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ABSTRACT:  This study aims to examine ridge regression based on robust estimators S, M, MM when data contain full 

multicollinearity and various numbers of outliers. Simulation data with p= 10; n = 25, 50, 100;       and   otherwise contain full 

multicollinearity (ρ=0.99 ) and various numbers of outliers (10%, 15%, 20%) was used and repeated 100 times.   The existence of 

multicollinearity evaluated using VIF values.  The empirical evidence shows that robust ridge regression based on MM-estimator 

(RMM) solves the problem of  multicollinearity and various number of outliers very well  compare to robust ridge regression based on 

M-estimator (RM) and S-estimator (RS).  RMM provides the best estimator of regression coefficients and is more efficient because  it has 

the smallest mean square error than RM and RS in any samples sizes and number of outliers. 
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1. INTRODUCTION 
The existence of multicollinearity may have a negative 

impact, which will cause the estimated parameter variance 

to be greater than it should be, thus the precision of the 

estimate will decrease. Another consequence is the low 

ability to reject the null hypothesis (power of test). The 

cause of multicollinearity is data collection and small 

sample sizes or if the range of x is small [1,2].  Research on 

handling  multicollinearity in multiple regression models 

has been done by many researchers using various methods.  

One of recommended method is ridge regression. This 

method has been proven outperformed to ordinary least 

square method in handling multicollinearity[ 3, 4, 5, 6, 7, 

8].    

In addition, the presence of outliers may also lead to other 

assumptions such as assumption of normality and 

uniformity of homogeneity. The presence of outliers may 

influence the estimation and results of inference tests in 

least square method.  Least square is extremely sensitive to 

regression outliers, that is, observations that do not obey 

the linear pattern formed by the majority of the data [9]. 

Methods to overcome data containing outliers in a 

commonly used regression model are robust regression 

[10]. There are several types of robust regression methods. 

[11] introduced S-estimator that minimizes the dispersion 

of the residuals. [12] suggests. MM-estimation is a 

combination of high breakdown value estimation and 

efficient estimation and [13] introduced  M-estimator that is 

nearly as efficient as OLS.   

However, in the situation where multicollinearity and 

outliers are exist together in a data set, ridge regression or 

robust estimator cannot be used separately.  The two 

methods has to be combined to handle the problems 

altogether.  This combining methods is known as robust 

ridge regression estimator.  Although several studies of 

handling multicollinearity and outliers has been done by 

some researchers[14, 15, 16, 17,18],  the study of handling 

multicollinearity and various numbers of outliers which 

presence altogether in the multiple regression models has 

not been done thoroughly. Therefore, in this research will 

be discussed the performance of ridge regression method 

based on robust regression of S, M, and MM on data 

containing multicollinearity and various number of outliers. 

2. ROBUST RIDGE REGRESSION  

In the presence of multicollinearity, robust ridge regression 

methods provide an alternative to least squares regression 

by requiring less restrictive assumptions. This methods 

introduced by Hoerl (1962) attempt to dampen the 

influence of outlying cases in order to provide a better fit to 

the majority of the data. This method was introduced by [3] 

and developed by [4].  The estimator of the ridge 

regression coefficient is  ̂                       with 

I  = matrix identity      , k = bias constant        .   

Augmented robust estimators as a way of combining biased 

and robust regression techniques is suggested by [16]. The 

combined procedure is based on the fact that robust 

estimates can be combined using a weighted least squares 

procedure. When, both outliers and multicollinearity occur 

in a data set, it seems preferable to combine methods to 

deal with these problems simultaneously. According to 

[14],  robust ridge-robust regression is a combination of 

ridge regression and robust regression methods to 

overcome the problem of multicollinearity and outliers.  

The resulting ridge robust regression estimator will be 

stable and resistant to outliers. Parameter estimation 

formula ridge robust regression is   ̂         

            ̂      with      
 (        
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and  p = the 

number of independent variables. 

S-Estimator  

Let ρ be a symmetric, continuously differentiable function 

such that ρ(0)=0 and is strictly increasing on [0,c].  Let 

  ∫            where   is the standard normal 

distribution.  Introducedby [11],  S-estimator is derived 

from a scale statistics corresponding to s( ).  Let 
                   be a sample of regression data withp-

dimensional      For each vector β, we obtain residuals 

 (             ).  The S-estimator  ̂ is defined by 

 ̂        (             )with final scale 

estimator ̂   (             )    The objective function 

is  by solving the equation of scale 
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The parameter c is the tuning constant.  This tuning 

parameter appears to be a very important part for 

asymptotic and breakdown properties of S-estimator for 

regression. [19]suggestsc=1,548 and k=0,1995 for 50% 

breakdown and about 28% asymptotic efficiency.  

M-Estimator 

M-estimator  was introduced by [13]. M-estimator is given 

by  ̂          ∑  |     |    
   The  M stands for 
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maximum likelihood since ρ(.) is related to the likelihood 

function for a suitable assumed residual distribution.   This 

estimator attemp to minimize the sum of a chosen 

function     which is the residuals [1].  To obtain ̂ yaitu 

we have to solve      ∑      
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   function is Tukey‟s 

bisquare objective function: 
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To minimize  ̂  is by taking partial derivatives with 

respect to β and setting them equal to 0, 

yielding∑     (
   ∑      
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                 where 

    ;      is  i
th

 observation of j
th

 independent variable 

and      .   function is selected with respect to the 

weight of assign outliers. A solution for   function by 

defining a weighted function       
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For Tukey „sbisquare, take c=4,685, we get   

∑      (
  

 ̂
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                    This equation can be 

solved by iteratively reweighted least squares (IRLS) 

method[20].   

MM-Estimator  

MM-estimator is a combination of high breakdown value 

estimation and efficient estimation which was introduced 

by [12].  This procedure estimates regression parameter 

using S-estimator which minimize the scale of the residual 

from M-estimatorand then proceed with -estimator[21, 22].  

Thefirst stage is calculating an S-estimate with influence 

function       (
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   otherwise       .  The value of tuning constant 

c=1.548.  Then calculates the MM parameters which has 

minimum value of ∑  (
  

 ̂
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    where      is the influence 

function used in the first stage with c=4.687 and  ̂ is the 

estimate of scale form the first step (standard deviation of 

the residuals. The final step computes the MM estimate of 

scale as the solution to 
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3. METHODS 
We simulate a set of data with sample size n=25, 50, 100 

contain full multicolleniarity among all independent 

variables (p=10) and contain various number of outliers 

(10%, 15%, 20%) of the data using true model as   

      variables (ρ=0.99). By R package with 100 

iterations, the independent variables are generated by 

                                                 

where     are independent standard normal pseudo-random 

numbers and ρ is specified so that the theoretical 

correlation between any two explanatory variables is given 

by   . Dependent variable     for each   independent 

variables is from        with β parameters vectors are 

chosen arbitrarily (  =0, and β=1 otherwise) for p= 10 and 

ε~N (0, 1). We considered contamination proportion in data 

10% , 15 %, 20%. To measure the amount of   

multicolleniarity in the data set,  variance inflation factor 

(VIF) is examined.  The behaviour of RM, RMM and RS in 

estimating the regression coefficient is evaluated by 

standard error and  mean square error (MSE) of the 

parameter estimates.   

 

4. RESULTS AND DISCUSSION 
Independent variables are designed to have full 

multicollinearity.  To ensure that the condition occur as 

designed, it is examined using VIF values of the variables.  

As can be seen in Table 1,  the initial VIF of the variables 

are greater than 10, it indicates the presence of full 

multicollinearity among all the independent variables being 

studied. 
Tabel 1.  VIF of Independent  Variables 

Variables VIF 

x1 47.1756 

x2 54.9222 

x3 38.7089 

x4 43.8664 

x5 49.1229 

x6 53.3555 

x7 30.625 

x8 46.7618 

x9 44.4623 

x10 38.8778 

After the  ridge regression is applied to the data, the VIF is 

reexamined to see if the multicollinearity problem is 

resolved. The result shows that after applying ridge 

regression the VIF values reduce significantly to be close to 

one. It indicates that multicollinearity is handled very well 

by ridge regression.  Further, RM, RMM and RS are used 

to handle the the presence of outliers in the data.  The 

behavior of the RM, RMM and RS in estimating the 

regression coefficients is evaluated by standard error and 

mean square error (MSE) of the parameter estimates.  

RMM, RM and RS have small standard errors of parameter 

estimates for each sample size and number of outliers.  The 

smallest standard errors of parameter estimates is produced 

by RMM.  This shows that RMM gives better coefficient 

regression estimator than other methods being studied. 

To see the best behavior of the robust ridge regression in 

the study, mean square error of each method is evaluated.  

The result is shown in Table 2  and Figure 1-3.   
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Tabel 2. MSE of RMM, Rm, RS for different sample 

sizes and number of outliers 

 MSE of RMM, RM, RS for different sample sizes and 

number of outliers 

Number 

of 

Outliers 

Method 
MSE 

n=25 n=50 n=100 

10% 

RMM 2158.6 2375.6 15766.1 

RM 
3162.6 2406.7 15785.7 

RS 
8184.7 7945.4 35726.5 

15% 

RMM 
1836.1 2107.8 13620.5 

RM 
2349.3 2136.2 13639.5 

RS 
6819.8 7839.7 28889.5 

20% 

RMM 
1689.5 2488.7 13107.3 

RM 
2189.3 2516.5 13120.5 

RS 
3605.2 6780.7 25587.4 

 

 
 

Fig.1.   MSE of RMM, RM, RS for different sample sizes 

and 10% outliers 

 
 

Fig.2. MSE of RMM, RM, RS for different sample sizes 

and 15% outliers 

 

 
 

Fig.3. MSE of RMM, RM, RS for different sample sizes 

and 20% outliers 

 

Table 2 and Fig. 1- 3 show that RMM produces the 

smallest MSE value followed by RM  and RS for each 

sample size and number of outliers.  It  denotes that RMM 

handles multicollinearity and number of outliers 

significantly compared to RM and RS in any number of 

sample sizes and number of outliers.  This results are 

correspond to research by [18]  who studied some robust 

ridge regression for handling multicollinearity  and outliers 

for data the capital commodities and imported raw 

materials, in Iraq in the period from 1960 to 1990 shows 

that  MSE of RMM is smaller than RM and RS.  

 

5. CONCLUSION 
Based on the results and discussionit can be concluded that 

RMM is a better method in handling multicollinearity and 

outliers than RM and RS for small and large sample sizes.  
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