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ABSTRACT: The effect of horizontal sleeping position on the health of some patients with breathing problems still needs 

to be clarified. A new update mathematical model for simulating the unsteady airflow inside a bifurcated trachea for 

various Reynolds numbers and inclination angles is determined. The governing unsteady equations of motion, consisting 

of two-dimensional Navier-Stokes equations, nonlinear and non-homogenous are derived and numerically solved using the 

finite difference Marker and Cell (MAC) method. A numerical code based on the Matlab platform is developed to calculate 

specifically, in addition to other flow characteristics, the pressure distribution and the streamlines which are missing in 

most previous works in this area. The results for axial velocities at a horizontal situation show good agreement with both 

numerical and other experimental findings.  New results show that an increase in the inclination angle diminishes the 

pressure drop inside the main and a bifurcated trachea, Sleeping in a horizontal position leads to a negative effect for 

many patients. Consequently,  the bed should be positioned at the angle between 30
o
 and 45

o
. The excellent features of 

these results suggest that the proposed model-based procedure may contribute towards the development of more accurate 

and effective inclined bed therapy (IBT). 
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1. INTRODUCTION 

Mathematical models of a bifurcated trachea are essential 

for the development of biomedical engineering. Currently, 

the understanding of airflow through human airways is 

gaining much research attention either from a numerical 

viewpoint or from the experimental design. Recently, 

comprehensive understanding and prediction of 

phenomena in physiology demanded and life sciences 

accurate mathematical models with numerical simulation 

methods. This is particularly true for realizing (IBT) 

inclined bed therapy, which is a perfectly normal remedy 

for many health problems without using harmful chemicals 

or any substances in the patients' body. IBT is a new 

therapy presented by Andrew Fletcher [1] seemed 

promising. IBT therapy expands the capacity of the body 

to perform without externally infused of synthetic 

chemicals. It is beneficial for numerous illnesses linked 

with breathing problems such as snoring, asthma, mild 

sleep apnea and chronic obstructive pulmonary disease 

(COPD) [2-4]. The inspiratory flow rates in the human 

respiratory system depend on the strength of physical 

activity. The range of Reynolds numbers (Re) of airflow in 

human trachea range from 800-9300  depend on quiet or 

heavy breathing  [5]. Numerically simulated of respiratory 

flow patterns introduced in [6] to study the inhalation and 

the exhalation through a single bifurcation for Reynolds 

numbers 50-4500. Calay et al. [7] introduced a numerically 

simulated of respiratory flow patterns through the trachea 

and main bronchi at resting with Re = 1750 and at maximal 

exercising with Re = 4600. Definitely, the understanding of 

airflow in the human trachea is an alternative method to 

support the treatment of patients suffering from breathing 

complications. Thus, a mathematical model depicting the 

dynamics of airflow movement in the trachea in terms of 

governing equations of motion is valuable. many 

computational fluid dynamics researchers to investigate the 

air flow through the trachea have been carried out. Li et al. 

[8, 9]  investigated steady laminar and transient air flow 

field and particle deposition in a trachea with Re = 1201  

for breathing in resting conditions. The numerical results 

of velocities are compared with the experimental results of 

Zhao and Lieber [10].  Their mathematical model with 

steady, laminar, incompressible, and three-dimensional 

airflow in rigid airway was developed. Commercial 

software based on finite volume used to simulate their 

model.  Liu et al. [11] utilized a child model to investigate 

the impacts of physiological features on the airflow 

patterns and nanoparticle deposition in the upper 

respiratory tracts. Their model in three-dimensions 

involved the mouth cavity, larynx, pharynx, trachea and 

bronchial and is considered to be incompressible, laminar 

and steady with a low Reynolds number. A mathematical 

model of airflow in the upper respiratory tract described in  

[12, 13] considering the air as incompressible and 

Newtonian with constant density and viscosity. The results 

obtained using a finite element analysis and (COMSOL 

software) then the simulation results compared with those 

in [12] from an analytical calculation based on Fourier 

series. Alnussairy et al. [14, 15] investigated the 

inclination angle dependence on the unsteady airflow in the 

main trachea by developing a 2D mathematical model 

(channel and tube) using two methods analytically and 

numerically. The exact and numerical solutions are 

achieved using the Bromwich integral and MAC method. 

Their results for axial velocity at the horizontal position of 

the trachea (θ = 0
o
) is compared with the observation of 

Kongnuan and Pholuang [8] and Zhao and Lieber [6] 

respectively. Chen et al. [16] carried out experiments and 

simulation to investigate fiber deposition in a single 

horizontal bifurcation under different steady inhalation 

conditions. The flow was applied incompressible, 

Newtonian, laminar and fully developed, a parabolic 

velocity distribution at the inlet. The governing equations 

for their model solved using Fluent software.  Many types 
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of research [7, 8, 9, 11, 13, 16]  achieved results worth 

using commercial simulation software and using a given 

inlet velocity and pressure with proper boundary 

conditions.  These software programs are often very 

expensive and not easily available. Moreover, the pressure 

distribution in the tracheal segment is unknown parameter 

needs an appropriate method for calculation. To avoid this 

limitation, following [17, 18, 19]. Yet, no systematic 

mathematical model is developed to simulate precisely the 

inclination angle dependent unsteady air flow inside the 

human trachea. No one investigated the effect of the 

inclination angle on the airflow in the trachea and main 

bronchi although the inclined angle position is one of the 

most important parameters that affect such flow.  

This paper investigates the effect of inclination angle 

position on the airflow pattern in the trachea and main 

bronchi under resting and normal breathing conditions 

using Marker and cell method, which is helpful because the 

pressure boundary conditions at the inlet and outlet are not 

needed. The velocity vector is identified and the results are 

achieved with the desired degree of accuracy. 

2. Governing Equations  

Consider air flow model in the tracheal lumen is treated as 

2D unsteady, nonlinear, incompressible (low Mach 

number, M = 0.1, [7], laminar, Newtonian fluid with 

constant a kinematic viscosity   . The governing 

momentum and continuity, conservation equations in 

dimensionless of the axisymmetric air flow in the 

cylindrical polar coordinate  system (r, z) are written as: 
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where 0 0Re = U R ,  0 0Fr = U gR , 0 0, , , , ,  t p U R 
 

is 

the Reynolds number,  the Froud number,  the time, 

density, viscosity of air,  pressure, an average of the 

velocity at the inlet and the radius of the trachea 

respectively. The axial and radial equations of momentum 

(2), (3) are imposed with a gravitational force 

parameter g . The angle  is the slope between the 

horizontal direction z and the direction of the trachea [15]. 

The functions R1(z) and R2(z) which represent the outer and 

inner wall of the trachea respectively [cf. Fig.1] is given 

by:
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Figure 1.  (a) Geometry for a single bifurcated trachea (b) 

Axisymmetric geometry for a bifurcated trachea
 

2.1  Initial and Boundary Conditions 

The velocity components of the airflow stream on the 

trachea wall should be zero at the rigid wall (no-slip 

condition). A maximum velocity of airflow is assumed to 

be fully developed parabolic velocity profile with at the 

inlet corresponds to the Poiseuille flow [15, 16, 20] of the 

tracheal lumen yields:
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The boundary and initial conditions of the problem is set 

as:  
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2.2 Radial Transformation  

The  radical transformation is introduced: 
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immobilizing the tracheal wall in the transformed 

coordinate .  Using the radial transformation in equation 

(10).  Therefore, the Equations (1)-(3) takes the form: 
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2.3  Method of Solution and Discretization Procedure 

The above unsteady governing equations (11) - (13) are 

discretized using Marker and Cell (MAC) method [21]. 

The pressure and velocities are computed at different 

locations as shown in Figure 2.  By defining 
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time t, t  is the increment of time, while ,z   being the 

length and width of the (i,j) cell of the control volume 

respectively.  

 
Figure 2.    MAC Cell Method 

 

4.2.  Discretization of Governing Equations 

The discretization of the continuity and momentum 

equations are performed at the ( , )i j  cell to obtain: 
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terms of the u- momentum equation at n
th

 time level at 

the ( , )i j th cell. The terms are differences in the similar 

terms manner as in the w- equation of momentum. The 

complete numerical procedure already discussed in 

Alnussairy et al [15].  By using the result of w-velocity, 

volumetric flow rate (Q) and resistance to flow (  ) are 

described as: 
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3. DISCUSSIONS   

The numerical and simulations are performed using µ= 

1.79×10
-5 

pa.s, ρ = 1.225 kg.m
−3

, g= 9.8 m.s
-2

, R0 = 

0.01085 m, '
1 0.0065,r  (radius of left bronchi), z1=0. 

092m, 30o  (angle of  branching between left branch and 

main branch) [5, 7], z  = 0.1 and  = 0.025.the 

Reynolds numbers of rest and normal conditional breathing 

is taken in the range of 800 to 2000 and also tracheal 

length zmax = 0.16 m in nondimensional. The solutions are 

generated by using a staggered grid of size 1600×40 at 

constant  Fr = 0.27, Re = 1200 and U0 = 85×10
-2 

m.s
-1

. The 

pressure-based a finite-difference approximation is used to 

solve the unsteady governing PDE equations of motion. 

The results are found after the steady state is achieved in 

the simulation when the dimensionless t = 80. The pressure 

is computed to determine the velocity after solving the 

momentum equations. 
 

The velocity field is plotted for every slice to generate a 

complete description of the flow patterns in the trachea 

during resting and normal breathing with varying Re. The 

accuracy of the proposed method is validated with existing 

experimental data and numerical studies (Schroter and 

Sudlow [6]); Calay et al.[7]). Figure 3 compares the 

variation of axial velocity dependent radial position 

obtained by the present model with other findings for Re = 

1570 and θ = 0
o
. The w-velocity at slice A (z = 4) revealed 

a parabolic pattern. In addition, the laminar flow exhibited 

a maximum velocity in the central region and decreased to 

0  close to the walls (Schroter and Sudlow,[6]). 

Conversely, the w-velocity at slice B (z = 12) is highly 

skewed toward the inner wall and lowered in the outer wall 

of the single bifurcation. This is in a good agreement with 

the findings of Calay et al.[7] on w-velocity for different 

axial positions in main and single bifurcated trachea. 

 

Figure 3:. Comparison of the axial velocity with others for Re 

= 1570 when θ = 0o  

It calculated value of axial velocity in the horizontal 

straight trachea (θ = 0
o
) for Re = 700 and slice B is 

compared with the experimental results of Schroter and 

Sudlow [6] as shown in Figure 4. The w-velocity near the 

outer wall is very slow. Thus, the velocity distribution is 

low in the outer and high in the inner wall.  
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Exp. Schroter & Sudlow (1969)

Present method, Slice B

 

Figure 4:  Comparison of the w-velocity in a bifurcated 

trachea position (slice B) with Re = 700 and θ = 0 

Figure 5 presents the axial velocity dependent radial 

position at different axial locations for Re = 1200 and θ = 

0
o
. At z = 4 (slice A) the w-velocity revealed the parabolic 

shape inside the parent due to the prescribed boundary 

condition. However, the velocity distributions after the 

flow get divided inside the daughter tube at other axial 

locations. The velocity at location z = 12 (slice B) near the 

outer wall is very slow, thus the velocity distribution is low 

in the outer and high in the inner wall. At z = 13.5 the 

velocity gradient is decreased very rapidly near the inner 

wall and it started rising in the outer wall to become M-

shape. A typical M-shape, velocity is revealed at z = 16 

(slice C). Furthermore, the velocity near the outer wall is 

high and reversed. This indicates the appearance of 

backflow separation near the outer wall for all values of 

Re.  
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Figure 5: Variation of w-velocity for different position of  z 

with Re = 1200  and θ = 0o. 

Figure 6 shows the w-velocity for different inclination 

angle position with fixed  Re = 1200, Fr = 0.27 and z = 12 

(slice B).  An increase in the angle of inclination (from 0
o
 

to 45
o
) is found to enhance the airflow velocity. These 

results are in an agreement with the observation of  Vliet et 

al. [3] & Ragavan et al. [4]. 
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Figure 6.: Variation of w-velocity for variance  θ with Re = 

1200, Fr = 0.27 and axial position (slice B) 
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In human anatomy, pressure loss (wall) in the bifurcation 

airways plays a vital role in the process of respiration. The 

change of the pressure loss in human lung airways and 

alveoli is the driving force in the respiratory system. Thus, 

it is necessary to understand the effect of inclination angle 

and boundary condition on the pressure loss.  

Figures 7 demonstrate the influence of the slope angle of 

the human trachea on the pressure loss ( 0p p p   ), 

where 0p  signifies the inlet pressure. An increase in the 

slope angle situation is observed to enhance pressure loss.  

It is because at a higher angle of inclination the velocity of 

airflow into the lungs during inhalation is increased. So, 

the increasing slope angle of the trachea increased the 

velocity of airflow through the main and the bifurcated 

trachea to the lungs. This, in turn, generated a greater 

negative pressure in the lungs. It supported the principle of 

Bernoulli's, where the pressure exerted by the gas is 

inversely related to the speed of the gas flow [22]. 
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Figure 7: Variation of pressure loss with the axial position for 

different θ with Re = 1200 and Fr = 0.27 

 

Figure 8 presents the axial position-dependent changes in 

the volumetric flow rate (Q) for different θ  at Re = 1200 

and Fr = 0.27.  For higher slope position the value of Q 

inside a straight trachea is enhanced. Conversely, the flow 

rate through the main bronchi is reduced because of the 

narrowing of the airway branch diameter. Moreover,  the 

influence of slope angle (θ = 15
o
) is found to be 

insignificant.  
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Figure 8: Variation of the volumetric flow rate with the axial 

position for variance θ  

with Re =1200 and Fr = 0.27 

 

According to Chovancova  and Elener [23] flow of 

resistance in the airways depends on whether the flow is 

turbulent or laminar on the dimensions of the airway and 

on the gas viscosity. Therefore, the resistance to flow in a 

trachea at different θ  is shown in Figure 9. It revealed an 

increase when going down the first bifurcated trachea. This 

implies a reduction in the airway branch diameter (cross-

section area). It is clear that the flow resistance, reduced 

with increasing slope position of θ. 
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Figure 9:  Difference of the resistance to flow with axial 

position for variance θ with Re = 1200 and Fr = 0.27 

 

The understanding of airflow patterns through human 

trachea is significant to study the aerosolized medication 

delivery processes and localized diagnostics diseases of the 

lung. Figure 10 - 11 display axial position dependent 

streamlines behaviour of airflow for different values of θ. 

For θ = 0
o
 (Figures 10, 11) it is found that there are regions 

in the bifurcated trachea where the flow recirculation 

occurred irrespective of the Re. Furthermore, this 

recirculation is increased in the outer wall at the higher 

inclination angle of 30
o 
(Figure 11). 

 

Figure10:  Streamline of airflow pattern  through main and 

  single bifurcated trachea for Re=1200 at  θ = 0o 

 

Figure 11:  Streamline of airflow pattern  through main and 

single bifurcated trachea for Re= 1200 at  θ = 30o 

 

4. CONCLUSION 

A symmetric mathematical model is developed and 

simulated to determine the effect of the slope angle of the 

airflow through the trachea and main bronchi. The 

numerical model is simulated by using a MAC method 

with staggered grids. Increasing the slope angle is found to 

increase axial velocity, pressure loss, and volumetric flow 

rate through the main trachea. The resistance to flow 

(pressure drop)  is reduced with the increase of slope 

angle. The recirculation regions are increased in the outer 
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wall with a higher slope angle. The sleeping in a horizontal 

situation leads to a negative influence for many patients. 

Thus, the slope angle situation between 30
o
- 45

o
 is 

demonstrated to induce a better influence that may be 

helpful to patients with chronic obstructive pulmonary 

disease and other respiratory diseases. 
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