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ABSTRACT. In this article, we introduced the concept of holomorphic sectional conharmonic tensor of a normal local conformally
almost co-symplectic manifold (W LCACS-manifold). In particular, we established some of its properties and analytical expressions.
Consequently, analytical conditions for the VLCACS-manifold to be a kind of point wise constancy conharmoniclly holomorphic

sectional are obtained.
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1. INTRODUCTION
The concept of local conformally almost co-symplectic
(LCACS) structures introduced by Vaisman [1]. In
particular, he proved that an almost contact metric manifold
Mis LCACS if, and only if, there is a differential 1-form
a satisfies certain conditions.
Furthermore, in [2], the mentioned manifold was studied
regarding the ¢-sectional curvature. Subsequently, it is
shown that pointwise constancy ¢-sectional curvature
condition implies that the m-Einstein and the k-nullity are
equivalent. On the other hand, Kharitonova [3], established
the full family of the structural equations of a LCACS-
structure.
The normal LCACS-structures(VLCACS-structures) are
studied in [4]. A complete family of structural equations was
established. Moreover, the components of the Rieman-
Christoffel and the Ricci tensors were determined. Moreover,
The conditions for the constant curvature are given. In
particular, it is proved that a special form of NLCACS-
manifolds has non-positive curvature. Finally, Abood and
Al-Hussaini [5], employed the adjoined G-structure space to
study the geometry of the mentioned manifold of @-
holomorphic sectional conharmonic curvature tensor.
2. Preliminaries

This section contains some concepts and facts related
to the content of this paper. In particular, the structural
equations and the components of the Rieman-Christoffel
tensor of the VLCACS -manifolds have been established.
Definition 2.1([6]). Suppose that M is an odd-dimensional
manifold, a quadruple (y,a,®,g) of tensors is called an
almost contact metric structure (cAC-structure) on a manifold
M, such that y is a contact differential form of rank 1, a is a
characteristic vector field, ® is endomorphism tensor of type
(1,1) of a module X (M), and g = (-) is a Riemannian
metric tensor. Moreover, the following conditions hold:
Wy(@) =1; 2Q)P(a) = 0; )y o ® = 0; (P> —id +
Y®a; (5)(PX, PY) =(X,Y) —y(Xy(Y),X Y € X(M).

(2.1)

A manifold M endowed with the above structure is known as
almost contact metric manifold (AC-manifold).
It is easy to verify that Q(X,Y) = (X, ®Y) is anti-symmetric,
that means is a differential 2-form on M. It is called a
fundamental differential form of the AC-structure [7].
Let (y,a, @, g) be an AC-structure on the manifold M?"+1,
In the module X' (M) there are two mutually complement
projections m, ¢, where m =yQ®a and £ = —®2. Thus
X(M) = LM, where L = Im® = kery, dimL = 2n and
M =Imm = ker®, dimM =1. Lis called a contact
distribution of the first kind, while M is called a distribution

of the second type. Obviously, the distributions M and L are
d-invariant. Moreover, we have ®2? = —id, (®X,PY) =
(X,Y),X,Y € X(M), where & = ®|,. Therefore, in the
tangent space T,,(M) at m € M, one can construct an
orthonormal frame (m,eq, ey, ..., e, Pey, ..., Pe,), wWhere
ey = a,. Such frame is called a real adapted [8]. On the
other hand, let L = LQC be the complexification of the
distribution L. Moreover, there are two complement
projectors p = %(id —V=1®) and p = %(id +V-19)
which are intrinsically defined on the proper submodules
D(}/,‘_l and Z);‘/‘_l of the endomorphism @ corresponding to
the eigenvalues v—1and —/—1 respectively. That is, the
module L¢ decomposes into a direct sum of proper
submodules LS = DY ‘@Dz 1.

Thus, the complexification of the module X (M) will be
written as a direct sum of the proper submodules of the
endomorphism @, that is X¢(M) = DY '@D;' '@DY,
where DY = M €. The projections on this direct sum are
respectively, endomorphisms I = —%(CDZ +V=10),1 =
~(~®? +V=10) and m = id + 2.

Consequently, we can construct a frame
(m, gy, 04, ..., Oy, 01, ..., 05) Of the complexification of the
space T, (M), where g, = a,,, 0, = V2p(e,), 05 = V2p(e,)
consisting of the eigen vectors of the operator ®. Such a
frame is called an A-frame [9]. One, easily possible to
observe that the components matrices of the tensors @, and
Jm In the A-frame are represented as the following formulas:

0 0 0 1 0 0
@=(0 v 0 J=(o 0 1)
0 0 —V/-1I, 01, 0

(2.2)
It is well known [8], that the collection of previous frames
gives a G-structural on M with the structural group {1} x

1 0 0
U(n), formulated by the matrix (0 A 0), where A €
0 0 A

U(n). The mentioned G-structural is called an associated.
Throughout this paper, we will assume that the range of the
indexes i,j,k, ... are from 0 to 2n, while the range of the
indexes a,b,c,d, f, ... are from 1 to n, further set @ = a +
n, 4= a,0=0.

The structural endomorphism @ and the metric structure
g are respectively tensors of type (1,1) and (2,0) on the
manifold M2"+1, Therefore, regarding the basic theorem of
tensor analysis and the covariant of the metric tensor of the
Riemannian connection, their components as a family of
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functions on the space of the principal bundle of frames
B(M?*+1), satisfy the relations:

1) do} — dpof + Of w} = @} 0¥ 2) dg; — gywf —
gijwf =0, (2.3)
where {w'}, {w}} are the components of the displacement
forms and the Riemannian connection V respectively, and
<I>]-i,k are the components of the endomorphism tensor @ in
this connection.

Taking (2.2) into account, so the relations (2.3) on the
associated G-structural space can be rewritten in the forms

[8]
V=1

a _ 454 _ 50 _ Q. a _ a k.
Do = Po e = Pop = 0; w = —=P5, 05

" N N

a _ a . a_ . [— a k.
Cl)b —_ __2 (pb,k’ (1)0 —_ 1‘1’0‘,(0) )

a a 0
wi =—-/-10§, 0" 0] =-—V-107, 0"

wd =V-10, 0k w}+ w =0, w=0. (24)In
addition, we note that, because of the fact that the
corresponding forms and tensors are real, w'= w' w =
W), Vol = V(Djfyk, where t — £ is the complex conjugation
operator. And also, from (2.4) it follows that the system of
functions {®/,} is anti-symmetric regarding the indexes i
and j, that is @}, = @/,.
Consequently, according to these relations, the first family of
structural equations of the Riemannian connection dw' =
—w;f A w’ on the associated G-structural space of an AC-
manifold can be written in the following form, called the first
family of the structural equations of AC-manifold [9]:
1) dw® = —wf Aw” + B w Awy + B wy, A
we + B, Aw? + B Awy,

2)dw, = wE Awy + By we A wP + Bapew? A

0+ Bw A wy + By AP,
Ddw = Chew? A€ + Cwp A w, + CPw A

wp + Cow AwP + CPw A wy, (2.5)
where w = w® = w, = M*(n), 11 is a projection of the
associated G-structural space onto the manifold M,

v—1 V=1
Babe = _?(pﬁy,c]; ﬂabc = 2 d)g,é;
V=1 V=1
ﬁabc = Td)[%.f]; ﬁabc = _T(Dg,c;
e, =N=10G,; € =V=100p 5;

Bo" = V=105 Cop = —V=10 1
C, =V-10%,; €% =—V-10;
G = —V=L(0ha+0L) = B, — "

1 ~ ~
Bap =V-1 (;‘pg,o - d)g,b);

1

B = —V=1(508, - o). (2.6)
Taking these relations into account and the anti-symmetry of

the system of functions {®} , }, we note that
bc — b. b _ ba . b — ba.
ﬂa Cc — _B(ZC ; ﬁa . — _ﬂ ac’ Ca - _C a’

Babe = —Bacv; ﬁabc = _ﬁbac; ap = —Cpa
ﬁ—abc = Bapes B = .Babc; gb = Cap;
B =Pap; C* =Cp wj =-—wf. (2.7)

The Nijenhuis tensor of an endomorphism @ is a tensor N
of type (2.1), given by
Nyp(X,Y) = i((bz[X, Y] + [@X, ®Y] — ®[dX, Y] —
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DX, dY]), X, Y € X (M).

Its vanishing is equivalent to the integrability of the structure
[10]. A direct calculation, taking into account the identity
[X,Y] = VY — V, X, shows that [9]

No(X,Y) = i{%x(d’)Y — PV (D)Y — Voy (P)X +

DUy (D)X}

Taking (2.4) into account, we obtain that, the components of

the tensor N, are determined by identities below:
g =-2

o _ V-1
2) Nap ==~
3) Ny = V=10,

H NE = —=10f ;

CD[Oa.b];

0
Plas)

V=1
5) Nap = —Nya = — 5~ Plapy
= =
6) Nyo = —Nop =~ Pj0 — 5 P (2.8)

2
The remaining components of the Nijenhuis tensor are

identically vanishes.
Definition 2.2[14]. An AC-structure is said to be a normal
if, Np + 2dy®a = 0.
The notion of a normality was introduced by Sasaki and
Hatakeuyama in 1961 [14] which is one of the most
significant concepts of contact geometry.
The following proposition immediately follows from (2.8).
Proposition 2.1[8]An AC-structure is normal if ,and only if,
the equalities below hold,
(DE‘C = ‘p;}l,a = ‘pg,o = ‘p;}l,o = (pg,b = ‘pg,ﬁ = ‘Z’g,o = ‘Dg,o =
0.
the first family of the structural equations of the normal
structure are given by the formulas below:
do® = —wj Aw” + B 0 Aw, + B, 0 A w?;
dwg = 02 Awy + Bap we A0 + B w A wp;
do = Clow Aw, .
Definition 2.3 [12]. An AC-structure S = (y, a, @, g) is said
to be an almost co-symplectic structure (ACS-structure), if
the conditions below hold:
1dy=0; 2)da=0.
Proposition 2.2 [8]. Let Q be the fundamental form of
an AC-structure. Then the following equalities hold:
DI = —V—1w®* A wg;
2) "dQ = V=1{BY .w, A wy A 0 — B wy A wy A w, +
B wa AP Aw + BPwe Awy Aw — Bap @ A Aw, +
Bapc@® A 0% A 0° — B" 0% A wy A + Bap0® A 0” A w}.
Writing the conditions of the Definition 2.3 and taking
Proposition 2.2 into account, the first family of the equations
of the ACS-structure takes the formula:
1D dw =0; 2)dw® = -0 Aw? + % w, A w, +

FPw, Aw; 3)dw, = 02 A wp + Bapew? A o€ +

Fpo? Ao, (2.9
where,
pere = gdﬁ;_@]: Bave = —?%,Cp
Fb = \/—_1‘1"2'3; Fop =—V=107,;
B[abc] = .B[abc] = 0;@ = Babcs
Flabl = Fp = 0; Fib =F,. (2.10)

Definition 2.4 [7]. A normal almost co-symplectic structure
is called a co-symplectic structure.
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The first family of the equations of the co-symplectic
structure on the associated G-structural space takes the form
Ddw=0; 2)do®* = -0 Aw?; 3)dw, = 6L A w,.

(2.11)

A conformally transformation of an AC-structure
S = (y,a,®, g) on a manifold M is a transition from S to an
AcC-structure § = (¥,&@, ®, ). In this case 7 = e %y, @ =
e’a,®=,§ =e2%g, where o is an arbitrary smooth
function on M, called a defining function [13]. If o =
constant, so a conformally transformation is called a trivial.
Definition 2.5 [13]. The AC-structure S = (y,a, ®,g) on M
is called a local conformally almost co-symplectic (LCACS)
structure, if its restriction to some neighborhood U of a point
m € M admits a conformal transformation into an ACS-
structure. We call this transformation a local conformally. A
manifold M equipped with a LCACS-structure is called a
LCACS-manifold.

Note that if ¢ = constant, then we obtain an ACS-
manifold.

Suppose that M is a normal LCACS-manifold.  Recall
[4] that for normal LCACS-manifolds, the non-zero
components of the Rieman-Christoffel tensor R have the
forms
1) Rbcd
—(ag0 + 06 )(Sb , (2.12)
where §% = §265 — 626%¢. The remaining components
obtained from those above which are given with allowance
for the symmetrical properties and reality of the Rieman-
Christoffel tensor.

The non-zero components of the Ricci tensor are given
by the following relations [4]:
Too = —2n(0go + 04);
i — 2néfag —

6a6b0'0, 2) Rbcd’ 3) Rgbo =

T&b = 6;)10-00. (2.13)
3. NLECACS-Manifolds of Conharmonically
Holomorphic Sectional Curvature

Let M2™*1 pe an AC-manifold. One of the subclasses of
the conformal transformations is the conharmonic
transformations, these transformations preserve the
harmonicity of functions.

A conharmonic tensor [14] s invariant under
conharmonic transformations which has the form
CX,Y,ZW)=RX,Y,Z,W) — ﬁ{g(X, Wr(Y,z) —
g(X! Z)T(Y’ W) + g(y! Z)r(X! W) - g(Y: W)T'(X, Z)},
XY, ZeX(M)),
where R,r and g are respectively denote the Rieman-
Christoffel tensor, Ricci tensor and Riemannian metric.

The conharmonic curvature tensor of an AC-structure
on the space of all complex frames is calculated by the
formula below [14]

Cjikl :R]kl + (5k T + gjlrkit - gjkrli)1 (3.1)
where R}kl, i and gijare respectively denote the
components of the Rieman-Christoffel tensor, Ricci tensor

and metric tensor.

It is easy to show from (3.1), that the conharmonic
tensor possesses all the symmetrical properties of the
Rieman-Christoffel tensor.

Definition 3.1. An AC-manifold M is called a kind of point
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wise constant conharmoniclly holomorphic sectional
(PCHS)-curvature c, if
(CX, X)X, PX) = c||X||*, VX € L. (3.2)

If, in addition, ¢ = constant, then the manifold is called a
manifold of global conharmoniclly holomorphic sectional
(CHS)-curvature.

LetM be an AC-manifold of PCHS-curvature
¢. The relation (3.2) regarding the associated G-structural is
written as the form
4C4p,aX XXX = —4cgapg.aX2XP XX, Taking (2.2)
into account, the previous relation can be rewritten
as (Capeq + c626)XXP XX = 0. The polarization of this
relation leads us to the following theorem.

Theorem 3.1. An AC-manifold is a one of PCHS-curvature
¢ if, and only if, on the associated G-structural space, we
have

Cod) = —<534, (3.3)
where 6% = 5262 + 5262
Suppose, in particular, thatMis an NLCACS-

manifold. Regarding the associated G-structural space, the
conharmonic curvature tensor of a mentioned manifold has
the following non-zero components [15]:
a
2n—-1 [26” {(n +

1
1) Cobo = Ripo — 37— Bp 700 + Goos) =
1
p— —(8¢1pa + gpatd) =

%) oF + Uoo} - A%] ;
2) ped = Rpea —
—[28868 {(n+3) 0 + 00} + 452 (2n — 1) — 5345 —

6aA,,h] ;

3) Chea = ?ch . 1_1 (8¢Tpa — 64Tpe + Gpale' —

ggcr;) =— [26 @ {(n+3) 03 + 000} + 82A%: +
5aAL 5 — 524 ] (3.4)

The remalnlng components obtained with allowance for the
realness and symmetrical properties of this tensor as an
algebraic curvature tensor, or are identical equal to zero.
Definition 3.2. An NLCACS-manifold of a PCHS-
curvature is called an V' LCACS-conharmonic space form.
Theorem 3.2. An NLCACS-manifold is a one of PCHS-
curvature ¢ if, and only if, on the associated G-structural
space, the following equality holds:

- C .

Age = —5533
where 334 = 5254 + 52682
Proof. Suppose that M is a NLCACS-manifold of PCHS-
curvature c. So taking into account (3.3) and (3.4:2), we have

(ad) _ 4(ad) (a d) (dln| (d 2
Coey =Awe) ~ 9 — oz L(AGH — 205G
da h d
845 000)88) + (Ag‘jl'hl' - 2n5(“ 5(“0—00)5 = -<55,
_1gad 2 _ (dlhl a) _
that means A%% 26bc A (2n—1) Atpin ¢
(TlO'o + 0-00)6 ) - __6 (35)
We introduce a pure tensor A of type ((2) g) with
jad _ 2 (dlhl )
components A% - —6bc %~ G (A8 —
(nog + 0'00)517 ) (3.6)

symmetrizing over any pair of superscripts. Then (3.6) is
written in the form
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At = —>85¢. 3.7)
Consider a 4-form H(X,Y,Z,W) = (Aﬁf + %51‘}3)

_ 1z 2 (dlnl| sa)
xbyez,w, = {Agf - 55%‘702 ~ @D (A(b|h|6g) -
(n0§ + 000)852) + S 60} XPYZ W VX, Y, Z,W € L.
The form H(X,Y, Z, W) has the properties listed below
DHMX, +X,,Y,Z,W) =

d _1%ad 2 2 (dln| ¢a) 2 Sad
{Agc =5 05c 0 _(Zn——l)(A(b|h|6C) — (nag + 900)85¢) +

~ 1 -~
£8584} (X, + Xp)PYZ W, = {458 — 26808 —
2 (d|h| ga) Sad
(2n-1) (A(b|h|5f) — (nag + 000)8gc) +
=85} X, Py ez Wy + {Agd — 2858803 —

2 (dln] sa) _
(ZTL—l) (A(blhldc)

(n0§ + 000)852) + S 60} X,V ZWy = H(Xy, Y, Z,W) +

H(X,,Y,Z,W);

2) HX,Y,Z,W)=H{Y,X,Z,W)=HX,Y,W,Z);

3) HX,Y,Z, + Z,,W) =H(X,Y,Z,W) +

H(X,Y,Z,,W);
4) H(®X,Y,Z,W) =V—=1H(X,Y,Z,W);
BYH(X,Y,®Z,W) = ——1H(X,Y,Z,W);
vX,Y,Z,W e L.

Based on these properties, we prove that H(X,Y,Z, W) = 0.

By (3.7), we have that H(X,X,X,X)=0. Make a

replacementX - X +Y, then we getHX +Y, X +Y, X +

Y,X +Y) = 0, which means that

2H(X, X, X,Y)+H(X,X,Y,Y)+ 2H(X,Y, X, X) +

4H(X,Y,X,Y) + 2H(X,Y,Y,Y) + H(Y,Y, X, X) +

2H(Y,Y,X,Y) = 0. (3.8)

Moreover, one can make in (3.8) the changing X - —X and

then adding the result obtained by term with (3.8), we obtain

HX,X,Y,Y) +4H(X,Y,X,Y) + H(Y,Y,X,X) = 0. (3.9) In

the last equality, we make the change X — ®X, the result is

added term by term with (3.9), then we get H(X,Y,X,Y) =

0. Given this equality, the equality (3.9) takes the

formH(X,X,Y,Y) + H(Y,Y,X,X) = 0, where we made the

replacement X — X + Y. As a result, we get

HX,Z,Y,Y)+H(Y,Y,X,Z) = 0.

We make in (3.10) replacement X — @X,

V=1H(X,Z,Y,Y) ——1—-H(,Y,X,2),

Consequently, H(X,Z,Y,Y) — H(Y,Y,X,Z) = 0. Adding the

last equality to (3.10), we get H(X,Z,Y,Y) =0. In the

resulting equality, we make the replacement Y =Y + W,

then H(X,Z,Y,Y) + 2H(X,Z,Y, W) + HX,Z,W,W) = 0,

therefore we have H(X,Z,Y,W) = 0.

By replacing Z < Y, we obtain the desired, which means

HX,Y,Z,W)=0,vVX,Y,Z,W € L. Thus, the theorem is

proved. [
Now, we introduce the tensor H with components

_ rad _ 1z 2 (dln| ca)
Hyd = A3t = 438 — 2858 o¢ — s (AGHISE —

(no¢ + 000)82%) and call it a tensor of
conharmonic curvature of LCACS-manifolds.
It is easy to show that the holomorphic conharmonic
curvature tensor H has the following properties:
DHyeHX,Y,Z) =0;
2)®oH(X,Y,Z) = H®X,Y,Z) = —H(X,Y, ®Z);
3)H(a,Y,Z) =HX,Y,a) = 0;VX,Y,Z € X(M).
Let M be anNLCACS-manifold of

(3.10)
then

holomorphic

(3.11)
PCHS-
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curvature c. Then, by virtue of Theorem 3.2, we have H{¢ =
—-585¢. We write this equality in the form Hj¢ =
— - 58488 — 5488 So we have

H(O-b!o-(:: O-a)a = _%(O-C! a&)(ab)a - %(o-bl O-a)(o-c)al
since {o,} and {o;}are the basis vectors of the

submodules Dl‘_l and D, Yand the projectors on these

submodules are  endomorphisms 1 = pol = —%(cpz +
V=10®), I=pol= % (- @2 + V—1) respectively, then
(0?2 + V—10) o H(P?X + V—10X, d?Y + V-10Y —

P?Z +N=10Z) = —~(P?Y + V=10V, ~0°Z +

V=10Z)(®2X + V-1@X) — %(qﬂx +V=10X, —P%Z +
V=10Z)(9?Y + V-10Y); X,Y,Z € X (M).
Expanding the brackets, we get
—®2 o H(P2X, D2Y, P2Z) — ®% 0o H(P2X, PY, PZ) — P2 o
H(®X, P2Y,dZ) + &% o H(PX, DY, D7) + d o
H(®X,dY,dZ) — ® o H(D?X, DY, PZ) + P o
H(®%X, dY, D%Z) + & o H(®X, P2Y, d2Z) =
- % (—(D2Y, P2Z)P2X — (DY, PZYD2X + (DY, D2Z)DX —
(P2Y, PZYPX) — g(—@zy, P2ZYPEX — (DY, DZ)D2X +
(BY, P2ZYDX — (DY, PZ)DX); X,Y,Z € X(M). (3.12)

In view of (3.11), the identity (3.12) will take the form
HX,Y,Z) = — g (—(®Y, DZ)D2X + (Y, DZ)DX —
(®Y, PZYD2X(Y, PZ)DX); X,Y,Z € X (M).
Thus, the following theorem is concluded:
Theorem 3.3. An NLCACS-manifold is a manifold of
PCHS-curvature ¢ if, and only if, the holomorphic
conharmonic curvature tensor has the following formula
HX,Y,Z) = — g (—(®Y, DZ)D2X + (Y, DZ)DX —
(BY, PZYD2X + (Y, DZ)DX); X,Y,Z € X (M) .

(3.13)
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