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ABSTRACT: The present paper deals with a radiation and mass transfer effects on MHD oscillatory flow for Jeffery fluid with variable 

viscosity through porous channel in the presence of chemical reaction. The fluid viscosity is assumed to vary as an exponential function 

of temperature. The perturbation technique series use to solve the momentum equation. The effects of thermal conductivity, Grashof 

number, Darcy number, Hartmann number, radiation parameter, Schmidth number and chemical reaction parameters on velocity, 

temperature and concentration has been discussed for variations in the governing parameters. 
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1. INTRODUCTION 

Human structure, place of residence and work are examples 

for applications of fluid mechanics. Fluid mechanics also 

play a major role in the design of aircraft engines, jets and 

torpedoes, as well as many applications in the other 

sciences [1, 2]. Fluid flow through the porous medium of 

contemporary and important topics at present, where there 

are excellent applications for fluid transport through the 

permeability channel in Human body, geophysics and 

technology. During the second half of the last century, 

researchers were interested in studying the flow of liquids 

accompanied by thermal transfer. In 1960, Nigam and 

Singh [3], they studied the effect of heat transfer by laminar 

flow between parallel plates under the action of transverse 

magnetic field. In recent years, the requirements of modern 

technology have tended to study the fluid flow in detail, 

which has been interested in the interaction of many 

phenomena. One of these studies is related to the effect of 

free thermal flow through a porous medium where it plays 

an important role in the petroleum and engineering 

industries (e.g., magnetism generators) [4, 5].  The first 

experiments that showed the concept of fluid thermal 

instability attributed to Bénard [6]. Schmidt (1928) [7], 

gave the definition of thermal instability and later modified 

by Hutchinson (1957) [8], which has taken a major deal of 

attention and has been recognized as a problem of 

fundamental in many areas of fluid dynamics. The MHD 

field of was initiated by Hannes Alfvén [9], where the 

magnetic field can induction the current into the fluid 

moving connector, which in turn attracts the fluid and 

changes the magnetic field likewise. Some important 

applications of MHD are the removal of arterial blockage 

[10]. Al-Khafajy and Abdulhadi [11], studied the effects of 

the peristaltic transport of the Jeffrey fluid through a porous 

medium with MHD effect and wall thickness. Radiation is 

the process by which energy can be transferred from one 

object to another through electro-magnetic waves. Magnetic 

radiation and hydrogen continue to attract interest in 

engineering science and applied mathematics research 

owing to extensive applications of such flows. M. O. 

Ibrahim et al [12], gave the formula of the effect of 

radiation on the flow of MHD fluid in a vertical channel 

under the thick vertical approximation. There are several 

non-Newtonian fluid models proposed to describe the 

behavior of these vital fluids. Among these fluids, Jeffrey is 

circulating the Newtonian fluid. In the existing literature, 

many scientists studied Jeffrey fluid under different 

mechanical and thermal boundary conditions [13, 14]. The 

aim of the this paper is to discuss the influence of (MHD) 

oscillatory slip flow for Jeffrey fluid with variable viscosity 

through regularly channel with varying temperature and 

concentration. 

2. Mathematical Formulation 

Consider the oscillatory flow of an incompressible Jeffrey 

fluid with variable viscosity in a channel of width d under 

the influence of electrically applied magnetic field and 

radioactive heat transfer as depicted in Figure 1. It is 

assumed that the fluid has a very small electromagnetic 

force produced by the small electric conduction. We are 

considering Cartesian coordinate system such that, 

(u(y,t),0,0) is a velocity vector in which u is the x-

component of velocity and y is perpendicular to the x-axis. 

   y                                           y = d        T = dT , C = dC  

                0B
                

d                       u 

                                       

             x                                y = 0         T = 0T , C = 0C
 

Figure 1. Geometry of the problem 

    The basic equations of continuity, momentum, energy 

and concentration governing such a flow, is:  
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The boundary conditions are given by: 

0u   at 0y    and   0u  at dy                               

(6)  
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0TT    at 0y   and 
dTT   at dy                               

(7)             

0CC   at 0y   and 
dCC   at dy                              

(8)                                                    

where u  is the axial velocity, T is the fluid temperature, C 

is the fluid concentration, )(T  fluid viscosity dependent 

on temperature p  is the pressure,   is the fluid density, 

0B  is the magnetic field strength,   is the conductivity of 

the fluid, g is the acceleration due to gravity, T  is the 

coefficient of volume expansion due to temperature, C  is 

the coefficient of volume expansion due to concentration, k 

is the permeability, pc  is the specific heat at constant 

pressure, K is the thermal conductivity and q is the 

radioactive heat flux, TQ  is heat generation,   

(  0 ) is the angle between velocity field and 

magnetic field strength, 
*

CK  the chemical reaction rate on 

the concentration and TK  is the thermal diffusion ratio, 

mT  is the mean temperature, BB and TB  the Brownian and 

thermophoretic diffusion coefficients, respectively.  

    The constitute equation of S for Jeffrey fluid with 

variable viscosity is 
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where   is the dynamic viscosity, 1  is the ratio of 

relaxation to  retardation times, 2  is the retardation time, 

  is the shear rate and dots over the quantities denote 

differentiation with time.   
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    Following Vinvent et al. [15], it is assumed that the fluid 

is optically thin with a relatively low density and the 

radioactive heat flux is given by: 
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here mR  is the mean radiation absorption coefficient. 

    Introducing the following non-dimensional variables: 
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where 
mU  is the mean flow velocity, Da Darcy number, Re 

Reynolds number, M magnetic parameter, Pe is the Peclet 

number and R is the radiation parameter. Sc is the Schmidt 

number, Sr is the Soret number, Q is the heat generation 

parameter, 
mT  is the mean temperature, Gr is Thermal 

Grashof number and Gc is Solutal Grashof number. 

    Substituting (10) and (11) into equations (1)-(5), we 

have: 
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    After simplify, we obtain the following non-dimensional 

equations: 
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where )sin( MM  . 

With the boundary conditions: 

0)1()0(  uu                                                                 
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(19)   
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(20)   

3. Solution of the Problem 

By substituting equations )(),( 0 yety it   and 

)(),( 0 yety it   into energy equation (16) and 

concentration equation (17), respectively, with boundary 

conditions (19) and (20), we have the following solutions: 
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where   is the frequency of the oscillation, and  

iPeQRA  22 ,  iKcScB 2 .                

    To solve the momentum equation (15) for purely 

oscillatory flow, we defined Reynold's model and variation 

of viscosity with temperature as follows, [16]: 
  e)(  

    By using the Maclaurin series, Reynold's model can be 

written as: 
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here  = 0 corresponds to the constant viscosity case. Let  
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)(),( 0 yuetyu it                                                             

(25) 

where   is a real constant. 

    Substituting the equations (23 - 25) into the equations 

(15), we have:  
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    Small   suggests the use of perturbation technique to 

solve equation (26). Accordingly, we write: 
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Substituting equation (27) into equation (26) with boundary 

conditions (18), then equating the like powers of , we 

have: 
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The associated boundary conditions are   
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The associated boundary conditions are   

0)1()0( 0101  uu                                                         

(30) 

    Therefore, the fluid velocity is  
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4. RESULTS AND DISCUSSION 

This item includes a discussion of the solutions we have 

obtained from MATHEMATICA program. We discuss the 

numerical and arithmetical results of the effects of radiation 

and mass transfer on the flow of the MHD of the Jeffrey 

fluid with the variable viscosity through the porous channel 

in the presence of a chemical reaction. Numerical 

evaluations of analytical results and some of the graphically 

significant results are presented in Figures (2 - 13). 

The figures (2-5), illustrate the effects of the parameters Pe, 

 , R and Q on the temperature and concentration. Figure 

(2) shows increased temperature and decreased 

concentration with increasing Pe. Figure (3) shows a 

decrease in temperature and concentration with an increase 

of . Figures (4, 5) illustrate the increasing of R and Q lead 

to rise up temperature and reduction concentration.  

    We observed that in figure (6) the concentration 

decreases with increase Sc and Sr, respectively. 

 

Pe 0.1

Pe 0.8

Pe 1.5

1, R 2, Q 0.2,

Sr 0.6, Sc 0.5, Kc 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

y
,

 
Figure 2. Influence of Pe on temperature and concentration. 
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Figure 3. Influence of   on temperature and 

concentration. 
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Figure 4. Influence of R on temperature and concentration. 
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Figure 5. Influence ofQ on temperature and concentration. 
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Figure 6. Concentration profile for various values of Sr and 

Sc. 

 

The objective of this study is to determine the parameters 

most influencing the movement of fluid. Figures (7-13) 

shows the change of the velocity field under the effects of 

parameters Da Darcy number,  viscosity parameter, Gr 

Thermal Grashof number, Gc Solutal Grashof number, Re 

Reynolds number, R radiation parameter, Pe Peclet number, 

Q heat generation parameter, Kc chemical reaction,   

frequency of oscillation, Sc Schmidt number, Sr Soret 

number, M Hartman number and   angle between velocity 

field and magnetic field strength. The profile of velocity 

was plotted in two dimensions by giving a constant value of 

time (t=0.5), and we determined the value of (M =1) and 

( 4  ) in the figures (7-12).  

    Figure 7, shows that the value of velocity increases with 

Da and  , respectively. Figure 8, illustrates the effects of 

the parameters Gr and Gc on the velocity distribution 

function u vs. y. It is found that the velocity profile 

increases with increasing both Gr and Gc. and attains its 

maximum height near the center line of the channel. The 

fluid velocity starts increasing and tends to be constant at 

the walls, as specified by the boundary conditions. From 

figure 9, one can depict here that velocity decreases with 

increasing of Kc and  , respectively. Figure 10, illustrates 

the increasing of R and Re lead to rising up the velocity 

field. Figure 11 contains the behavior of u under the 

variation of Pe and Q, one can depict here that u go up with 

the increasing effects of both the parameters Pe and Q. We 

note that in figure 12 the increasing Sr and Sc tend to 

decreases in velocity field. The influence of M and   on 

velocity field is analyzed in Figure 13. It is found that the 

velocity profile go down with increasing both M and  . 
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Figure 7. Velocity profile for various values of   and Da. 

Gc 0.3

Gc 0.5

Gc 0.7

Gr 0.1, 1.1

1, Da 0.8 , Pe 0.8 , Q 0.2 ,

0.3 , 1 0.3 , R 1, 1,

Re 1, Sr 0.1 , Sc 0.5 , Kc 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

y

u

 
Figure 8. Velocity profile for various values of Gr and Gc. 
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Figure 9. Velocity profile for various values of   and Kc. 
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Figure 10. Velocity profile for various values of R and Re. 
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Figure 11. Velocity profile for various values of Q and Pe. 
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Figure 12. Velocity profile for various values of Sr and Sc. 
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Figure 13. Velocity profile for various values of M and . 

 

5. CONCLUSIONS 
The present study deals with radiation and mass transfer 

effects on MHD oscillatory flow for Jeffery fluid with 

variable viscosity through porous channel in the presence of 

chemical reaction. The perturbation series in the viscosity 

parameter ( <<1) was used to obtain evident forms for 

velocity field. We have obtained an analytical solution to 

the problem. 

The results are analyzed for different values of pertinent 

parameters namely Darcy number Da, viscosity parameter 

 , Thermal Grashof number Gr, Solutal Grashof number 

Gc, Reynolds number Re, radiation parameter R, Peclet 

number Pe, heat generation parameter Q, chemical reaction 

Kc, frequency of oscillation , Schmidt number Sc, Soret 

number Sr,  Hartman number M and angle between velocity 

field and magnetic field strength  .The main findings are: 

 The temperature profile rises up with the increasing 

Pe, R and Q, while go down with the 

increasing .  

 All parameters  , Sc, Sr, Pe, R and Q adversely 

affect concentration. 

 The velocity of fluid increases with increasing 

parameters Da, Re, R, Pe and Q, while the 

velocity go down with increasing Kc, Sc, Sr and 

M.  

 The parameters with the greatest effect on velocity 

are Gr, Gc,  ,   and  , where the velocity of 

the fluid is directly proportional to Gr, Gc,  and 

inversely proportional to  ,  . 
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