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ABSTRACT:  The big data revolution has led to the emergence of many technologies for processing the enormous volume, 

high velocity and variety of data sources. The capabilities provided by high-performance computing (HPC) have had a 

substantial impact in supporting this revolution through the integration of heterogeneous hardware and crafting software 

and algorithms that exploit the parallelism of HPC. However, big data platforms, written in high-level programming 

languages, and their architectures differ from HPC languages and architectures. This misalignment has resulted in the 

underutilization of HPC resources and capabilities for big data problems. In this paper, we highlight and evaluate many of 

the techniques used in the HPC environment based on the most critical factors influencing performance and resource 

utilization: load balancing and data locality, job scheduling strategies, topology awareness, decomposition techniques and 

programming models. We recommend establishing a research roadmap that considers these influential factors in the field 

of resource and job management within HPC environments for big data computing. 
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1. INTRODUCTION 

Parallel computing has become an essential part of 

computational technology. Multi-core processors enable the 

parallelization of daily computational tasks. Parallelization 

plays a vital role in research and scientific fields where 

large data sets need to be processed. Algorithms designed 

to parallelize tasks and computations are used to achieve 

high-performance results [1, 2].  

The performance of such algorithms is highly dependent on 

the datasets being worked on. It has been found that input 

and output operations take a significant amount of time 

compared to the program that does the computation [3], [4]. 

This input-output includes the data transfer between 

memory and disk, implying that memory available to 

complete the computation plays a vital role. Generally, a 

program written to operate on large amounts of data, more 

than is able to be kept in active memory, requires data to be 

swapped from memory to disk and back. Disk access is 

much more costly in time than is accessing memory. In 

simple computer terms, it is advisable to reduce the input-

output operations to attain maximum performance [5, 6]. 

Keeping this in mind, when a program is written, it is 

recommended that there be the least amount of data 

swapping among cache, memory and disk. In other words, 

the program should use cache memory as much as possible, 

before it gets loaded with fresh data from memory. 

Similarly, the program should avoid making use of data 

from the disk as much as possible. With consideration of 

big data applications, this limitation impacts performance 

significantly [7–9].  

Recently, the volume of data produced in many different 

scientific fields has grown drastically in all big data 

characteristics. Big data can be characterized by different 

Vs. such as volume, velocity, variety, veracity, and value 

[10]. Many systems and applications in the real-world rely 

on collecting, storing, and analyzing such large-scale data, 

and this trend is supposed to grow rapidly [11]. 

Big data technologies, such as Hadoop, MapReduce, and 

Spark, have emerged to support parallelism in processing 

enormous datasets [12]. High-Performance Computing 

(HPC) is the process of aggregating the available 

computing power such that the maximum amount of work 

can be done in minimum possible time. HPC can be 

considered an attractive environment for supporting 

scientific workflows and big data computing due to its 

performance capabilities, which has led to a convergence of 

the HPC and big data fields [13]. 

Unfortunately, there is usually a performance issue when 

running big data applications on HPC clusters because such 

applications are written in high-level programming 

languages. Such languages may be lacking in terms of 

performance and may not encourage or support writing 

highly parallel programs in contrast to some parallel 

programming models like Message Passing Interface (MPI) 

[14]. Furthermore, these big data platforms are designed as 

a distributed architecture, which differs from the 

architecture of HPC clusters [15]. 

Alternately, the large volume of big data may hinder 

parallel programming models such as MPI, Open Multi-

Processing (OpenMP) and accelerator models (CUDA, 

OpenACC, OpenCL) from supporting high levels of 

parallelism [16]. 

With a future road toward exascale computing, and with the 

revolution in the hardware industry for increasing the 

number of CPUs in each compute node, job scheduling 

techniques can be considered a cornerstone of any scalable 

computing infrastructure in terms of encouraging high 

levels of parallelism, controlling system processes and 

directly impacting overall performance and system 

efficiency. However, running big data applications on HPC 

clusters typically lacks efficient resource and job 

management techniques for reducing the performance gap 

between these two domains. 

Section 2 of this survey investigates high-performance 

techniques of load balancing and data locality, job 

scheduling strategies, topology awareness, and 

decomposition techniques applied to big data applications 

to attain maximum performance. In Section 3, some of the 

relevant parallel programming models are introduced and 

compared with each other and with big data programming 

models. Some evaluation thoughts are presented in Section 

4, followed by recommendations for future work. 
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2. TECHNIQUES USED IN HPC 

HPC has been discussed in detail in many research papers. 

This survey paper studies various HPC techniques used for 

big data applications. Even though the topic itself is vast, 

this survey attempts to cover many aspects and techniques 

used in an HPC environment to support big data 

applications. Listed are some of these techniques, which are 

classified according to the most important factors affecting 

this research trend. 

2.1 Load Balancing and Data-Locality 

Work stealing is a type of load balancing technique. It is 

used for distributed task scheduling systems. (Figure 1). 

These scheduling systems have multiple schedules; they 

assist in making scheduling decisions. Through this 

method, tasks are assigned to idle schedulers and 

transferred from heavily loaded ones. This transfer can 

result in poor data locality in data-intensive applications 

because both tasks and their execution largely depend on 

large amounts of data processing; this can cause data-

transferring overhead. 

Work stealing can be enhanced via shared and dedicated 

queues [17]. The data size and location is used to organize 

queues. In such a case, the MATRIX technique is used for 

distributing task scheduler for the purpose of computing 

multiple tasks. The metadata is scaled and organized, with 

the help of a distributed key-value store (DKVS). Other 

elements organized and scaled are task dependency and 

data-locality. It is noticeable that the data-aware work 

stealing technique gives a good performance.  

Falkon [18] can be considered to be a centralized task 

scheduler providing support for Many-Task Computing 

(MTC) applications naïve hierarchical scheduling. 

Although Falkon provides better scale, it is prone to the 

issue of scaling in petascale systems, and its hierarchical 

implementation affects load balancing during uncertain task 

execution times. Moreover, for scheduling of data-intensive 

workloads, the data diffusion approach [19] was adopted by 

Falkon. During the data diffusion process, storage and 

compute resources are acquired dynamically, data are 

replicated with respect to demand, and then computations 

are scheduled close to data. Contrary to a distributed key-

value store [17], Falkon suffers from poor scalability due to 

deploying a centralized index server for storing metadata.  

Charm++ [20] is a machine independent parallel 

programming system, where load balancing occurs in either 

a static or centralized, hierarchical or fully dynamic or 

distributed style. The centralized approach has very poor 

scalability (i.e., up to 3,000 cores [20]), whereas the 

dynamic or distributed approach is based on the 

neighboring averaging schemes that ensure load balancing 

limits inside a local space and generates poor load 

balancing at extreme scales. 

Mesos [21] is a resource sharing platform among many 

cluster computing frameworks for task scheduling. It lets 

frameworks attain data locality via reading data stored on 

each machine. It deploys the delay scheduling system and 

waits for a limited time to get data storing nodes. This 

approach generates substantial waiting time for any task to 

be scheduled on time particularly for larger datasets.  

Quincy [22] is a highly dynamic and flexible framework 

for concurrently distributed job scheduling by means of 

fine-grain resources sharing. It uses both load balancing 

and data locality to find the best solution by mapping a 

graph structure, which requires a significant amount of 

time. 

Dryad [23] is a broadly useful distributed execution system 

for coarse-grained information parallel applications. It 

underpins applications structured as work process directed 

acyclic graphs (DAGs) like the Hadoop scheduler [24], 

Dryad 

  

Figure 1. Work Stealing Scheduling Technique. 
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does centralized scheduling that maps undertakings to 

where the information is present, which is neither 

reasonable nor versatile. 

CloudKon [25] architecture is just like the MATRIX 

architecture with the only difference being an emphasis on 

the cloud environment. It is dependent on various cloud 

services such as SQS [26] to perform circulated load 

balancing and deploy DynamoDB [27] as the DKVS 

system for metadata task keeping. Cloud services ensure 

easier and simpler development but show control and 

overall performance loss. Moreover, CloudKon also lacks 

support for data-aware scheduling.  

SLAW [28] is an exceedingly versatile, locality-aware 

work-tasking scheduler framework supporting both work 

and help-first systems [29] adaptively at runtime on a for 

each assignment premise. In spite of the fact that it is 

intended to address adaptability work tasking issues, it 

accentuates the center and thread level too. That strategy of 

SLAW does not bolster the huge scale distributed 

frameworks by any means. 

Another work is proposed in [30] which employed data-

aware work stealing by deploying both dedicated and 

shared queues. Nevertheless, it relies upon the X10 

worldwide address space programming model [31] to 

uncover the information territory data statically and to 

separate between the location adaptable and location 

sensitive tasks at the start. This task data-locality 

information stays unaltered subsequent to characterizing 

them. However, this approach is not adaptable for multiple 

data-intensive workloads. 

 

Table 1. A comparison of some Work Stealing techniques. 

Technique Features Limitations Ref. no. 

MATRIX 

- It is used for distributing task scheduler for multiple tasks 

computing purpose. 

- Enhanced data locality via shared and dedicated queues. 

- The data size and location are used to organize queues, 

task dependency and data-locality. 

- The metadata is scaled and organized, with the help of a 

distributed key-value store. 

- Not versatile for large-scale 

computing. 

- Not support HPC workloads. 

[17] 

Falkon 

- A centralized task scheduler to support Many-task 

computing (MTC) applications via naive hierarchical 

scheduling. 

- Difficult to scale to the 

petascale system. 

- The hierarchical 

implementation also affects 

the load balancing during 

uncertain task execution 

times. 

[18] 

Charm++ 

- An independent machine on a parallel programming 

system. 

-  Entire load balancing occurs statically or dynamically or 

in distributed style. 

- Poor scalability. [20] 

Mesos 

- A resource-sharing platform of cluster computing for tasks 

scheduling. 

-  It lets frameworks to attain data locality via data reading 

stored on each machine. 

-  It deploys the delay scheduling system to get data storing 

nodes. 

- Generates substantial waiting 

time for any task to be 

scheduled on time 

particularly for the larger set 

of data. 

[21] 

Quincy 

- A highly dynamic and flexible framework for concurrent 

distributed jobs scheduling. 

- Uses fine-grain resources sharing system. 

- Uses both load balancing and data locality to find the best 

solution by mapping the graph structure. 

- Requires a significant amount 

of time due to the mapping of 

graph structure. 

-  

[22] 

Dryad 

- Distributed execution system for coarse-grained 

information parallel applications. 

- It supports running of applications structured as work 

process DAGs like the Hadoop scheduler. 

- Centralized scheduling of 

mapping processes to where 

the information presents is 

neither reasonable nor 

versatile. 

[23] 

CloudKon 

- Like the MATRIX architecture with emphasizing on the 

Cloud environment. 

- It is dependent on the various cloud services such to 

perform distributed load balancing. 

- Lacks support for data-aware 

scheduling at an existing 

stage.  

[25] 

Generally, a computer-centric architecture is preferred for 

scientific applications that are based on MPI processes. The 

MPI processes run on various nodes using a file system, 

and they access the data needed to run the scientific 

applications. However, the high performance and efficiency 

of these MPI-based applications are threatened by the 

volatile growth of scientific data. The study [31] presents a 

solution to this problem: Data Locality MPI (DL-MPI). The 

DL-MPI proposes that the MPI-based applications obtain  
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data information from computer nodes through a data 

locality API alongside a scheduling algorithm. The premise 

behind DL-MPI is that the scheduling algorithm will task 

each node based on their individual capacity thus 

increasing the efficiency and performance of the MPI. 

Similarly, data locality API will assess the amount of 

unprocessed local data and help the scheduling algorithm 

allocate processing to compute nodes. While the solution is 

novel and noteworthy, it requires sophistication as the 

algorithm does not scale effectively when the number of 

nodes is large. It would seem that the data movement 

overhead obstructs the scaling of the system in the baseline 

of the system.  

In the literature, a multitude of data distribution methods 

for non-uniform memory access (NUMA) systems has been 

suggested. Huang et al. [32] proposition of extensions to 

OpenMP to allocate data to an undefined, immaterial 

notion of locations is one such suggestion. The method 

advocates block-wise distribution of data; while the effort 

required to program this distribution method is more than 

its counterparts, it allows for greater and more accurate 

control of data distribution.  

Alternatively, the Minas framework [33] advocated for a 

data distribution API that uses an automated code 

transformation to find the best distribution for a given 

program based upon the unique profile of that program. 

Like, Huang et al. [32], this method also allows for precise 

control over the data distribution and expert programmers 

are needed for its execution.  

Majo and Gross [34] proposes another method. Their 

method relies on the use of a fine-grained API to distribute 

data. The API makes use of execution profiling to obtain 

the data access patterns of loops that are simultaneously 

used for directing the distribution of code and data. Loop 

iterations are pivotal in this method, as data distribution is 

executed between the iteration of these loops which ensures 

that memory pages are accessed locally in every iteration.  

Nikolopou-Los et al. [35] proposed yet another method, a 

runtime tracing technique that uses automatic page 

migration. The salient feature of this method is that unlike 

the above approaches, minimal programming effort is 

required. Moreover, the page migration is based on the 

continuous monitoring of hardware through performance 

counters. The need for programming is minimal because of 

the performance counters as well as the user-level 

framework approach in which page access runs in the 

background whereas hot pages are shifted closer to the 

node that will access it, thus increasing performance.  

The data and task affinity techniques, as discussed in [35], 

rely heavily on the concept of OpenMP runtime systems 

NUMA optimizations. The co-scheduling and local 

distribution elements of the concept influence this work 

significantly and are implemented in the runtime systems 

developed within the paper. Broquedis et al. [36] have 

presented a similar methodology.  

Data distribution and locality-aware scheduling on many-

core processors have not been addressed adequately in the 

literature. Yoo et al. [37] give a point by quantitative point 

examination of territory aware planning for data parallel 

projects on many center processors. It has been concluded 

that work-stealing scheduling cannot capture locality 

because scheduling algorithms are ineffective in data-

parallel programs. Therefore, a systemized locality-aware 

streaming and scheduling method is suggested that ensures 

probability maximization of exploring the joined memory 

impression of a task group in the least level store to 

guarantee accommodating footprint. The method, however, 

cannot perform effectively without prior order information 

and task groupings that are acquired via profiling read-

write task sets and offline graph analysis. 

Vikranth et al. [38] suggest confining stealing to groups of 

core centers in light of the topology of the processor. 

Tousimojarad and Vanderbauwhede [40] embraced a smart 

approach. They recommended diminishing the entrance 

latencies to data distributed by utilizing duplicates, rather 

than originals, whose access is local in nature to the thread 

access on the TILEPro64 processor. Alternatively, Zhou 

and Demsky [39] approached the problem from another 

angle and suggested that objects should be migrated to 

numerous processors to increase local access. They 

developed a NUMA- aware adaptive garbage collector for 

this purpose. However, programs written in C are more 

laborious to migrate and thus limit the efficiency of this 

approach.  

Lu et al. [40] suggested the method proposed by Zhou and 

Demsky [39] of migrating data for multiple core 

processors. Lu et al. [40] claimed that rearranging affinity 

for-loops during compilation reduces access latency to data 

which has been distributed uniformly on the caches of 

multiple core processors. On the other hand, Marongiu and 

Benini [41] suggested partition arrays to rearrange data and 

increase access latency. Data is rearranged to reduce 

latency and then redistributed according to its profiling. 

Marongiu and Benini [41] were motivated to adopt this 

approach because they wanted to enable data distribution 

on MPSoCs framework without any memory management 

hardware support.  

Another approach is by Li et al. [42, 43]. They deployed 

the compilation-time information system to monitor the 

data placement runtime system. Finally, R-NUCA [44], like 

Tousimojarad and Vanderbauwhede [45], uses an 

automated system to migrate shared memory pages to the 

cache memory.  

The research study in [46] claims that energy waste from 

High-Performance Parallel-Systems can be reduced by 

leveraging the locality-awareness principle in order to 

implement optimized power-efficient techniques. It 

elaborates that two symbiotic techniques can be used to 

achieve power efficiency in high-performance parallel 

systems: (i) intra-locality power driven power optimization 

and (ii) inter-process locality-driven power optimizations. 

The intra-locality technique gives programmers and system 

designers the control and flexibility to assign processor 

frequency and manage sleep states within the sequence of 

the same process. On the other hand, the inter-process 

technique uses the concepts of co-placement and co-

scheduling of jobs to a varied set of threads from a diverse 

set of processes which are executed simultaneously on an 

HPC cluster. Co-placement and co-scheduling group 

threads and processes based on the similarity of their 

affinity patterns and symbiosis allows for a reduction of as 

much as 25% in energy consumption. The efficiency of 

energy reduction depends heavily on the correct 

identification of CPU capacity and computer memory 

functions. These two techniques, when used in unison, 

proved to be more fruitful than independent attempts. Thus, 

it is prudent to analyze the results of these techniques in a 

systematic framework. Since, the breakthrough of 
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measuring the framework itself is a great innovation, which 

contributes significantly to the growing numbers of 

researchers in HPC power optimization. 

2.2 Job Scheduling Strategies  

Resource and energy allocation techniques are needed for 

Quality of Service (QoS) and to slash system operational 

costs, which is needed in a large-scale parallel computing 

environment. The reason why the cost of energy 

consumption needs to be reduced is due to its importance in 

both the user and the owner’s budget. Resource allocation 

strategies are very complicated when the matter of energy 

efficiency is a focus, and this can infringe on both the 

response and queue time. 

In the same large-scale and parallel computing system, 

another factor impacting storage and computational 

resource access is the Resource Provider (RP). It uses the 

finite resource at hand, for some users. It also plays a part 

in maintaining QoS levels. Job scheduling technique should 

be chosen carefully in order to tackle the resource 

management dilemma. Scheduling techniques are used in 

performance optimization. Resource management 

scheduling techniques are a focus in research such as [47]–

[53]. These researches solve the resource allocation 

problem under different QoS constraints. For example, 

there is a metric-aware scheduling policy suggested by Wei 

et al. [47] where the scheduler balances the different 

competing scheduling objectives. These objectives include 

efficiency, job response time and system utilization. 

Research conducted by Khan et al. deploys a self-adaptive 

and a weighted sum method as mentioned in [48] and [49]. 

Moreover, game theoretical methodologies [50] and goal 

programming approach [51]. These are used for 

optimization of system performance for grid resource 

allocation, and this is done under different QoS constraints. 

Eleven static heuristics were researched by Braun et al. 

[52]; he wanted to map independent tasks on a 

heterogeneous distributed computing system. There were 

common assumptions undertaken by the author, who 

evaluated and executed task mapping policies.  

2.2.1 Resource Management  

There are applications that have resource requirements that 

need HPC schedulers, and these schedules are specifically 

designed for the applications. Monolithic simulation is an 

example of an HPC application. It has a requirement for a 

massive set of cores and uses tightly coupled MPI-base 

parallelism. These MPI applications are high latency 

sensitive. The resource demands in these applications do 

not vary. The number of cores, memory and wall clock 

time needed do not change. Gang scheduling can be used 

here. Scheduling is primarily carried out on application-

level tasks, which are also called job-level tasks. These 

tasks include the implementation of individual processing 

on compute nodes and are not shown to the resource 

manager. Both short-running and long-running batch-

oriented tasks all come under the heterogeneous scheduling 

workload. This then challenges the traditional centralized 

and monolithic cluster scheduling systems. In order to 

eliminate the flexibility limitation and to provide support to 

the dynamic application that has heterogeneous tasks, Pilot-

Jobs are used. HPC does not focus on data locality. The 

intensive data workloads can be broken down into loosely 

coupled parallel tasks. The utilization of resources, along 

with the improvement in their fairness, can be done at the 

task, rather than job, level [54]. 

YARN [55] and Mesos [21] are multi-level schedulers. The 

advantage of these two schedules is that they are can 

support data-intensive workloads that have lightly coupled 

tasks. They also make dynamic resource allocation and 

usage possible with the help of application-level 

scheduling. The interactive workloads low latency and 

scalability bottleneck requirements are addressed through 

the decentralized schedulers. There are two application-

level schedulers for Spark, called Omega, which is from 

Google [56], and Sparrow [54]. These are decentralized 

schedulers.  

Hadoop deploys a centralized task scheduling approach that 

is based on the Job Tracker, which is, in fact, a resource 

manager. Hadoop presents the Job Tracker with an 

advanced scalability bottleneck displayed in the 

MapReduce framework, which controls flexibility. Initially, 

this issue was not identified at all, and Hadoop was in use 

in the top HPC clusters. Hadoop used five things: Hadoop 

on Demand [57], SAGA Hadoop [58], My Hadoop [59], 

Amazon’s Elastic Map Reduce [60] and Microsoft’s 

HDInsight [61]. These approaches can be limited by not 

having sufficient data locality, which means that moving 

data to the Hadoop filesystem (HDFS) becomes necessary 

and this data move has to happen before computation. 

However, there were usage modes for Hadoop clusters that 

started to emerge. There was an emerging demand for an 

increase in different sizes and varieties of frameworks and 

applications and their requirements. This meant that 

supporting batch, interactive data processing, and streaming 

became very important. 

Resource usage and performance was not easy to predict 

when a higher-level framework, like HBase or Spark, was 

deployed with Hadoop daemons. YARN [55] was the core 

of Hadoop 2 and was developed to address this problem 

while supporting the Hadoop environment based on large, 

heterogeneous workloads. Mesos [21] is a multi-level 

scheduler developed for Hadoop. The ecosystem that 

evolved on top of HDFS and YARN was large. The 

runtime system integrates an application-level scheduler 

that synchronized with YARN including HBase, Spark, and 

MapReduce. The general requirements are then embedded 

with the advanced-level shared runtime systems structures, 

like using DAGs, which support longer, interactive or 

multi-stage applications. Llama [62] provides a longer 

application controller for YARN-based applications. It is 

designed specifically for the Imapa SL engine. An example 

of a DAG processing engine is TEZ [63], which is designed 

to support the Hive SQL engine. 

Short-running and data parallel tasks can be found in 

typical data-intensive workloads. If a job-level scheduler is 

used instead of a task-level scheduler, like YARN, then the 

overall cluster utilization can be made better, as the 

resources can be shifted between the applications. The 

scheduler can do things like removing resources from 

applications by waiting until task completion. In order to 

make resource usage as dynamic as possible, tighter 

integration of an application is required by YARN. The 

application should register as an Application Master 

process, which has a subscription to callbacks. The 

container is the unit of scheduling, and they are required 

from the Resource Manager. As compared to HPC 

schedulers, the requested number of resources is not asked 

for by the Resource Manager. This means that the 

application should use the resources elastically when they 
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are allocated by YARN and YARN can even request 

container de-allocation as well. This means that the 

application will have to make a note of the resources that 

are available at that time. 

2.2.2 A Convergence of High-Performance and Big Data 

Computing  

HPC and Hadoop were designed to support multiple 

workload types and requirements. In the Hadoop case, the 

combination of various levels can be seen as the top of the 

line in parallel computing in HPC against modest data 

storage and recovery. Hadoop clusters have deployed more 

compute-demanding workloads. Data parallel tasks and 

workflows are also implemented on the Hadoop 

infrastructure. As Mesos and YARN were introduced, the 

ecosystem of Hadoop developed the ability to support 

heterogeneous workloads. There were tools like Pilot-Jobs, 

which supported loosely coupled and data-intensive 

workloads on HPC infrastructure. However, the Pilot-Jobs 

tools and other tools supported a large number of 

computing tasks for specific domains, and they could not 

reach the scalability and diversity of the ecosystem made 

for Hadoop. 

MapReduce, iterative MapReduce, diagram analytics, 

machine learning and other advanced level applications for 

data storage, data processing and data analytics were 

supported by the Apache Big Data Stack (ABDS) 

ecosystem. This ecosystem is created from extensible 

components like the HDFS and YARN. In contrast to HPC 

schedulers, YARN is made to help heterogeneous 

workloads that deploy staggered and data-aware 

scheduling. To achieve this goal, a higher level of joining 

between the application or the structure and the framework 

level scheduler is a necessity. This is higher as compared to 

the HPC schedulers. YARN applications do not request 

static resources before they run, but instead request 

resources in an efficient way. When applications optimize 

resource usage, the cluster’s usage becomes better as well. 

Even though YARN is not part of the HPC resource fabric, 

there have been suggestions to integrate Hadoop/YARN 

and HPC because of the many advantages that YARN 

brings. Three things need to be considered. Firstly, 

assurance of local resource management level system 

integration. Secondly, integration with multiple external 

resources such as parallel and shared file systems, which 

are HPC storage resources. Thirdly, the deployment of 

advanced network features like remote direct memory 

access (RDMA) and several other efficient abstractions that 

include joint operations. In resource management 

integration, integration can be achieved with the help of 

system level resource management system. The Hadoop-

level scheduler needs to be adopted on top of the system-

level scheduler. Condor and SLURM are resource 

managers that give support to Hadoop. Moreover, there are 

third-party systems like SAGA-Hadoop [58], JUMMP [64] 

and MyHadoop [59] as well. However, the main problem 

with the approach is that data locality is missing, and the 

system-level scheduler is not aware of it. Further, when the 

HDFS is used, data is copied from HDFS, after which it is 

processed. This also represents a substantial overhead. 

Hadoop is used in a single user mode here, and there is no 

optimal way to use the resource cluster.  

In Storage Integration, a pluggable filesystem abstraction is 

given by Hadoop. This filesystem interoperates with any 

POSIX compliant filesystem. Parallel file systems can be 

used with Hadoop, but there are cases in which the Hadoop 

layer will not be aware of data locality maintained on the 

parallel file system. This includes the Intel-supported 

Hadoop, which is on top of Lustre [65], IBM on GPFS 

[66]. With the help of the shared file system, the 

MapReduce shuffling phase is carried out and, therefore, is 

an optimization concern [67]. These filesystems and their 

scalability, as compared to HDFS, is constrained. This is 

because much of the data is processed locally requiring 

data movement across the network. HDFS does not rely on 

fast interconnects.  

In Network Integration, Ethernet environments are a fit for 

Hadoop as they use Java sockets for communication. 

RDMA, which is a high-performance feature, is not used 

here. In order to solve this issue, it is proposed that RDMA 

be used in supporting MapReduce, HDFS, HBase and a 

wide range of other components for 10 Gigabit Infiniband 

networks. 

Direct Acyclic Graphs are scientific workflows, and even 

though they are useful in understanding the dependence of 

relationships, they do not give information about temporary 

data files, input or output. This type of information is 

essential because it helps eliminate performance issues. The 

paper in [68] shows a multi-workflow store-aware 

scheduler that is found in a cluster environment, known as 

Critical Path File Location (CPFL). In this approach, disk 

access time is imperative when contrasted with the entire 

network system, as it is an augmentation to the traditional 

list scheduling policies. The primary point here is the 

discovery that the best area for data documents in a 

progressive stockpiling framework and the algorithm that 

left it was tried in an HPC cluster with impressive 

execution performance. 

A prologue/epilogue mechanism is used as a foundation for 

a Resource and Job Management System (RJMS) [69]. It 

promotes communication between HPC and Big Data 

systems, as it reduces the disturbance on HPC workloads. 

This is carried out by leveraging the resilience of Big Data 

frameworks. 

There is advanced performance hardware in HPC, 

including Parallel File Systems (PFS), and fast interconnect 

systems which can be advantageous [70]. Some take HPC 

traditional technologies, totally opposite to what is 

mentioned before, and build new Big Data tools. MPI is 

one way to do it. They use such tools because of their 

resilience, and they do not compensate for the lack of 

performance [71]. Using traditional Big Data tools is not a 

waste when used on HPC infrastructure if their resilience 

and dynamism are leveraged. There are many techniques to 

use Big Data when it comes to the resource management 

level. Big Data and HPC workloads can run side by side.  

The straightforward approach is to design two clusters, 

which will be committed to each workload type. However, 

the exchange between the groups will be a bottleneck. 

There is likewise no heap when the two clusters are 

adjusted to account for the partition of concern. A less 

complicated approach here is giving the client a chance to 

deal with Big Data programming inside HPC all alone. This 

can be connected to straightforward work processes that 

don't convey much information. However, it has its 

drawbacks. Right off the bat, regardless of whether the 

contents are useful for the client, the client may think that it 

is hard to maintain awareness of the system. 
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Furthermore, the Big Data programming stacks must be 

sent, arranged, begun and shutdown for each activity 

completed. The overhead should be noted if there should be 

a need for one-off applications or frameworks. Finally, if 

the information is too vast and can't fit on the client’s 

resources, an outsider stockpiling would be required for 

moving information and this can affect execution time [72]. 

Another thing to do here is to run HPC jobs, using a Big 

Data stack. However, most HPC applications are not 

compatible with Big Data RJMS, and a communication 

layer is required. HPC applications have to be rewritten to 

make use of the Big Data systems. In an integrated 

approach, new abstractions are needed to make it one 

system; this converts Big Data RJMS resource 

requirements into HPC RJMS allocations [73]. However, 

these approaches apply to some technologies. They evolve 

with them but have limitations as well. Thus, the solution is 

limited to implemented adaptors, and their cost can be high. 

A more suitable approach here is to summarise HPC on 

Hadoop or vice versa, by using a Pilot base abstraction 

[74]. The two systems can be joined using software, as 

suggested by the authors. 

2.3 Topology Awareness 

The computing platforms expanding intricacy fueled the 

requirement for programmers and developers to 

comprehend hardware organization and to adjust their 

applications accordingly. As a component of the general 

enhancement process, there is a substantial requirement for 

an ability to visualize a model of the hardware platform. 

hwloc is the most famous programming tool for uncovering 

a static perspective of the topology of CPUs and memory. 

The paper in [75] shows how hwloc reaches out to these 

computing assets by joining I/O devices topology and 

offering approaches to deal with different hubs. I/O 

territory data has been added to the hwloc tree speaking to 

the equipment and additionally to enable applications to 

recognize the resources they utilize, put undertakings close 

to them or to adjust their area. Later on, to control the 

remote host's topologies with pressure for useful 

adaptability, an API was introduced.  

The features that this paper is highlighting are mentioned in 

the hwloc v1.9 (released in Spring 2014). On-going work is 

currently concentrating on enhancing topology discovery 

on developing ARM designs for elite figuring and also 

programmed conflict management between constant 

sources of data. 

Deploying the advanced hardware resource to a particular 

application is not something new and has been discovered 

in earlier researches. It can be grasped clearly in a grid 

environment context [76–78], as the choice of the best 

combination of resources (clusters) to use is an essential 

factor. The advantage of using such an approach is to 

reduce the WAN communication impact in grids but does 

not account for real topology details, such as the effects of 

NUMA or cache hierarchy. 

More recently, a specific type of application has been 

targeted by some work, such as MapReduce- based 

applications. Like Topology-Aware Resource Adaptation 

(TARA) [79] that uses the application description for 

resources allocation purposes. However, the work is 

designed for a particular set of applications only and not 

meant to address other hardware details.  

The network topology backs parallel applications mapping 

jobs to physical hardware. It can lead to significant 

improvements in performance [80]. The scheduler can 

consider the network topology characteristics [81] to favor 

selecting a set of nodes being connected to the same 

network under the same switch or even placed near each 

other to avoid long-distance communication. Most open-

source and proprietary RJMS takes this kind of feature into 

account by using the underlying physical topology 

characteristics. However, they eventually failed to consider 

the importance of application behavior during resource 

allocation. An approach named HTCondor, formerly 

Condor [82], is proposed to take advantage of the 

matchmaking method, which allows matching the 

requirements of applications with the available hardware 

resources. However, this matchmaking method does not 

consider the application behavior, and HTCondor applies to 

both clusters and connected workstations. Slurm [83] 

provides a feature to minimize the number of network 

switches used in the allocation, thereby reducing 

communication costs during the execution of the 

application. Obviously, switches located deep in the 

topology tree are supposed to have less communication cost 

than those at the top layer. 

Similarly, PBS Pro [84] and LSF [85] exploit the same 

concept of topology-aware placement. Os Fujitsu [86] 

employs a similar technique, but only for its proprietary 

interconnect called Tofu. According to our knowledge, 

Slurm [83] is still the only one that provides a best-fit 

topology-aware selection system while the others only 

suggest the first-fit algorithm system. 

Part of RJMS offers alternatives for task placement that can 

provide an appropriate arrangement for different 

application forms. Torque [87] recommends NUMA based 

job task placement system. Be that as it may, in this current 

work, just the system topology is considered and the hubs 

intuitive design is left unresolved when execution results 

are conventional from misusing the memory chain of 

command. 

Multiple binding strategies are accessible and supported 

with the Open MPI approaches. In every one of these 

solutions, the user first needs to recover the compositional 

points of interest before delivering their job or task. 

Moreover, the placement choices offered to put the weight 

on the client to decide on their approach and the application 

correspondence plot is not considered. 

2.4 Decomposition Techniques 

The way toward software application parallelization can be 

exceptionally dreary, and error inclined, specifically the 

data decomposition task [88], [89].  

While choosing a parallelization methodology, data 

decomposition and the consequent conveyance of data or 

task processing running on available cores is a fundamental 

point to consider [90], [91]. 

Several researchers have conducted different studies to a 

better understanding of parallel program needs and the 

state-of-practice of parallelization [92–94]. Such studies 

have played a role in understanding the project 

organization, software usage, debugging, testing and 

tuning. On the other hand, data decomposition is an area of 

limited attention. This surprise leads us to the fact that data 

decomposition is a significant challenge in a parallel 

programming environment [89]. 

Up until this point, there have been insufficient empirical 

researches in the HPC field that has concentrated on these 

issues. The assignment of performing data disintegration 
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and correspondence while parallelizing applications has 

been examined in empirical research [95]. The use of 

techniques to help with this task and the current state of 

practice was examined. To support the undertaking of data 

deterioration and correspondence, while parallelizing 

applications, an arrangement of crucial necessities is 

inferred for tools of this system. 

Table 2.  Key Features of OpenACC, OpenMP, OpenCL, and CUDA 

Features OpenMP OpenACC OpenCL CUDA 

Supported 

parallelism 

- Data and task 

parallelism. 

- Data and task 

parallelism. 

- Data and task 

parallelism. 

- Data and task 

parallelism. 

Supported 

parallelization 

system 

- Host and device. - Device only. - Host and device. - Device only. 

Synchronization 

- Barrier 

- Reduction 

- Join 

- Reduction 

- Join 

- Barrier 

- Reduction 
- Barrier 

Implemented code 

- Programa (compiler 

directives) for C/C++ 

and Fortran. 

- Compiler-time. 

- Programa (compiler 

directives) for C/C++ 

and Fortran. 

- Compiler-time. 

- C/C++ extension. 

- Run-time. 

- C/C++ extension. 

- Run-time. 

Architecture level - High level. - High level. - Low level. - Low level. 

Supported GPUs 

manufacturers 

- Numerous core 

accelerated devices. 

- Numerous core 

accelerated devices. 

- Numerous core 

accelerated devices. 
- NVIDIA GPUs. 

The idea of decomposing multi-dimensional arrays in a 

multi-view data model [96] is common to that of 

distributed arrays supported by specific languages and 

frameworks. High-Performance Fortran (HPF) offers 

compiler directives that define array element distributions 

[97]. The easiest way to decompose an array is to designate 

keywords, such as BLOCK or CYCLIC, to each dimension. 

Partitioned Global Address Space (PGAS) provides a 

locality-aware shared address space among multiple 

processes and is supported by languages developed for 

high-performance computing, such as Co-array Fortran, 

Unified Parallel C [98], UPC++ [99], X10 [100], and 

Chapel [101]. PGAS languages also provide simple 

notations for describing data decomposition. However, 

HPF and this PGAS do not have a concept of View as in 

[96]. As a result, users have to manually write code for 

mapping tasks to processes by considering data location 

when the task itself should be run in parallel. Hierarchically 

Tiled Array (HTA) is a distributed array that enhances 

locality and parallelism for improving performance on 

multicore systems [102]. An HTA is composed of 

hierarchical tiles that contain sub-tiles or values, and a unit 

of tiles performs data assignment to processes and data 

processing. Although it may be possible to achieve the 

same effect of data distribution and processing by using 

HTA, users have to carefully consider the hierarchy and 

indices of tiles when writing such codes. Habanero-Java 

provides Array-View, in which a one-dimensional array 

can be viewed as any higher-dimensional array, to improve 

productivity [103]. 

3 PROGRAMMING MODELS 

3.1 Parallel Programming Models 

Recently, parallel computing systems have been making 

greater use of heterogeneous tools at the node level. The 

types of nodes in use may include universally useful CPUs 

and performance accelerators, e.g., GPUs or Intel Xeon 

Phis, that give superior qualities in terms of energy 

utilization. However, it is not easy to exploit the 

performance available in heterogeneous systems, and this 

may be a tedious and challenging process. There are a wide 

range of parallel programming models (such as OpenCL, 

OpenMP, CUDA) and selecting the right one for the target 

context is not so easy and straightforward. 

above summarises features of parallel programming models 

as considered in the study in [104], i.e., OpenMP [105], 

OpenACC [106], OpenCL [107], and CUDA [108]. 

OpenACC and OpenMP are mainly implemented as C, 

C++, and FORTRAN compiler directives, which 

significantly hide the detailed information of the computing 

architecture from the programmer. Interestingly, CUDA 

and OpenCL are executed as programming/software 

libraries for only C and C++ and open the developer to 

lower architectural details. As far as the boost from 

parallelism is concerned, the majority of the models 

considered widely support task parallelism and data 

parallelism. While OpenCL and OpenMP give 

parallelization to both multi-center CPUs and numerous 

core accelerated devices, CUDA and OpenACC support for 

parallelization are implied only for accelerators such as 

NVIDIA GPUs [109]. 

Concerning distributed computing, MPI based parallel 

executions are, for the most part, flexible to a broad number 

of processors but may be less efficient when used on 

specialist hardware. Precisely when various processor 

centers are established their parallel efficiency is 

significantly lower [110]. Of course, OpenMP is a 

conventional memory parallel programming system, which 

grants thread level parallelism. Joining OpenMP and MPI 

parallelization for hybrid program assembly can achieve 

two levels of parallelism. This approach decreases the 

overhead of MPI while minimizing OpenMP overhead due 

to thread creation and deletion. MPI/OpenMP have been 

shown to have better execution in comparison with MPI 

frameworks, for a couple of use cases [111, 112]. The 

OpenACC Application Program Interface gives compiler 

orders, library calls and condition factors that empower 

programmers to make the parallel code for various systems 
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such as General Purpose Graphics Processing Units 

(GPGPUs) [113]. Uniting OpenACC and MPI gives the 

limit of running a parallel code in a collecting mode with 

more than one GPU, distributed among the cluster nodes, 

increasing the total number of cores joined. 

3.2 Parallel and Big Data Programming Models: 

Performance Perspective  

It has been widely noted that MPI-based HPC frameworks 

outperform Spark or Hadoop-based big data frameworks by 

order of magnitude or more for a variety of different 

application domains, e.g., support k-nearest neighbors and 

vector machines [71], k-means [114], graph analytics [115, 

116], and large-scale matrix factorizations [117]. Recent 

performance analysis of Spark showed that compute load 

was the primary bottleneck in some Spark applications, 

specifically serialization and deserialization time [118]. 

Other work has tried to bridge the HPC-big data gap by 

using MPI-based communication primitives to improve 

performance. For example, Lu et al. [119] indicate how 

replacing map-reduce communicators in Hadoop (Jetty) 

with an MPI derivative (DataMPI) can lead to better 

performance; the limitation of this approach is that it is not 

a drop-in replacement for Hadoop and existing modules 

need to be re-coded to use DataMPI. It has been shown that 

it is possible to extend simple MPI-based applications to be 

elastic in the number of nodes [120] through periodic data 

redistribution among required MPI ranks. Efforts to add 

fault tolerance to MPI have been ongoing since at least 

2000 when Fagg and Dongarra proposed FTMPI [121]. 

Although the MPI standard has still not integrated any fault 

tolerance mechanism, proposed solutions continue to be put 

forth, e.g., Fenix [122]. However, there is a tremendous 

productivity gap between the APIs of Fenix and Spark. 

Several machine learning libraries have support for 

interoperating with Spark, such as H2O.ai [123] and 

deeplearning4j [124], and include their communication 

primitives. However, these are Java-based approaches and 

do not provide for direct integration of existing native-code 

MPI-based libraries. Spark With Accelerated Tasks 

(SWAT) [125] creates OpenCL code from JVM code at 

runtime to improve Spark performance. As opposed to our 

work, SWAT is limited to single-node optimizations; it 

does not have access to the communication improvements 

available through MPI.   

4 EVALUATION  

The techniques discussed in this survey are widely used by 

high-performance computing for big data applications. 

Each of these techniques has its own advantages and 

disadvantages when compared to each other. While a 

technique is good for a given dataset, it may not be suitable 

for another dataset or application. In one case, the 

technique may give very positive results with high 

performance, but it may fail in another case. 

Recently, big data has emerged as a universal concept, and 

its management has attracted the attention of the research 

community. In any big data computing system, there are 

two important factors: the data-centric programming 

model, and the underlying infrastructure, which is an 

integration of storage and computation resources in each 

node [126]. Processing such large and complex datasets 

require collaborative High-Performance Computing (HPC). 

One of the prime challenges in HPC is how to allocate 

resources effectively, especially since each paradigm has a 

different software stack [127] as shown in Figure 2. This 

raises this question: are the existing techniques of HPC 

scheduling and resource allocation effective enough to 

support big data computing?  

4.1 Optimum performance 

Performance is an important metric used to evaluate 

software systems. Optimality of system performance varies 

from one system to another based on system requirements, 

software packages used, and the underlying hardware 

infrastructure supporting the computation. All the 

techniques presented in Sections 2 and 3 were designed to 

enhance performance explicitly or implicitly based on 

relevant influencing factors. 

Many big data platforms, such as MapReduce and Spark, 

have the ability to support data locality by sending 

processes near the location of the data to be processed. 

However, such platforms are written in high-level 

programming languages, which do not provide the same 

level of support for parallelism as dedicated parallel 

programming models. This consequently impacts 

performance when running on HPC clusters. 

Additionally, the enormous volume of big data may hinder 

parallel programming models from maximizing parallelism. 

In this sense, it is necessary to use effective domain 

decomposition to tackle this concern. Granularity of 

decomposition can play a vital role with options ranging 

from fine-grain to coarse-grain. Choice of granularity can 

affect performance with fine-grain granularity encouraging 

high parallelism by decomposing the data into small chunks 

and evenly distributing them among processors, which 

facilitates load balancing. It would seem that performance 

could be enhanced by employing a large number of 

processors, but this leads to communication and 

Figure 2. HPC and Big Data Software Stacks. 
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synchronization overhead, and inevitably consumes power. 

This kind of parallelism is appropriate for fast 

communication architectures like shared memory. In 

contrast, coarse-grained granularity splits the data into large 

tasks and places them in processors. This approach 

employs a lesser number of processors that results in some 

processors working on some tasks with other processors 

being idle, resulting in load imbalance. However, this 

approach has low communication and synchronization 

overhead, which is suitable for MPI based architectures. 

Medium-grained granularity supports parallelism as a 

compromise between both fine-grained and coarse-grained 

parallelism. Accordingly, it can be deduced that to achieve 

optimal performance, all of these factors should be 

employed collectively based on the given application and 

dataset.  

There is, ordinarily, a positive correlation between 

performance and energy consumption: increasing 

performance increases the amount of power consumed. The 

problem of sacrificing power consumption as a result of 

increased performance can be solved by using power 

saving strategies such as race to halt [128]. This strategy 

aims to employ maximum system speed to create long 

intervals of idle time during which power consumption can 

be minimized.  

Parallel programming can be achieved by implementing 

parallel programming models, whether for CPUs and GPU 

accelerators. By comparing these programming models, via 

the features in Table 3, it can be summarised that OpenMP, 

OpenAcc and OpenCL re-enforce portability. Moreover, it 

can be claimed that Cuda and OpenCL make a preference 

for control of the low-level system. It can be argued that 

OpenAcc can have the same performance, which makes it a 

more productive model [109, 128]. Trends are now 

targeting exascale computing and there is a need to employ 

hybrid models (dual or tri) to fulfill the requirements of the 

exascale future.  

Integrating parallel and big data programming models such 

as MPI with Spark [14] can enhance the performance and 

get the best from both worlds. However, this will work for 

specific scenarios and cannot be considered a general 

purpose solution that can be applied as an independent big 

data platform.  

4.2 Resource utilization  

Exploiting HPC resources is highly dependent on providing 

metadata of the capabilities and availabilities of these 

resources. Although this paper has already mentioned static 

techniques to explore hardware topology, like hwloc [75], 

such techniques have to be dynamic since resource 

monitoring and dynamic updates can play a very critical 

role for supporting data locality, load balancing and 

decomposition from a scheduling perspective. The 

availability of resources and system architecture can 

determine the decomposition paradigm and granularity 

options that support efficient resource and job management 

system.  

In this context, [129] investigated the efficiency of HPC 

resource allocation using Google cluster datasets and 

various data mining tools to determine the correlational 

coefficient between resource allocation, resource usage and 

priority. Initial analysis focused on the correlation between 

resource allocation and resource use. The results show that 

a high proportion of the resources allocated by the system 

for a job did not get used by that job. Furthermore, it was 

identified, using clustering, classification and prediction 

techniques, that there is a very loose correlation between 

the priority of the jobs with the allocation and use of 

resources. This research finding emphasizes the need to 

improve current HPC scheduling and resource allocation 

techniques in order to enhance the performance of big data 

applications and to efficiently accommodate its challenges. 

As far as we know, and based on the review of prior work, 

there is a necessity to establish a research roadmap that 

considers all the aforementioned factors in the context of 

resource and job management within HPC environments 

for big data applications. This trend stems from the 

performance gap between big data platforms and high-

performance computing due to different software stacks 

and architecture designs for each domain. This disparity 

leads to the fact that these platforms do not fully exploit the 

performance available in HPC clusters. As a result, 

improving the performance of big data applications and 

optimizing HPC resource utilization without sacrificing the 

power consumption of HPC is still a key challenge.  

 

5 CONCLUSION 
In this survey paper, various HPC techniques based on the 

most important factors have been studied and compared in 

the domain of big data and scientific workflow. All of the 

aforementioned factors can play a critical role in 

determining the efficiency of any HPC-based system used 

to support big data applications. Each technique has its own 

benefit and drawback. We have studied the techniques of 

load balancing and data locality, job scheduling strategies, 

topology aware, and data decomposition. Furthermore, 

different features of parallel programming models have 

been compared, highlighting a performance gap in 

comparison with some big data programming models. 

While each method is suitable for a given scenario and 

datasets, it cannot be generalized for all kinds of 

parallelization. Accordingly, it is desirable to customize 

each method for the given application, datasets, and the 

underlying architecture. 

We have discussed how resource allocation is a critical part 

in the case of high-performance computing as well as big 

data. In both cases, a separate resource manager is 

generally needed to manage the resources and to ensure 

that the resources are loaded optimally to get the best 

performance out of the clustered environment. 

In future work, we will consider all of the previous factors 

for employing a hybrid parallel programming model to 

build a high-level scheduling technique to enhance the 

performance of big data applications and exploit the 

availability of HPC resources without sacrificing the power 

consumption of HPC. 
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