THE SOLUTIONS GROWTH OF 2ND ORDER DES WHERE THE COEFFICIENTS ARE MEROMORPHIC BELONG TO EDREI-FUCHS CLASS

Eman A. Hussein¹ and Ayad W. Ali²

^{1.2} The University of Mustansiriyah/College of Sciences/Department of Mathematics

Corresponding addresses :¹dr_emansultan@yahoo.com, ²ayoodalkhalidy@yahoo.com

ABSTRACT: In this paper, we shall consider the second order linear complex differential equations with meromorphic coefficients. One of the coefficients belongs to Edrei-Fuchs class and the other one satisfy some conditions under which any nontrivial solution of mentioned equation is of infinite order.

Key words: Edrei-Fuchs class, deficient value, meromorphic function, order, lower order

1. INTRODUCTION

In our paper, we shall investigate the following complex DE

$$f'' + A(z)f' + B(z)f = 0$$
(1)

where the functions A(z) & $B(z) \neq 0$ are meromorphic.

The fundamental concepts of the theory of value distribution of meromorphic functions are used [1, 2]. By $\rho(f)$ and $\mu(f)$ we meant the order and lower order, respectively, of the meromorphic function f(z).

Some equations like (1) have a finite order nontrivial solution, for instance, $f(z) = e^z$ has order one and it is a solution of $f + e^{-z} f' - (e^{-z} + 1)f = 0$. Hence, we ask the following question: what condition(s) on A(z), B(z) which gives us guarantee that any solution of (1) has order equal to infinite?. Here, there are much works give the answer of this question [3, 4, 5-8].

The authors in [3] proved the following results:

Theorem A Suppose that A(z) is a finite order entire function with finite deficient value, B(z) is a transcendental entire function with $\mu(B) < \frac{1}{2}$. Then any solution $f \neq 0$ of (1) has $\rho(f) = \infty$.

Theorem B Suppose that A(z) satisfy the hypothesis of Theorem A, $B(z) \neq 0$ is an entire function. Assume that a constants $\alpha > 0$, $\beta > 0$ exists, and for every $\varepsilon > 0$, two sets of reals $\{\varphi_k\}$, $\{\theta_k\}$ of finite elements satisfies $\varphi_1 < \theta_1 < \varphi_2 < \theta_2 < \cdots < \varphi_m < \theta_m < \varphi_{m+1}(\varphi_{m+1} = \varphi_1 + 2\pi)$, and

$$\sum_{k=1}^{m} \left(\varphi_{k+1} - \varphi_k\right) < \varepsilon$$

for which

 $|B(z)| \ge \exp\{(1+o(1))\alpha|z|^{\beta}\}$

when $z \to \infty$ in $\varphi_k \le \arg z \le \theta_k$, (k = 1, 2, ..., m). Then any solution $f \ne 0$ of (1) has $\rho(f) = \infty$.

Theorem C Suppose that A(z) satisfy the hypothesis of Theorem A, $B(z) \neq 0$ is an entire function satisfy that for every k > 0

 $\lim_{|z|=r\to\infty}\frac{|B(z)|}{r^k}=\infty$

holds for $z \notin G$ where G is a set of r-values satisfying $m_l(G) < \infty$. Then any solution $f \neq 0$ of (1) has $\rho(f) = \infty$.

Definition 1.1 [9] Let f(z) be a finite order meromorphic function in the whole complex plane with $0 < \rho(f) < \infty$. We say that a ray $\arg z = \theta$ that start from origin is a zeropole limit point (ZPL) of f(z), if

$$\lim_{r \to \infty} \sup \frac{\log n\{\Omega(\theta - \varepsilon, \theta + \varepsilon, r), f = 0\} + \log n\{\Omega(\theta - \varepsilon, \theta + \varepsilon, r), f = \infty\}}{\log r} = \rho(f)$$

holds for every $\varepsilon > 0$.

Theorem D [10] Let f(z) be as in Definition 1.1. Suppose, also, that f(z) as q (ZPL) rays and p deficient values where $p \neq 0, \infty$. Then $p \leq q$.

 $p \le q$ mentioned in the previous Theorem is called the Edrei-Fuchs inequality.

Definition 1.2 [9] The meromorphic function f(z) is said to belong to *Edrei-Fuchs (EF)* class if f(z) satisfy the conditions mentioned in the previous Theorem with $p = q \ge 1$, i e, f(z) has order finite and positive and q (ZPL) rays and $p \ne 0$ deficient values.

Definition 1.3 [8] Let $E \subseteq [1, \infty)$. We define the logarithmic measure of *E* by

$$m_l(E) = \int\limits_E \frac{dt}{t}$$

We define the upper and lower logarithmic densities of E by

$$\overline{logdens}E = \lim_{r \to \infty} \sup \frac{m_l \left(E \cap [1, r]\right)}{logr}$$

and

$$\underline{logdens}E = \lim_{r \to \infty} \inf \frac{m_l \ (E \cap [1, r])}{logr}$$

respectively. *E* has logarithmic density if $\overline{logdens}E = logdensE$.

Our results in this paper depend heavily on (EF) class. Some examples shows that there are a functions belong to this class can be found in [9].

2. SOME NEEDED LEMMAS

In this section, we give some lemmas which will be used to prove our results.

Lemma 2.1 [11] Let (f, Γ) be a pair contains a finite order transcendental, meromorphic function *f* and $\Gamma = \{(k_1, j_1), (k_2, j_2), \dots, (k_a, j_a)\}$

denote a set of distinct integers order pairs satisfying $k_i > j_i \ge 0$, i = 1, 2, ..., q. Let $\varepsilon > 0$ be a constant. Then the following hold:

1. There is $E_1 \subset [0, 2\pi)$ with zero linear measure, such that, when $\psi_0 \in [0, 2\pi) \setminus E_1$, then a real constant $R_0 = R_0(\psi_0) > 1$ exists such that, for *z* with $arg z = \psi_0$ $|z| \ge R_0$, and for each $(k, j) \in \Gamma$, we have

(2)

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right|$$

 $\leq |z|^{(k-j)(\rho-1+\varepsilon)}$

2. There is $E_2 \subseteq (1, \infty)$ with $m_l(E_2) < \infty$, such that, for each z with $|z| \notin E_2 \cup [0, 1]$ and, for each $(k, j) \in \Gamma$, we have (2).

3. There is $E_3 \subset [0, \infty)$ with linear measure is finite, such that

$$\frac{\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right|}{|z|^{(k-j)(\rho+\epsilon)}}$$
(3)

for each z with $|z| \notin E_3$ and $(k, j) \in \Gamma$.

Lemma 2.2 [9] Let A(z) be a finite order meromorphic function with $0 < \rho(A) < \infty$ that has p deficient values, $a_1, a_2, \ldots, a_p, (p \ge 1)$, B(z) be a finite order meromorphic function that has a deficient value ∞ . Suppose that $\beta > 1$, $0 < \eta < \rho(A)$ are real constants. Then, a sequence $\{t_n\}$ exists satisfying

$$\lim_{n \to \infty} \frac{t_n'}{T(t_n, A)} = 0$$
(4)

Moreover, there is $F_n \subseteq [t_n, (\beta + 1)t_n]$, with $m(F_n) \leq \frac{(\beta-1)t_n}{4}$ for any sufficiently large *n* such that for any $R \in [t_n, \beta t_n] \setminus F_n$, the argument θ sets, $E_v(R), (v = 1, 2, ..., p)$, $E_{\infty}(R)$ such that

$$m(E_{\nu}(R)) =: m\left(\left\{\theta \in [0,2\pi) \left| \log \frac{1}{|A(Re^{i\theta}) - a_{\nu}|} \right. \right. \\ \left. \ge \frac{\delta_0}{4} T(R,A) \right\}\right) \ge M_1 \\ > 0 \qquad (5)$$

and

$$m(E_{\infty}(R)) =: m\left(\left\{\theta \in [0,2\pi) | log|B(Re^{i\theta})\right| \\ \ge \frac{\delta_1}{4}T(R,B)\right\} \ge M_2 \\ > 0 \qquad (6)$$

holds where $M_1 > 0$, $M_2 > 0$ depending on $A, B, \delta_0 = \min_{1 \le v \le p} \delta(a_v, A)$

 $\delta_1 = \delta(\infty, B), \beta \text{ and } \eta \text{ only.}$

Lemma 2.3 [3] Let g(z) be a finite lower order entire function, with $0 < \mu(g) < \frac{1}{2}$, A(z) be a meromorphic function, with finite order. Let *a* be a finite deficient value of A(z) with deficiency $\delta = \delta(a, A) > 0$. Then, for any $\varepsilon > 0$, a sequence $R_n \rightarrow \infty$ exists, such that

$$|g(R_n e^{i\varphi})| > \exp\{R_n^{\mu(g)-\varepsilon}\},$$

$$\varphi \in [0,2\pi) \quad (7)$$

$$m(F_n) =: m\left\{\theta \in [0,2\pi): \log |A(R_n e^{i\theta}) - a| \\ \geq -\frac{\delta}{4}T(R_n, A)\right\} \ge d$$

$$> 0 \quad (8)$$

hold, for all sufficiently large n, where d is a constant that depend on $\rho(A), \mu(g)$ and δ only.

Lemma 2.4 [4] Let w be an entire function and assume that, |w'(z)| is un bounded on the ray, $\arg z = \theta$.

Then a sequence $z_n = r_n e^{i\theta}$ exists where $r_n \to \infty$ such that $w'(z_n) \to \infty$, and

$$\left| \frac{w(z_n)}{w'(z_n)} \right| \leq (1 + o(1))|z_n|$$
(9)

as $z_n \to \infty$.

Lemma 2.5 [12] Suppose that g(z) is a finite lower order entire function with $0 \le \mu(g) < 1$. Then, for any $\alpha \in (\mu(g), 1)$, there is $E \subseteq [0, \infty)$ such that $\overline{logdens}E \ge 1 - \frac{\mu(g)}{\alpha}$, where $E = \{r \in [0, \infty) : m(r) > M(r) \cos \pi \alpha\}$, $m(r) = \inf_{|z|=r} \log |g(z)|$, $M(r) = \sup_{|z|=r} \log |g(z)|$

Remark [3] If g is an entire function with zero lower order, in view of Lemma 2.5, we only need to give a slightly modification which make the previous Lemma remains holds.

3. MAIN RESULTS

In this section, we give our main results which are the generalization of the results in [3,9]. In our proofs we shall let $a_1, a_2, ..., a_p$, $p \ge 1$ be a deficient values of A(z) with deficiencies $\delta(a_v, A) > 0$, $1 \le v \le p$.

Theorem 3.1 Let A(z) be a meromorphic function belongs to EF class and let B(z) be a transcendental entire function with $\mu(B) < \frac{1}{2}$. Then every nontrivial solution f of (1) has infinite order.

Proof: Suppose that $f \neq 0$ is a solution of (1) with $\rho(f) < \infty$. From equation (1) we have

$$|B(z)| \leq \left| \frac{f''(z)}{f(z)} \right| + |A(z)| \left| \frac{f'(z)}{f(z)} \right|$$
(10)

According to Lemma 2.1, a set $E_1 \subseteq (1, \infty)$ exists with $m_l(E_1) < \infty$, such that

$$\left| \frac{f^{(k)}(z)}{f(z)} \right| \le |z|^{2\rho(f)}, k$$

= 1,2 (11)

holds, for all z with $|z| = r \notin E_1 \cup [0, r_0], r_0 > 1$. There are the following two cases:

First Case: $0 < \mu(B) < \frac{1}{2}$. By using Lemma 2.2 and Lemma 2.3, there exists R_n with $R_n < R_{n-1}$, and $R_n \rightarrow \infty$, such that

$$m(E_{v}(R_{n})) =: m\left(\left\{\theta \in [0,2\pi) \left| \log \frac{1}{|A(R_{n}e^{i\theta}) - a_{v}|}\right.\right.\right.$$
$$\geq \frac{\delta}{4}T(R_{n},A)\right\}\right) \geq M_{1}$$
$$> 0 \qquad (12)$$
$$\left|B(R_{n}e^{i\theta})\right| > \exp\left\{R_{n}^{\frac{1}{2}\mu(B)}\right\},$$
$$\theta \in [0,2\pi) \qquad (13)$$

for every *n*.

For every $n \ge n_0$ we choose $\theta_n \in E_v(R_n)$. From (10-12), we get

$$|B(R_n e^{i\theta_n})| < |z|^{2\rho(f)} \left(1 + \exp\left\{-\frac{\delta}{4}T(R_n, A)\right\} + |a|\right)$$
(14)

Thus

$$\exp\left\{R_{n}^{\frac{1}{2}\mu(B)}\right\}$$

$$<|z|^{2\rho(f)}\left(1+\exp\left\{-\frac{\delta}{4}T(R_{n},A)\right\}\right.$$

$$+|a|\right) (15)$$

When $n \rightarrow \infty$, this is a contradiction.

Second Case: $\mu(B) = 0$. By Lemma 2.5, a set $E_2 \subset$ $[0,\infty)$ exists with $\overline{logdens}E_2 = 1$, such that loa | R(z) |

$$> \frac{\sqrt{2}}{2} log M(r, B)$$
(16)

for all z with $|z| = r \in E_2$ where, M(r,B) = $\max_{|z|=r} |B(z)|$. By the above Remark, there is a sequence R_n such that (12), (16) hold. By (10-12) we get (14). Thus, from (14), (16) we obtain

$$M(r,B)^{\frac{\sqrt{2}}{2}} \le R_n^{2\rho(f)} \left(1 + \exp\left\{-\frac{\delta}{4}T(R_n,A)\right\} + |a|\right)$$
(17)

Since B(z) is a transcendental, we get

$$\lim_{r \to \infty} \inf \frac{\log M(r, B)}{\log r} = \infty$$

Thus, the contradiction is obtained from (17). The proof is now completed.

Theorem 3.2 Let $A(z) \in EF$ be a meromorphic function, $B(z) \neq 0$ be an entire function. Suppose that, two constants $\alpha > 0$ and $\beta > 0$ exists, and for every $\varepsilon > 0$, two of finite collections of real $\{\varphi_k\}$, $\{\theta_k\}$ $\varphi_1 < \theta_1 < \varphi_2 < \ \theta_2 \ < \cdots < \varphi_m < \ \theta_m <$ satisfying $\varphi_{m+1}(\varphi_{m+1} = \varphi_1 + 2\pi)$ and

$$\sum_{k=1^{"}}^{m} (\varphi_{k+1} - \varphi_k) < \varepsilon$$
(18)

such that

|A(z)|

$$\geq \exp\{(1+o(1))\alpha|z|^{\beta}\}$$
(19)

where $z \to \infty$ in $\varphi_k \leq \arg z \leq \theta_k$, (k = 1, 2, ..., m)and let

|B(z)|

$$\leq \exp\{o(1)|z|^{\beta}\}\tag{20}$$

as $z \to \infty$ in $\theta_1 \leq argz \leq \theta_2$. Then every solution $f \neq 0$ of (1) has $\rho(f) = \infty$.

Proof: Suppose there is $f \neq 0$ of (1) has $\rho(f) < \infty$. From (1) we have

$$|A(z)| \le \left| \frac{f''(z)}{f'(z)} \right| + |B(z)| \left| \frac{f(z)}{f'(z)} \right|$$
(21)

By Lemma 2.1 there is $E_1 \subseteq [0, \infty)$ with finite linear measure, such that, for z with $|z| = r \notin E_1 \cup$ $[0, r_1], (r_1 > 1)$ the inequality

$$\left| f'(z) \right| \\ \leq |z|^{2\rho(f)}$$

holds.

By Lemma 2.2 and Lemma 2.3 there is a sequence R_n satisfying (12). Take $0 < \varepsilon < \frac{d}{2}$, then for any integer n, choose $\varphi_n \in E_v(R_n) \cap (\bigcup_{k=1}^{m} [\phi_k, \theta_k])$. Thus there is $k \in \{1, 2, ..., m\}$ such that, for any *n* satisfies $\phi_n \in$ $E_{\nu}(R_n) \cap [\phi_k, \theta_k]$ (for otherwise ϕ_n is replaced with subsequence ϕ_{n_i}). Hence, from our hypothesis, we get $|A(z_n)| \ge \exp\{(1$

$$+ o(1) \alpha |z_n|^{\beta}$$
as $n \to \infty$. (23)

Assume that |f'(z)| is unbounded on $argz = \phi_0$ where $\phi_0 \in [\theta_1, \theta_2] \setminus E$. Thus, by Lemma 2.4, there is a sequence, $z_n = r_n \exp(i\phi_0)$ where $r_n \to \infty$, so that, $f'(z_n) \to \infty$ and

$$\frac{\left|\frac{f(z_n)}{f'(z_n)}\right| }{\leq \left(1+o(1)\right)|z_n|$$
(24)

Now combining 20-24 we get a contradiction. The proof is completed. **Corollary 3.3** Suppose that A(z) be a meromorphic function belongs to EF class and $B(z) \neq 0$ is an entire function. Also, suppose that, there is a constants $\alpha > 0$, $\beta > 0$ and for $\varepsilon > 0$, two sets of reals $\{\varphi_k\}$, $\{\theta_k\}$, satisfies $\varphi_1 < \theta_1 < \varphi_2 < \theta_2 < \cdots < \varphi_m < \theta_m <$

$$\varphi_{m+1}, (\varphi_{m+1} = \varphi_1 + 2\pi) \text{, and}$$

$$\sum_{\substack{k=1\\ k=1}}^{m} (\varphi_{k+1} - \varphi_k)$$

$$< \varepsilon \tag{25}$$

such that |B(z)|

$$\geq \exp\{\left(1+o(1)\alpha|z|^{\beta}\right)\}$$

as $z \to \infty$ in $\varphi_k \leq argz \leq \theta_k$, (k = 1, 2, ..., m). Then any solution $f \neq 0$ of (1) has $\rho(f) = \infty$.

Theorem 3.4 Let $A(z) \neq 0 \in EF$ be a meromorphic function , $B(z) \neq 0$ be an entire function satisfying (20) and suppose that

$$\lim_{\substack{|z|=r\to\infty\\=\infty}}\frac{|A(z)|}{r^k}$$
(27)

holds for any k > 0 and $z \notin G$ of r-values with $m_1(G) < d$ ∞ . Then for any nontrivial solution f of (1) we have $\rho(f) = \infty$.

Proof: Assume that (1) possesses a finite order solution $f \neq 0$. Using Lemma 2.1 there is $E_2 \subseteq (1, \infty)$, with, $m_l(E_2) < \infty$, such that (22) holds for z with |z| = $r \notin E_2 \cup [0, r_2], (r_2 > 1)$. From Lemma 2.4 as in the proof of Theorem 3.2 we have |f(-)|

$$\begin{aligned} \left| \frac{f(z)}{f'(z)} \right| \\ \leq (1+o(1))|z| \tag{28} \\ \text{For } k > 0 \text{ we have} \\ \lim_{n \to \infty} \frac{|A(R_n e^{i\theta})|}{R_n^k} \\ = \infty \tag{29} \end{aligned}$$

March-April

 $= \infty$

(22)

(26)

Combining 20-22, 24 and 29 we get a contradiction. Therefore every nontrivial solution f of (1) has infinite order.

Corollary 3.5 Suppose that $A(z) \in EF$ be a meromorphic function and $B(z) \neq 0$ is an entire function such that

$$\lim_{\substack{|z|=r\to\infty\\=\infty}}\frac{|B(z)|}{r^k}$$
(30)

holds for any k > 0 and $z \notin G$ of r-values with $m_l(G) < \infty$. Then any nontrivial solution f of (1.1) is of infinite order.

REFERENCES

- [1] Hayman W. K: "Meromorphic Functions", *Clarendon Press, Oxford*, (1964).
- [2] Laine I: "Nevanlinna Theory and Complex Differential Equations", *Walter de Gruyter Berlin, NewYork*, (1993).
- [3] Wu P. C. and ZHU J., "On the growth of solutions to the complex differential equation f'' + Af' + Bf = 0", *Science China Press and Springer-Verlag Berlin Heidelberg*, **54** (5): 939–947, (2011).
- [4] Gundersen G., "Finite order solution of second order linear differential equations", *Trans American Mathematics Soc.*, 305: 415–429, (1988).

- [5] Chen Z. X., "The growth of solutions of second order linear differential equations with meromorphic coefficients", *Kodai Math Journal*, **22** (2): 208-221, (1999).
- [6] Hellenstein S, Miles J and Rossi J, "On the growth of solutions of f'' + gf' + hf = 0", *Trans American Mathematical Society*, **324**: 693–705, (1991).
- [7] Kwon K.H., "Nonexistence of finite order solution of certain second order linear differential equations", *Kodai Math Journal*, **19**: 378–387, (1996).
- [8] Laine, I and Wu P. C., "Growth of solutions of second order linear differential equations", *Proc. American Mathematical Society*, **128** (9): 2693–2703, (2000).
- [9] Wu P. C., Shengjian Wu and Jun Zhu, "On the growth of solutions of second order complex differential equation with meromorphic coefficients", *Journal of Inequalities and Applicatins*, **117** (1): 1-13, (2012).
- [10] Zhang G. H., "Theory of entire and meromorphic functions, deficient and asymptotic values and singular directions", *American Mathematical Society*, **122**, (1993).
- [11] Gundersen G., "Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates", *Journal London Mathematics. Soc.*, **37** (2): 88-104, (1988).
- [12] Barry P. D., "Some theorems related to the $cos\pi\rho$ theorem", *Proceedings of the London Mathematics Soc.*, **21**: 334–360, (1970).