THE SOLUTIONS GROWTH OF 2ND ORDER DES WHERE THE COEFFICIENTS ARE MEROMORPHIC BELONG TO EDREI-FUCHS CLASS

Eman A. Hussein ${ }^{1}$ and Ayad W. Ali ${ }^{2}$

${ }^{1,2}$ The University of Mustansiriyah/College of Sciences/Department of Mathematics
Corresponding addresses $:^{1}$ dr_emansultan@ yahoo.com, ${ }^{2}$ ayoodalkhalidy @yahoo.com
ABSTRACT: In this paper, we shall consider the second order linear complex differential equations with meromorphic coefficients. One of the coefficients belongs to Edrei-Fuchs class and the other one satisfy some conditions under which any nontrivial solution of mentioned equation is of infinite order.

Key words: Edrei-Fuchs class, deficient value, meromorphic function, order, lower order

.1. INTRODUCTION

In our paper, we shall investigate the following complex DE

$$
\begin{array}{r}
f^{\prime \prime}+A(z) f^{\prime}+B(z) f \\
=0 \tag{1}
\end{array}
$$

where the functions $A(z) \quad \& \quad B(z) \not \equiv 0$ are meromorphic.
The fundamental concepts of the theory of value distribution of meromorphic functions are used [1, 2]. By $\rho(f)$ and $\mu(f)$ we meant the order and lower order, respectively, of the meromorphic function $f(z)$.
Some equations like (1) have a finite order nontrivial solution, for instance, $f(z)=e^{z}$ has order one and it is a solution of $f+e^{-z} f^{\prime}-\left(e^{-z}+1\right) f=0$. Hence, we ask the following question: what condition(s) on $A(z)$, $B(z)$ which gives us guarantee that any solution of (1) has order equal to infinite?. Here, there are much works give the answer of this question [3, 4, 5-8].
The authors in [3] proved the following results:
Theorem A Suppose that $A(z)$ is a finite order entire function with finite deficient value, $B(z)$ is a transcendental entire function with $\mu(B)<\frac{1}{2}$. Then any solution $f \neq 0$ of (1) has $\rho(f)=\infty$.
Theorem B Suppose that $A(z)$ satisfy the hypothesis of Theorem A, $B(z) \neq 0$ is an entire function. Assume that a constants $\alpha>0, \beta>0$ exists, and for every $\varepsilon>0$, two sets of reals $\left\{\varphi_{k}\right\},\left\{\theta_{k}\right\}$ of finite elements satisfies

$$
\varphi_{1}<\theta_{1}<\varphi_{2}<\theta_{2}<\cdots<\varphi_{m}<\theta_{m}<\varphi_{m+1}\left(\varphi_{m+1}=\right.
$$ $\left.\varphi_{1}+2 \pi\right)$, and

$$
\sum_{k=1}^{m}\left(\varphi_{k+1}-\varphi_{k}\right)<\varepsilon
$$

for which
$|B(z)| \geq \exp \left\{(1+o(1)) \alpha|z|^{\beta}\right\}$
when $\quad z \rightarrow \infty \quad$ in $\quad \varphi_{k} \leq \arg z \leq \theta_{k}, \quad(k=1,2, \ldots, m)$.
Then any solution $f \neq 0$ of (1) has $\rho(f)=\infty$.
Theorem C Suppose that $A(z)$ satisfy the hypothesis of Theorem A, B(z) $=0$ is an entire function satisfy that for every $k>0$

$$
\lim _{|z|=r \rightarrow \infty} \frac{|B(z)|}{r^{k}}=\infty
$$

holds for $z \notin G$ where G is a set of r-values satisfying $m_{l}(G)<\infty$. Then any solution $f \neq 0$ of (1) has $\rho(f)=$ ∞.
Definition 1.1 [9] Let $f(z)$ be a finite order meromorphic function in the whole complex plane with $0<\rho(f)<\infty$. We say that a ray $\arg z=\theta$ that start from origin is a zeropole limit point (ZPL) of $f(z)$, if
 $\rho(f)$
holds for every $\varepsilon>0$.
Theorem D [10] Let $f(z)$ be as in Definition 1.1. Suppose, also, that $f(z)$ as q (ZPL) rays and p deficient values where $p \neq 0, \infty$. Then $p \leq q$.
$p \leq q$ mentioned in the previous Theorem is called the Edrei-Fuchs inequality.

Definition 1.2 [9] The meromorphic function $f(z)$ is said to belong to Edrei-Fuchs $(E F)$ class if $f(z)$ satisfy the conditions mentioned in the previous Theorem with $p=$ $q \geq 1, \quad$ i e, $f(z)$ has order finite and positive and q (ZPL) rays and $p \neq 0$ deficient values.
Definition 1.3 [8] Let $E \subseteq[1, \infty)$. We define the logarithmic measure of E by

$$
m_{l}(E)=\int_{E} \frac{d t}{t}
$$

We define the upper and lower logarithmic densities of E by

$$
\overline{\operatorname{logdens}} E=\lim _{r \rightarrow \infty} \sup \frac{m_{l}(E \cap[1, r])}{\log r}
$$

and

$$
\underline{\operatorname{logdens} E}=\lim _{r \rightarrow \infty} \inf \frac{m_{l}(E \cap[1, r])}{\log r}
$$

respectively. E has logarithmic density if $\overline{\log \operatorname{dens}} E=$ logdensE.
Our results in this paper depend heavily on (EF) class. Some examples shows that there are a functions belong to this class can be found in [9].

2. SOME NEEDED LEMMAS

In this section, we give some lemmas which will be used to prove our results.
Lemma 2.1 [11] Let (f, Γ) be a pair contains a finite order transcendental, meromorphic function f and

$$
\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{q}, j_{q}\right)\right\}
$$

denote a set of distinct integers order pairs satisfying $k_{i}>j_{i} \geq 0, i=1,2, \ldots, q$. Let $\varepsilon>0$ be a constant. Then the following hold:

1. There is $E_{1} \subset[0,2 \pi)$ with zero linear measure, such that, when $\psi_{0} \in[0,2 \pi) \backslash \mathrm{E}_{1}$, then a real constant $R_{0}=R_{0}\left(\psi_{0}\right)>1$ exists such that, for z with $\arg z=$ $\psi_{0} \quad|z| \geq R_{0}$, and for each $(k, j) \in \Gamma$, we have

$$
\begin{align*}
& \left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \\
& \leq|z|^{(k-j)(\rho-1+\varepsilon)} \tag{2}
\end{align*}
$$

2. There is $E_{2} \subseteq(1, \infty)$ with $m_{l}\left(E_{2}\right)<\infty$, such that, for each z with $|z| \notin E_{2} \cup[0,1]$ and, for each $(k, j) \in$ Γ, we have (2).
3. There is $E_{3} \subset[0, \infty)$ with linear measure is finite, such that

$$
\begin{align*}
& \left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right|_{|z|^{(k-j)(\rho+\epsilon)}}
\end{align*}
$$

for each z with $|z| \notin E_{3}$ and $(k, j) \in \Gamma$.
Lemma 2.2 [9] Let $A(z)$ be a finite order meromorphic function with $0<\rho(A)<\infty$ that has p deficient values, $a_{1}, a_{2}, \ldots, a_{p},(p \geq 1), \quad B(z)$ be a finite order meromorphic function that has a deficient value ∞. Suppose that $\beta>1, \quad 0<\eta<\rho(A)$ are real constants. Then, a sequence $\left\{t_{n}\right\}$ exists satisfying

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{t_{n}^{\eta}}{T\left(t_{n}, A\right)} \\
& =0 \tag{4}
\end{align*}
$$

Moreover, there is $F_{n} \subseteq\left[t_{n},(\beta+1) t_{n}\right]$, with $m\left(F_{n}\right) \leq$ $\frac{(\beta-1) t_{n}}{4}$ for any sufficiently large n such that for any $R \in\left[t_{n}, \beta t_{n}\right] \backslash F_{n}$, the argument θ sets, $E_{v}(R),(v=$ $1,2, \ldots, p), E_{\infty}(R)$ such that

$$
\begin{align*}
m\left(E_{v}(R)\right)=: m & \left(\left\{\theta \in[0,2 \pi) \left\lvert\, \log \frac{1}{\left|A\left(R e^{i \theta}\right)-a_{v}\right|}\right.\right.\right. \\
& \left.\left.\geq \frac{\delta_{0}}{4} T(R, A)\right\}\right) \geq M_{1} \\
& >0 \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
m\left(E_{\infty}(R)\right)=: & m\left(\left\{\theta \in[0,2 \pi)|\log | B\left(R e^{i \theta}\right) \mid\right.\right. \\
& \left.\left.\geq \frac{\delta_{1}}{4} T(R, B)\right\}\right) \geq M_{2} \\
& >0 \tag{6}
\end{align*}
$$

holds where $M_{1}>0, M_{2}>0$ depending on $A, B, \delta_{0}=$ $\min _{1 \leq v \leq p} \delta\left(a_{v}, A\right)$ $\delta_{1}=\delta(\infty, B), \beta$ and η only.
Lemma 2.3 [3] Let $g(z)$ be a finite lower order entire function, with $0<\mu(g)<\frac{1}{2}, \quad A(z)$ be a meromorphic function, with finite order. Let a be a finite deficient value of $A(z)$ with deficiency $\delta=$ $\delta(a, A)>0$. Then, for any $\varepsilon>0$, a sequence $R_{n} \longrightarrow$ ∞ exists, such that

$$
\begin{align*}
&\left|g\left(R_{n} e^{i \varphi}\right)\right|> \exp \left\{R_{n}^{\mu(g)-\varepsilon}\right\}, \\
& \varphi \in[0,2 \pi) \\
& m\left(F_{n}\right)=: m\left\{\theta \in[0,2 \pi): \log \left|A\left(R_{n} e^{i \theta}\right)-a\right|\right. \\
&\left.\geq-\frac{\delta}{4} T\left(R_{n}, A\right)\right\} \geq d \\
&>0 \tag{8}
\end{align*}
$$

hold, for all sufficiently large n, where d is a constant that depend on $\rho(A), \mu(g)$ and δ only.
Lemma 2.4 [4] Let w be an entire function and assume that, $\left|w^{\prime}(z)\right|$ is un bounded on the ray, $\arg z=\theta$.

Then a sequence $z_{n}=r_{n} e^{i \theta}$ exists where $r_{n} \rightarrow \infty$ such that $w^{\prime}\left(z_{n}\right) \rightarrow \infty$, and

$$
\begin{align*}
& \quad\left|\frac{w\left(z_{n}\right)}{w^{\prime}\left(z_{n}\right)}\right| \\
& \leq(1+o(1))\left|z_{n}\right| \tag{9}
\end{align*}
$$

as $z_{n} \rightarrow \infty$
Lemma 2.5 [12] Suppose that $g(z)$ is a finite lower order entire function with $0 \leq \mu(g)<1$. Then, for any $\alpha \in(\mu(g), 1)$, there is $E \subseteq[0, \infty)$ such that $\overline{\operatorname{logdens}} E \geq 1-\frac{\mu(g)}{\alpha} \quad, \quad$ where $E=\{r \in[0, \infty)$: $m(r)>M(r) \cos \pi \alpha\}, \quad m(r)=\inf f_{|z|=r} \log |g(z)|$, $M(r)=\sup _{|z|=r} \log |g(z)|$
Remark [3] If g is an entire function with zero lower order, in view of Lemma 2.5, we only need to give a slightly modification which make the previous Lemma remains holds

3. MAIN RESULTS

In this section, we give our main results which are the generalization of the results in [3,9]. In our proofs we shall let $a_{1}, a_{2}, \ldots, a_{p}, p \geq 1$ be a deficient values of $A(z)$ with deficiencies $\delta\left(a_{v}, A\right)>0,1 \leq v \leq p$.
Theorem 3.1 Let $A(z)$ be a meromorphic function belongs to EF class and let $B(z)$ be a transcendental entire function with $\mu(B)<\frac{1}{2}$. Then every nontrivial solution f of (1) has infinite order.
Proof: Suppose that $f \neq 0$ is a solution of (1) with $\rho(f)<\infty$. From equation (1) we have

$$
|B(z)| \leq\left|\frac{f^{\prime \prime}(z)}{f(z)}\right|
$$

$$
\begin{equation*}
+|A(z)|\left|\frac{f^{\prime}(z)}{f(z)}\right| \tag{10}
\end{equation*}
$$

According to Lemma 2.1, a set $E_{1} \subseteq(1, \infty)$ exists with $m_{l}\left(E_{1}\right)<\infty$, such that

$$
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq|z|^{2 \rho(f)}, k
$$

$$
\begin{equation*}
=1,2 \tag{11}
\end{equation*}
$$

holds, for all z with $|z|=r \notin E_{1} \cup\left[0, r_{0}\right], r_{0}>1$. There are the following two cases:

First Case: $0<\mu(B)<\frac{1}{2}$. By using Lemma 2.2 and Lemma 2.3, there exists R_{n} with $R_{n}<R_{n-1}$, and $R_{n} \rightarrow \infty$, such that

$$
\begin{align*}
m\left(E_{v}\left(R_{n}\right)\right)=: & m\left(\left\{\theta \in[0,2 \pi) \left\lvert\, \log \frac{1}{\left|A\left(R_{n} e^{i \theta}\right)-a_{v}\right|}\right.\right.\right. \\
\geq & \left.\left.\frac{\delta}{4} T\left(R_{n}, A\right)\right\}\right) \geq M_{1} \\
> & 0 \tag{12}\\
\left|B\left(R_{n} e^{i \theta}\right)\right|> & \exp \left\{R_{n}^{\frac{1}{2}^{2} \mu(B)}\right\}, \\
& \quad \theta \in[0,2 \pi) \tag{13}
\end{align*}
$$

for every n.

For every $n \geq n_{0}$ we choose $\theta_{n} \in E_{v}\left(R_{n}\right)$. From (10-12), we get

$$
\begin{align*}
& \left|B\left(R_{n} e^{i \theta_{n}}\right)\right| \\
< & |z|^{2 \rho(f)}\left(1+\exp \left\{-\frac{\delta}{4} T\left(R_{n}, A\right)\right\}\right. \\
+ & |a|) \tag{14}
\end{align*}
$$

Thus

$$
\begin{align*}
& \exp \left\{R_{n}^{2^{\frac{1}{2} \mu(B)}}\right\} \\
< & |z|^{2 \rho(f)}\left(1+\exp \left\{-\frac{\delta}{4} T\left(R_{n}, A\right)\right\}\right. \\
+ & |a|) \tag{15}
\end{align*}
$$

When $n \rightarrow \infty$, this is a contradiction.
Second Case: $\mu(B)=0$. By Lemma 2.5, a set $E_{2} \subset$
$[0, \infty)$ exists with $\overline{\operatorname{logdens}} E_{2}=1$, such that
$\log |B(z)|$

$$
\begin{equation*}
>\frac{\sqrt{2}}{2} \log M(r, B) \tag{16}
\end{equation*}
$$

for all $z \quad$ with $\quad|z|=r \in E_{2} \quad$ where, $\quad M(r, B)=$ $\max _{|z|=r}|B(z)|$. By the above Remark, there is a sequence R_{n} such that (12), (16) hold. By (10-12) we get (14). Thus, from (14), (16) we obtain

$$
\begin{gather*}
M(r, B)^{\frac{\sqrt{2}}{2}} \leq R_{n}^{2 \rho(f)}\left(1+\exp \left\{-\frac{\delta}{4} T\left(R_{n}, A\right)\right\}\right. \\
+|a|) \tag{17}
\end{gather*}
$$

Since $B(z)$ is a transcendental, we get

$$
\lim _{r \rightarrow \infty} \inf \frac{\log M(r, B)}{\log r}=\infty
$$

Thus, the contradiction is obtained from (17). The proof is now completed.
Theorem 3.2 Let $A(z) \in E F$ be a meromorphic function, $B(z) \neq 0$ be an entire function. Suppose that, two constants $\alpha>0$ and $\beta>0$ exists, and for every $\varepsilon>0$, two of finite collections of real $\left\{\varphi_{k}\right\},\left\{\theta_{k}\right\}$ satisfying $\quad \varphi_{1}<\theta_{1}<\varphi_{2}<\theta_{2}<\cdots<\varphi_{m}<\theta_{m}<$ $\varphi_{m+1}\left(\varphi_{m+1}=\varphi_{1}+2 \pi\right)$ and

$$
\begin{equation*}
\sum_{k=1^{\prime \prime}}^{m}\left(\varphi_{k+1}-\varphi_{k}\right) \tag{18}
\end{equation*}
$$

such that

$$
\begin{align*}
& |A(z)| \\
& \geq \exp \left\{(1+o(1)) \alpha|z|^{\beta}\right\} \tag{19}
\end{align*}
$$

where $z \rightarrow \infty \quad$ in $\varphi_{k} \leq \arg z \leq \theta_{k}, \quad(k=1,2, \ldots, m)$ and let

$$
\begin{align*}
& |B(z)| \\
& \leq \exp \left\{o(1)|z|^{\beta}\right\} \tag{20}
\end{align*}
$$

as $z \rightarrow \infty$ in $\theta_{1} \leq \arg z \leq \theta_{2}$. Then every solution $f \neq 0$ of (1) has $\rho(f)=\infty$.
Proof: Suppose there is $f \neq 0$ of (1) has $\rho(f)<\infty$. From (1) we have

$$
\begin{align*}
& |A(z)| \\
& \leq\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+|B(z)|\left|\frac{f(z)}{f^{\prime}(z)}\right| \tag{21}
\end{align*}
$$

By Lemma 2.1 there is $E_{1} \subseteq[0, \infty)$ with finite linear measure, such that, for z with $|z|=r \notin E_{1} \cup$ $\left[0, r_{1}\right],\left(r_{1}>1\right)$ the inequality

$$
\begin{align*}
& \left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \\
& \leq|z|^{2 \rho(f)} \tag{22}
\end{align*}
$$

holds.
By Lemma 2.2 and Lemma 2.3 there is a sequence R_{n} satisfying (12). Take $0<\varepsilon<\frac{d}{2}$, then for any integer n, choose $\varphi_{n} \in E_{v}\left(R_{n}\right) \cap\left(\cup_{k=1}^{m}\left[\phi_{k}, \theta_{k}\right]\right)$. Thus there is $k \in\{1,2, \ldots, m\}$ such that, for any n satisfies $\phi_{n} \in$ $E_{v}\left(R_{n}\right) \cap\left[\phi_{k}, \theta_{k}\right]$ (for otherwise ϕ_{n} is replaced with subsequence $\phi_{n_{j}}$). Hence, from our hypothesis, we get

$$
\begin{align*}
\left|A\left(z_{n}\right)\right| \geq \exp \{ & (1 \\
& \left.+o(1)) \alpha\left|z_{n}\right|^{\beta}\right\} \tag{23}
\end{align*}
$$

as $n \rightarrow \infty$.
Assume that $\left|f^{\prime}(z)\right|$ is unbounded on $\operatorname{argz}=\phi_{0}$ where $\phi_{0} \in\left[\theta_{1}, \theta_{2}\right] \backslash E$. Thus, by Lemma 2.4, there is a sequence, $z_{n}=r_{n} \exp \left(i \phi_{0}\right)$ where $r_{n} \rightarrow \infty$, so that, $f^{\prime}\left(z_{n}\right) \rightarrow \infty$ and

$$
\begin{align*}
& \left|\frac{f\left(z_{n}\right)}{f^{\prime}\left(z_{n}\right)}\right| \\
& \leq(1+o(1))\left|z_{n}\right| \tag{24}
\end{align*}
$$

Now combining 20-24 we get a contradiction. The proof is completed.
Corollary 3.3 Suppose that $A(z)$ be a meromorphic function belongs to $E F$ class and $B(z) \neq 0$ is an entire function. Also, suppose that, there is a constants $\alpha>0$, $\beta>0$ and for $\varepsilon>0$, two sets of reals $\left\{\varphi_{k}\right\},\left\{\theta_{k}\right\}$, satisfies $\varphi_{1}<\theta_{1}<\varphi_{2}<\theta_{2}<\cdots<\varphi_{m}<\theta_{m}<$
$\varphi_{m+1},\left(\varphi_{m+1}=\varphi_{1}+2 \pi\right)$, and

$$
\begin{equation*}
\sum_{\substack{k=1 \\<\varepsilon}}^{m}\left(\varphi_{k+1}-\varphi_{k}\right) \tag{25}
\end{equation*}
$$

such that

$$
\begin{align*}
& |B(z)| \\
& \geq \exp \left\{\left(1+o(1) \alpha|z|^{\beta}\right\}\right. \tag{26}
\end{align*}
$$

as $z \rightarrow \infty$ in $\varphi_{k} \leq \operatorname{argz} \leq \theta_{k},(k=1,2, \ldots, m)$. Then any solution $f \neq 0$ of (1) has $\rho(f)=\infty$.
Theorem 3.4 Let $A(z)(\neq 0) \in E F$ be a meromorphic function , $B(z) \neq 0$ be an entire function satisfying (20) and suppose that

$$
\begin{align*}
& \lim _{|z|=r \rightarrow \infty} \frac{|A(z)|}{r^{k}} \\
& =\infty \tag{27}
\end{align*}
$$

holds for any $k>0$ and $z \notin G$ of r-values with $m_{l}(G)<$ ∞. Then for any nontrivial solution f of (1) we have $\rho(f)=\infty$.
Proof: Assume that (1) possesses a finite order solution $f \neq 0$. Using Lemma 2.1 there is $E_{2} \subseteq(1, \infty)$, with, $m_{l}\left(E_{2}\right)<\infty$, such that (22) holds for z with $|z|=$ $r \notin E_{2} \cup\left[0, r_{2}\right],\left(r_{2}>1\right)$. From Lemma 2.4 as in the proof of Theorem 3.2 we have

$$
\begin{align*}
& \left|\frac{f(z)}{f^{\prime}(z)}\right| \\
& \leq(1+o(1))|z| \tag{28}
\end{align*}
$$

For $k>0$ we have

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\=\infty}} \frac{\left|A\left(R_{n} e^{i \theta}\right)\right|}{R_{n}^{k}} \tag{29}
\end{equation*}
$$

Combining 20-22, 24 and 29 we get a contradiction. Therefore every nontrivial solution f of (1) has infinite order.
Corollary 3.5 Suppose that $A(z) \in E F$ be a meromorphic function and $B(z) \neq 0$ is an entire function such that

$$
\begin{align*}
& \lim _{\substack{|z|=r \rightarrow \infty \\
=\infty}} \frac{|B(z)|}{r^{k}} \\
& =\infty \tag{30}
\end{align*}
$$

holds for any $k>0$ and $z \notin G$ of r-values with $m_{l}(G)<$ ∞. Then any nontrivial solution f of (1.1) is of infinite order.

REFERENCES

[1] Hayman W. K: "Meromorphic Functions", Clarendon Press, Oxford, (1964).
[2] Laine I: "Nevanlinna Theory and Complex Differential Equations", Walter de Gruyter Berlin, NewYork, (1993).
[3] Wu P. C. and ZHU J., "On the growth of solutions to the complex differential equation $f^{\prime \prime}+A f^{\prime}+B f=$ 0", Science China Press and Springer-Verlag Berlin Heidelberg, 54 (5): 939-947, (2011).
[4] Gundersen G., "Finite order solution of second order linear differential equations", Trans American Mathematics Soc., 305: 415-429, (1988).
[5] Chen Z. X., "The growth of solutions of second order linear differential equations with meromorphic coefficients", Kodai Math Journal, 22 (2): 208-221, (1999).
[6] Hellenstein S, Miles J and Rossi J, "On the growth of solutions of $f^{\prime \prime}+g f^{\prime}+h f=0$ ", Trans American Mathematical Society, 324: 693-705, (1991).
[7] Kwon K.H., "Nonexistence of finite order solution of certain second order linear differential equations", Kodai Math Journal, 19: 378-387, (1996).
[8] Laine, I and Wu P. C., "Growth of solutions of second order linear differential equations", Proc. American Mathematical Society, 128 (9): 2693-2703, (2000).
[9] Wu P. C., Shengjian Wu and Jun Zhu, "On the growth of solutions of second order complex differential equation with meromorphic coefficients", Journal of Inequalities and Applicatins, 117 (1): 1-13, (2012).
[10] Zhang G. H., "Theory of entire and meromorphic functions, deficient and asymptotic values and singular directions", American Mathematical Society, 122, (1993).
[11] Gundersen G., "Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates", Journal London Mathematics. Soc., 37 (2): 88-104, (1988).
[12] Barry P. D., "Some theorems related to the $\cos \pi \rho$ theorem", Proceedings of the London Mathematics Soc., 21: 334-360, (1970).

