in M for each i, thus

$$\mathbf{K} = \bigcup_{i \in \Omega} (\mathbf{N} \cap \mathbf{B}_i) = \mathbf{N} \cap \left(\bigcup_{i \in \Omega} \mathbf{B}_i\right) = \left(\bigcup_{j \in \Omega} \mathbf{E}_j\right) \cap \left(\bigcup_{i \in \Omega} \mathbf{B}_i\right) = \bigcup_{i \in \Omega} \left(\mathbf{E}_j \cap \mathbf{B}_i\right)$$

where E_j is closed subsets in M, so K is almost Lindelöf and F_{σ} - closed in M, which is an AL_1 - space, then K is closed in M, so K is closed in N, therefore N is an AL_1 - space.

<u>Theorem4.11:</u> $P \qquad Q-s \text{ space } \Rightarrow$ WALC - space.

Proof. Let M a space and $K \subseteq M$ be an almost Lindelöf, then K is an F_{σ} - closed set(M is a Q-set space), so K is a closed set(M is a P), hence M is an WALC.

Corollary4.12:

locally Lindelöf $WALC - space \Rightarrow {}_{a}P - space$. Corollary 4.13:

For a locally Lindelöf Q - set space M,

 $M \text{ is an } LC \mathrel{.} \Leftrightarrow M \text{ is an } L_1 \mathrel{.} \Leftrightarrow M \text{ is a } P \mathrel{.} \Leftrightarrow M$

is an WALC. \Leftrightarrow M is an AL_1 .

Proof. This is clear Theorem 2.10(i), Theorem 2.21, Theorem 2.18, Theorem 4.11 and Theorem 4.7. **Corollary4.14:**

For a weakly locally Lindelöf $L_2 - space M$,

M is an $L_1 \Leftrightarrow M$ is a $P \Leftrightarrow M$ is an AL_1 . **Proof.** This is clear Corollary 2.22 and Corollary 4.4. <u>Theorem4.15:</u> Lindelof $AL_1 - space \Rightarrow a$

 $\frac{\text{Theorem 4.15:}}{P-\text{space}}$ Lindeloi $AL_1 - \text{space} \implies$

Proof. For each $n \in \Omega$, let D_n be closed in Lindelöf

$$AL_1 - space$$
 M and

$$D = \bigcup_{n \in \Omega} D_n$$
, then $D_n \subseteq M$ is a Lindelöf and

thus $D \subseteq M$ is a Lindelöf and is an almost Lindelöf by ("Countable union of Lindelöf subset is Lindelöf".) and by Definition 2.7. Therefore D is closed in M (M is an AL_1), so M is a P.

<u>Corollary4.16</u>: For a Lindelöf space M, M is an L_1 .

 \Leftrightarrow M is a $P . \Leftrightarrow$ M is an AL_1 .

Proof. This is clear by Theorem 2.24, Corollary 4.4and Theorem 4.12.

Theorem4.17:

Every continuous function h from Lindelof space M into $AL_1 Q$ -set space N is a closed function.

259

Proof. Let $B \subseteq M$ be a closed then B is a Lindelöf in M (M which is a Lindelöf), so h(B) is a Lindelöf in N ("continuous image of a Lindelöf is Lindelöf"), which is a Q-set, then h(B) is an almost Lindelöf $F_{\sigma}-closed$ subset in space N, hence h(B) is a closed subset in a space N (since N is an $AL_1 - space$), therefore h a closed function.

Theorem4.18:

If $h: M \longrightarrow N$ is a continuous injective function from a space M into $AL_1 Q$ - set space N then M is an WALC.

Proof. Let $K \subseteq M$ be any almost Lindelöf, then h(K) is an almost Lindelöf in N ("A continuous image of an almost Lindelöf is almost Lindelöf"), which is aQ-set space, then $h(K) \subseteq N$ is an almost Lindelöf F_{σ} - closed since N is an AL_1 - space, then $h(K) \subseteq N$ is a closed, therefore $h^{-1}(h(K)) = K$ is a closed subset of M (because h is a continuous injective function), thus M is an WALC - space.

Theorem4.19:

If function $h: M \longrightarrow N$ is a continuous closed injective from a space M into an $AL_1 - space$ N, then M is an $AL_1 - space$.

Proof. $\forall n \in \Omega$, let K_n be closed in M and $\mathbf{K} = \bigcup \mathbf{K}_n \subseteq \mathbf{M}$ be almost Lindelöf, then $h(\mathbf{K})$ is a almost Lindelöf subset of N ("A continuous image of an Lindelöf is almost Lindelöf") almost and $h(\mathbf{K}) = \bigcup h(\mathbf{K}_n)$ such that $h(\mathbf{K}_n)$ is closed subsets of N (since h is a closed function), since N is an $AL_1 - space$, then $h(K) \subseteq N$ is a closed, therefore $h^{-1}(h(\mathbf{K})) = \mathbf{K} \subset \mathbf{M}$ is a closed (because h is a continuous injective function), thus M is an $AL_1 - space$.

<u>Corollary4.20:</u> If function $h: M \longrightarrow N$ is a continuous closed injective from a space M into an $AL_1 - space$ N, then M is an $L_1 - space$.

5. $AL_2 - Spaces$

<u>Theorem5.1</u>: Every Lindelöf space is an AL_2 .

Proof. Let $K \subseteq M$ be an almost Lindelöf, since clK is a closed in M, then clK is a Lindelöf (closed in Lindelöf is Lindelöf), so clK is an almost Lindelöf, hence M is

an
$$AL_2 - space$$
.

<u>Corollary5.2</u>: Every 2^{nd} countable (C_{11}) space is an $AL_2 - space$.

Proof. Let M be a 2^{nd} countable space, then M is a Lindelof, hence M is n AL_2 – space by Theorem 5.1. **Theorem 5.3:**

Let (M, Γ) be $AL_2 - space$ and $K \subseteq M$ be a Lindelöf dense, then (M, Γ) is almost Lindelöf.

Proof. Since $K \subseteq M$ is a Lindelöf, so K is an almost Lindelöf and clK = M, but M is an $AL_2 - space$, then clK is an almost Lindelöf.

Corollary5.4:

Let (M, Γ) be regular $AL_2 - space$ and $K \subseteq M$ be a Lindelöf dense, then (M, Γ) is Lindelöf.

<u>Corollary5.5:</u> regular almost Lindelöf $\Rightarrow AL_2 - space$.

Proof. This is clear by Theorem 2.15 and Theorem 5.1.

<u>Theorem5.6</u>: Let M be an almost Lindelöf space and every closure set is open, then M is an AL_2 .

Proof. Let $K \subseteq M$ be an almost Lindelöf, so clK is clopen in M, then clK is an almost Lindelöf("If M is almost Lindelöf, then any clopen subset of M is almost Lindelöf"), hence M is an $AL_2 - space$.

<u>Theorem5.7</u>: Let M be an almost Lindelöf space and every closure set is regular closed, then M is an $AL_2 - space$.

Proof. Let $K \subseteq M$ be an almost Lindelöf M, so clK is regular closed in M, then clK is an almost Lindelöf("A regular closed subset of an almost Lindelöf space M is almost Lindelöf"), hence M is an AL_2 -space.

<u>Theorem5.8</u>: Every regular $AL_2 - space$ is an L_2 .

Proof. Let $K \subseteq M$ be a Lindelöf, then K is an almost Lindelöf subset of M, so clK is an almost Lindelöf (since M is an $AL_2 - space$), then K is a Lindelöf (since M is a regular), hence M is an $L_2 - space$.

<u>Theorem 5.9</u>: For a regular M, M is an AL_2 . \Leftrightarrow M is an L_2 .

Proof. (a) \Longrightarrow (b): This is clear by Theorem 5.8. (b) \Longrightarrow (a): Let $K \subseteq M$ be an almost Lindelöf, which is a regular space, then K is an Lindelöf subset of M, so clK is a Lindelöf (since M is an L_2 - space), then clK is an almost Lindelöf,

Hence M is an AL_2 – space.

<u>Theorem5.10:</u> Every Q – set AL_1 – space is an AL_2 .

Sci.Int.(Lahore),31(20,255-263,2019

Proof. Let $K \subseteq M$ be an almost Lindelöf, then K is an F_{σ} - closed (M is a Q - set), thus K is closed (M is an AL_1), so K = clK and clK is an almost Lindelöf. Therefore M is an AL_2 .

<u>Theorem5.11:</u> Every $P \qquad AL_3 - space$ is an $AL_2 - space$.

Proof. Let $K \subseteq M$ be an almost Lindelöf, then K is an F_{σ} - *closed* (M is an AL_3), thus K is closed (M is a P), so K = clK and clK is an almost Lindelöf. Therefore M is an AL_2 .

<u>Theorem 5.12:</u> Let M be a space and $N \subseteq M$, $N = \bigcup_{s=1}^{n} N_s$, where N_s , s = 1, 2, ..., n are clopen $AL_2 - subspaces$ in M, then N is an

 $AL_2 - subspace$.

Proof. Let K be an almost Lindelöf subset of N, then $K \cap N_s$, s = 1, 2, ..., n are clopen in K, which is almost Lindelöf, so $K \cap N_s$, s = 1, 2, ..., n are almost Lindelöf subset of N_s , s = 1, 2, ..., n. Since $K \cap N_s$ is subset of N_s , s = 1, 2, ..., n. Since $K \cap N_s$ is subset of N_s , s = 1, 2, ..., n which is $AL_2 - space$, then $cl(K \cap N_s)$ is a almost Lindelöf in N_s , s = 1, 2, ..., n, so $cl(K \cap N_s)$ is a almost Lindelöf in N_s , s = 1, 2, ..., n, so $cl(K \cap N_s)$ is a almost Lindelöf in N, s = 1, 2, ..., n. But $clK = cl\left(\bigcup_{s=1}^n (K \cap N_s)\right) = \bigcup_{s=1}^n cl(K \cap N_s)$, so clK is almost Lindelöf in N, hence N is an $AL_2 - subspace$.

<u>Theorem5.13</u>: The property AL_2 is hereditary on clopen sets.

Proof. If N is clopen subspace of M, suppose that $K \subseteq N$ is an almost Lindelöf, then $K \subset M$ is an almost Lindelöf by Theorem 6.5.9, which is AL_2 , so cl_MK is an almost Lindelöf and $cl_NK = cl_MK \cap N$. Then $cl_MK \cap N$ is an almost Lindelöf subset of N by Theorem 2.20, so cl_NK is an almost Lindelöf subset of N by of N. Hence N is an $AL_2 - space$.

<u>Theorem5.14</u>: For a regular AL_2 – space M,

M is locally Lindelöf. \iff M is a weakly locally Lindelöf.

Proof. (a) \Rightarrow (b): This is clear by Definition 2.8. b) \Rightarrow (a): If $y \in M$ then has Lindelöf neighborhood K, so K is an almost Lindelöf, but M is an AL_2 - space then clK is almost Lindelöf, so clK is Lindelöf(since M is a regular space), but clK is closed, so y

has a closed Lindelöf neighborhood, therefore M is locally Lindelöf. <u>Corollary5.15:</u> For a regular space M, and M having a dense Lindelöf subset,

M is a Lindelöf. \Leftrightarrow M is an almost Lindelöf. \Leftrightarrow M is an almost Lindelöf.

is an $AL_2 \Leftrightarrow M$ is an L_2 .

Proof. This is clear by Definition.2.8., Theorem 2.15, Theorem 5.1, Theorem 5.4 and Theorem 5.9. **Theorem 5.16:**

For a Lindelöf Q - set space M, M is

an $AL_1 \Leftrightarrow M$ is a $P AL_2$.

Proof. This is clear by Theorem 5.9, Theorem 4.12, Theorem 4.11 and Theorem 3.2.(i)

Theorem5.17:

For a regular weak P - space M,

M is locally Lindelöf \iff M is a weakly locally Lindelöf AL_2 .

Proof.(a) \Longrightarrow (b): Let $K \subseteq M$ be an almost Lindelöf, so K is Lindelöf (M is a regular space). \forall point of K has an open neighborhood O_z

of
$$\mathbf{K} \rightarrow \mathbf{K} \subseteq \bigcup_{z \in \mathbf{E}} O_z$$
.

Since M is a weak P and $clK \subseteq \bigcup_{z \in E} clO_z = W$.

Since W is Lindelöf we infer that

clK is Lindelöf and, so clK is almost Lindelöf, hence M is an $AL_2 - space$.

<u>Theorem5.18</u>: If function $h: M \longrightarrow N$ is a continuous open injective from a space M into an $AL_2 - space$ N then M is an $AL_2 - space$.

Proof. Let $K \subseteq M$ be almost Lindelöf, then h(K) is an almost Lindelöf in N ("A continuous image of an almost Lindelöf is almost Lindelöf"), since N is an $AL_2 - space$, then $cl_N(h(K))$ is an almost Lindelöf subset of N, hence $h^{-1}(cl_N(h(K)))$ is an almost Lindelöf subset of a space M (since h is an open function), but

$$h^{-1}(cl_{N}(h(K))) = cl_{M}(h^{-1}h(K)) = cl_{M}(K)$$
, so
 $cl_{M}(K)$ is an almost Lindelöf subset of M, thus M is an
 $AL_{2} - space$.

$$_{6.}AL_{3} - Spaces$$

<u>Theorem6.1</u>: Every $AL_3 - space$ is an $L_3 - space$.

Proof. Let $K \subseteq M$ be a Lindelöf, then K is an almost Lindelöf, which is an AL_3 , then K is an F_{σ} -closed, hence M is an L_3 -space.

<u>Theorem6.2</u>: For a regular space M, M is an $AL_3 \, \Leftrightarrow M$ is an L_3 . **Proof.**

 $(b) \Longrightarrow (a) {:} \mbox{ Let } K \subseteq M \mbox{ be an almost Lindelöf,}$ then $K \subseteq M$ is a

Lindelöf (M is a regular), so K is an F_{σ} - *closed* (M is an L_3), therefore

M is an AL_3 .

<u>Corollary6.3:</u> Every Q - set space is an $AL_3 - space$.

<u>Corollary6.4:</u> Every hereditarily Lindelöf $AL_3 - space$ is a Q - set space.

Corollary6.5:

For a hereditarily Lindelöf space M, M is an AL_3 .

 \Leftrightarrow M is a Q-set.

<u>Corollary6.6</u>: For a 2^{nd} countable space M, M is an AL_3 . \Leftrightarrow M is a Q-set.

Proof. (a) \Longrightarrow (b): Let M be a AL_3 – space .Since

M is a 2^{nd} countable space,

then M is a hereditarily Lindelöf, hence M is a Q-set space by

Corollary 6.4. (b) \Longrightarrow (a): This is clear by Corollary 6.3.

<u>Corollary6.7</u>: For a countable space M, M is an AL_3 . \Leftrightarrow M is a Q-set.

Proof. (a) \Longrightarrow (b): Let M be an AL_3 – space. Since M is a countable space,

then M is a hereditarily Lindelöf, hence M is a Q-set space by

 \sim Corollary 6.4.

<u>Theorem6.8</u>: For a P – space M, M is an WALC. \Leftrightarrow M is an AL_3 .

Proof. (a) \Longrightarrow (b): This is obvious by Theorem 3.2(i).

(b) \Longrightarrow (a): Let $K \subseteq M$ be an almost Lindelöf,then K is an $\ F_{\sigma}-closed$ (M is

an AL_3), thus K is closed set (M is a P), therefore M is an WALC.

Theorem6.9: The property AL_3 is hereditary on clopen sets.

 $\begin{array}{l} \textbf{Proof. If N is a subspace of M ,suppose that $K \subseteq N$ is an almost Lindelöf, then $K \subseteq M$ is an almost Lindelöf by } \end{array}$

Theorem 2.20, which is an AL_3 then K is an

$$F_{\sigma}$$
 - closed i.e. $\mathbf{K} = \bigcup_{i \in \Omega} \mathbf{B}_i \ni \left\langle \mathbf{B}_i \right\rangle$ a family of

closed subsets in M. Put $\mathbf{B}_i^* = \mathbf{N} \bigcap \mathbf{B}_i$, then \mathbf{B}_i^* is closed subsets in N for each i and

$$\mathbf{K} = \mathbf{K} \cap \mathbf{N} = \left(\bigcup_{i \in \Omega} \mathbf{B}_i\right) \cap \mathbf{N} = \bigcup_{i \in \Omega} \left(\mathbf{B}_i \cap \mathbf{N}\right) = \bigcup_{i \in \Omega} \mathbf{B}_i^*$$

, so K is an F_{σ} - closed in N, therefore N is
an AL_3 - space.

Corollary6.10:

For a hereditarily Lindelöf space M, M is an L_3 . $\Leftrightarrow M$ is a Q-set. $\Leftrightarrow M$ is an AL_3 .

Proof. This is clear by Corollary 6.5., Theorem 2.10(ii) and Theorem 2.10(iii)

Corollary6.11:

For a Lindelof AL_3 – space M, M is an LC. \Leftrightarrow M is a P. \Leftrightarrow M is an WALC.

Proof. This is clear by Theorem 2.13., Theorem 6.1 and Theorem 6.8.

Theorem6.12:

Every continuous function h from Lindelöf space M into $AL_3 P - space$ N is a closed function.

Proof. Let $B \subseteq M$ be a closed then B is a Lindelöf in M (M is a Lindelöf), so h(B) is a Lindelöf in N ("continuous image of a Lindelöf is Lindelöf"), then $h(B) \subseteq N$ is an almost Lindelöf, so h(B) is an F_{σ} -closed subset in a space N (M is an $AL_3 - space$), hence h(B) is a closed subset in a space N (since N is a P - space), therefore h a closed function.

<u>Theorem6.13</u>: If function $h: M \longrightarrow N$ is a continuous injective from a space M into

an AL_3 – space N then M is an AL_3 – space.

Proof. Let $K \subseteq M$ be almost Lindelöf, then h(K) is an almost Lindelöf in N ("continuous image of an almost Lindelöf is almost Lindelöf"), since N is an AL_3 - space, then h(K) is an F_{σ} - closed subset of N, $\Omega n \in \omega$, let K_n be closed in N and $h(\mathbf{K}) = \bigcup_{n \in \Omega} \mathbf{K}_n$, so $\mathbf{K} = \bigcup_{n \in \Omega} h^{-1}(\mathbf{K}_n)$ such that $h^{-1}(\mathbf{K}_n)$ is closed subsets of M, therefore K is an F_{σ} – closed subset of M ,thus M is an $AL_3 - space$.

<u>Corollary6.14</u>: If function $h: M \longrightarrow N$ is a continuous injective from a space M into an AL_3 – space N then M is an L_3 – space. 7 AL_4 – Spaces

<u>Theorem7.1</u>: Every regular $AL_4 - space$ is an $L_4 - space$.

Proof. Let $K \subseteq M$ be a Lindelöf then $K \subseteq M$ is an almost Lindelöf, since M is an AL_4 , then there is an almost Lindelöf F_{σ} -closed B with $K \subseteq B \subseteq clK$, since M is a regular, then B is a Lindelöf F_{σ} -closed with $K \subseteq B \subseteq clK$, hence M is an L_4 -space.

<u>Theorem7.2</u>: For a regular M, M is an $AL_4 - space$. \Leftrightarrow M is an $L_4 - space$.

 $\label{eq:proof.} \begin{array}{ll} \text{(b)} \Longrightarrow (a) {:} \mbox{ Let } K \subseteq M & \mbox{ be an almost Lindelöf,} \\ \mbox{then } K \subseteq M & \mbox{ is an Lindelöf} \end{array}$

(M is a regular), since M is an L_4 , then there is a Lindelöf F_{σ} - closed B with $K \subseteq B \subseteq clK$, so B is an almost Lindelöf F_{σ} - closed with $K \subseteq B \subseteq clK$, hence M is an AL_4 - space.

<u>Theorem7.3</u>: The property AL_4 is hereditary on clopen sets.

Proof. If N is clopen subspace of M, suppose that $K \subseteq N$ is an almost Lindelöf, then $K \subseteq M$ is an almost Lindelöf by theorem 2.20, which is AL_4 , then there is almost Lindelöf F_{σ} - closed B with $K \subseteq B \subseteq cl_M K$, let $B = \bigcup_{j \in \Omega} B_j$ such that $\{B_j\}$ a family of closed subsets in M.Put $B_j^* = Y \cap B_j$, then B_j^* is closed subsets in N for

each j, \mathbf{B}_{j}^{*} is clopen subsets in B for each i and

$$\mathbf{B}^* = \mathbf{B} \cap \mathbf{N} = \left(\bigcup_{j \in \Omega} \mathbf{B}_j\right) \cap \mathbf{N} = \bigcup_{j \in \Omega} \left(\mathbf{B}_j \cap \mathbf{N}\right) = \bigcup_{j \in \Omega} \mathbf{B}_j^*.$$

Then B^* is an almost Lindelöf subset of N by Theorem 2.25 and is an F_{σ} - closed in N with

 $\mathbf{K} \subseteq \mathbf{B}^* \subseteq cl_{\mathrm{N}}\mathbf{K}$, Hence N is an AL_4 – space.

<u>Corollary7.4</u>: For a hereditarily compact Hausdorff $AL_1 - space M$,

M is an $AL_4 \, \Leftrightarrow M$ is an $AL_3 \, \Leftrightarrow M$ is an $AL_3 \, \Leftrightarrow M$ is an $AL_2 \, \ldots$

<u>Theorem7.5</u>: If function $h: \mathbb{M} \longrightarrow \mathbb{N}$ is a continuous open injective from a space \mathbb{M} into an $AL_4 - space \mathbb{N}$ then \mathbb{M} is an $AL_4 - space$. **Proof.** Let $\mathbb{K} \subseteq \mathbb{M}$ be any almost Lindelöf, then $h(\mathbb{K}) \subseteq \mathbb{N}$ is an almost Lindelöf ("continuous image of an almost Lindelöf is almost Lindelöf"),since \mathbb{N} is an $AL_4 - space$, then \exists an almost Lindelöf $F_{\sigma} - closed \mathbb{B}$ (let $\mathbb{B} = \bigcup_{n \in \Omega} \mathbb{B}_n$ such that $\{\mathbb{B}_n\}$ a family of closed subsets in \mathbb{N}) with $h(\mathbb{K}) \subseteq \mathbb{B} = \bigcup_{n \in \Omega} \mathbb{B}_n \subseteq cl_{\mathbb{N}}(h(\mathbb{K}))$,so

$$\mathbf{K} \subseteq h^{-1}(\mathbf{B}) = \bigcup_{n \in \Omega} h^{-1}(\mathbf{B}_n) \subseteq cl_{\mathbf{M}}(\mathbf{K}),$$

therefore $h^{-1}(B)$ is an almost Lindelöf F_{σ} - closed subset of M ,thus M is an AL_4 - space.

REFERENCES

- [1] Bankston P., The total negation of a topological property, Illinois J. Math. 23 (1979), 241-255.
- [2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LC- spaces,
- Acta Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.
- [3] F.Cammaroto, G. Santoro: Some counter examples and properties on generalizations of Lindelöf spaces. Int. J. Math. Math. Sci. 19 (1996), 737–746.
- [4] Gauld D. B., Mrsevic M., Reilly I. and Vamanamurthy M. K., Co- Lindelöf topologies and I-continuous functions, Glasnik Mat. 19(39) (1984), 297-308.
- [5] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6(1988),67-72.
- [6] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelöf sets are closed, Q & A in General Topology 4 (1986), 3-13.
- [7] Hdeib H. Z. and Sarsak M. S., Weakly ALC Spaces, International Mathematical Forum, 3, 2008, no. 41, 2017 – 2024.
- [8] Henrikson M. and Woods R. G., Weak *P*-spaces and *l*-closed spaces, Q & A in General Topology 6 (1988), 201-207.
- [9] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146.
- [10]Misra A. K., A topological view of P-spaces, Topology & Appl.2(1972), 349-362.
- [11] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459– 474.
- [12]Petra Staynova, A Comparison of Lindelöf –type Covering Properties of Topological Spaces, Rose-Hulman Undergraduate Mathematics Journal, V. 12, no. 2, Fall 2011.
- [13] Reyadh D.Ali and Adam A. Abker., ON Locally Lindelöf Spaces, Co-Lindelöf Topologies and Locally LC-Space, Journal of AL-Qadisiyah for computer science and mathematics Vol.(7) No(1) 2015.

- [14] Reyadh D.Ali, ON WEAKER FORMS OF LC-SPACES, Journal of Iraqi Al-Khwarizmi Society
- (JIKhS)Vol.(1) No(1) 2017.
 [15] Reyadh D.Ali, Weakly ALC-Spaces (WALC-Spaces), AL-Qadisiyah Journal of pure Science Vol.(23) No(1) 2018.
- [16] Sarsak M. S., On relatively almost Lindelöf subsets, Acta Math Hunger., 97(1-2) (2002), 109-114.
- [17] S.Willard, U.N. B.Dissanayake: The almost Lindelöf degree. Can. Math. Bull. 27 (1984), 452–455.
- [18] Wilansky A., Between T_1 and T_2 , Amer. Math. Monthly, 74 (1967), 261- 266.
- [19] Yankui Song, Nanjing, On Relatively Almost Lindelöf subsets. Mathematica Bohemica. 2 (2009), 183–190.