
Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 149

January-February

EVALUATION OF HIGH-PERFORMANCE COMPUTING TECHNIQUES FOR
BIG DATA APPLICATIONS

 Waleed Al Shehri
*,1

, Maher Khemakhem
2
, Abdullah Basuhail

3
, Fathy E. Eassa

4

1,2,3,4 Department of Computer Science, King Abdul-Aziz University, Jeddah, KSA.
*,1 waleed.ab2@gmail.com

ABSTRACT: The big data revolution has led to the emergence of many technologies for processing the enormous volume,

high velocity and variety of data sources. The capabilities provided by high-performance computing (HPC) have had a

substantial impact in supporting this revolution through the integration of heterogeneous hardware and crafting software

and algorithms that exploit the parallelism of HPC. However, big data platforms, written in high-level programming

languages, and their architectures differ from HPC languages and architectures. This misalignment has resulted in the

underutilization of HPC resources and capabilities for big data problems. In this paper, we highlight and evaluate many of

the techniques used in the HPC environment based on the most critical factors influencing performance and resource

utilization: load balancing and data locality, job scheduling strategies, topology awareness, decomposition techniques and

programming models. We recommend establishing a research roadmap that considers these influential factors in the field

of resource and job management within HPC environments for big data computing.

Keywords: High-Performance Computing; Big Data; Load-Balancing; Data-Locality;

Resource Management; Parallel Programming models; Power Consumption;

1. INTRODUCTION

Parallel computing has become an essential part of

computational technology. Multi-core processors enable the

parallelization of daily computational tasks. Parallelization

plays a vital role in research and scientific fields where

large data sets need to be processed. Algorithms designed

to parallelize tasks and computations are used to achieve

high-performance results [1, 2].

The performance of such algorithms is highly dependent on

the datasets being worked on. It has been found that input

and output operations take a significant amount of time

compared to the program that does the computation [3], [4].

This input-output includes the data transfer between

memory and disk, implying that memory available to

complete the computation plays a vital role. Generally, a

program written to operate on large amounts of data, more

than is able to be kept in active memory, requires data to be

swapped from memory to disk and back. Disk access is

much more costly in time than is accessing memory. In

simple computer terms, it is advisable to reduce the input-

output operations to attain maximum performance [5, 6].

Keeping this in mind, when a program is written, it is

recommended that there be the least amount of data

swapping among cache, memory and disk. In other words,

the program should use cache memory as much as possible,

before it gets loaded with fresh data from memory.

Similarly, the program should avoid making use of data

from the disk as much as possible. With consideration of

big data applications, this limitation impacts performance

significantly [7–9].

Recently, the volume of data produced in many different

scientific fields has grown drastically in all big data

characteristics. Big data can be characterized by different

Vs. such as volume, velocity, variety, veracity, and value

[10]. Many systems and applications in the real-world rely

on collecting, storing, and analyzing such large-scale data,

and this trend is supposed to grow rapidly [11].

Big data technologies, such as Hadoop, MapReduce, and

Spark, have emerged to support parallelism in processing

enormous datasets [12]. High-Performance Computing

(HPC) is the process of aggregating the available

computing power such that the maximum amount of work

can be done in minimum possible time. HPC can be

considered an attractive environment for supporting

scientific workflows and big data computing due to its

performance capabilities, which has led to a convergence of

the HPC and big data fields [13].

Unfortunately, there is usually a performance issue when

running big data applications on HPC clusters because such

applications are written in high-level programming

languages. Such languages may be lacking in terms of

performance and may not encourage or support writing

highly parallel programs in contrast to some parallel

programming models like Message Passing Interface (MPI)

[14]. Furthermore, these big data platforms are designed as

a distributed architecture, which differs from the

architecture of HPC clusters [15].

Alternately, the large volume of big data may hinder

parallel programming models such as MPI, Open Multi-

Processing (OpenMP) and accelerator models (CUDA,

OpenACC, OpenCL) from supporting high levels of

parallelism [16].

With a future road toward exascale computing, and with the

revolution in the hardware industry for increasing the

number of CPUs in each compute node, job scheduling

techniques can be considered a cornerstone of any scalable

computing infrastructure in terms of encouraging high

levels of parallelism, controlling system processes and

directly impacting overall performance and system

efficiency. However, running big data applications on HPC

clusters typically lacks efficient resource and job

management techniques for reducing the performance gap

between these two domains.

Section 2 of this survey investigates high-performance

techniques of load balancing and data locality, job

scheduling strategies, topology awareness, and

decomposition techniques applied to big data applications

to attain maximum performance. In Section 3, some of the

relevant parallel programming models are introduced and

compared with each other and with big data programming

models. Some evaluation thoughts are presented in Section

4, followed by recommendations for future work.

150 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

2. TECHNIQUES USED IN HPC

HPC has been discussed in detail in many research papers.

This survey paper studies various HPC techniques used for

big data applications. Even though the topic itself is vast,

this survey attempts to cover many aspects and techniques

used in an HPC environment to support big data

applications. Listed are some of these techniques, which are

classified according to the most important factors affecting

this research trend.

2.1 Load Balancing and Data-Locality

Work stealing is a type of load balancing technique. It is

used for distributed task scheduling systems. (Figure 1).

These scheduling systems have multiple schedules; they

assist in making scheduling decisions. Through this

method, tasks are assigned to idle schedulers and

transferred from heavily loaded ones. This transfer can

result in poor data locality in data-intensive applications

because both tasks and their execution largely depend on

large amounts of data processing; this can cause data-

transferring overhead.

Work stealing can be enhanced via shared and dedicated

queues [17]. The data size and location is used to organize

queues. In such a case, the MATRIX technique is used for

distributing task scheduler for the purpose of computing

multiple tasks. The metadata is scaled and organized, with

the help of a distributed key-value store (DKVS). Other

elements organized and scaled are task dependency and

data-locality. It is noticeable that the data-aware work

stealing technique gives a good performance.

Falkon [18] can be considered to be a centralized task

scheduler providing support for Many-Task Computing

(MTC) applications naïve hierarchical scheduling.

Although Falkon provides better scale, it is prone to the

issue of scaling in petascale systems, and its hierarchical

implementation affects load balancing during uncertain task

execution times. Moreover, for scheduling of data-intensive

workloads, the data diffusion approach [19] was adopted by

Falkon. During the data diffusion process, storage and

compute resources are acquired dynamically, data are

replicated with respect to demand, and then computations

are scheduled close to data. Contrary to a distributed key-

value store [17], Falkon suffers from poor scalability due to

deploying a centralized index server for storing metadata.

Charm++ [20] is a machine independent parallel

programming system, where load balancing occurs in either

a static or centralized, hierarchical or fully dynamic or

distributed style. The centralized approach has very poor

scalability (i.e., up to 3,000 cores [20]), whereas the

dynamic or distributed approach is based on the

neighboring averaging schemes that ensure load balancing

limits inside a local space and generates poor load

balancing at extreme scales.

Mesos [21] is a resource sharing platform among many

cluster computing frameworks for task scheduling. It lets

frameworks attain data locality via reading data stored on

each machine. It deploys the delay scheduling system and

waits for a limited time to get data storing nodes. This

approach generates substantial waiting time for any task to

be scheduled on time particularly for larger datasets.

Quincy [22] is a highly dynamic and flexible framework

for concurrently distributed job scheduling by means of

fine-grain resources sharing. It uses both load balancing

and data locality to find the best solution by mapping a

graph structure, which requires a significant amount of

time.

Dryad [23] is a broadly useful distributed execution system

for coarse-grained information parallel applications. It

underpins applications structured as work process directed

acyclic graphs (DAGs) like the Hadoop scheduler [24],

Dryad

Figure 1. Work Stealing Scheduling Technique.

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 151

January-February

does centralized scheduling that maps undertakings to

where the information is present, which is neither

reasonable nor versatile.

CloudKon [25] architecture is just like the MATRIX

architecture with the only difference being an emphasis on

the cloud environment. It is dependent on various cloud

services such as SQS [26] to perform circulated load

balancing and deploy DynamoDB [27] as the DKVS

system for metadata task keeping. Cloud services ensure

easier and simpler development but show control and

overall performance loss. Moreover, CloudKon also lacks

support for data-aware scheduling.

SLAW [28] is an exceedingly versatile, locality-aware

work-tasking scheduler framework supporting both work

and help-first systems [29] adaptively at runtime on a for

each assignment premise. In spite of the fact that it is

intended to address adaptability work tasking issues, it

accentuates the center and thread level too. That strategy of

SLAW does not bolster the huge scale distributed

frameworks by any means.

Another work is proposed in [30] which employed data-

aware work stealing by deploying both dedicated and

shared queues. Nevertheless, it relies upon the X10

worldwide address space programming model [31] to

uncover the information territory data statically and to

separate between the location adaptable and location

sensitive tasks at the start. This task data-locality

information stays unaltered subsequent to characterizing

them. However, this approach is not adaptable for multiple

data-intensive workloads.

Table 1. A comparison of some Work Stealing techniques.

Technique Features Limitations Ref. no.

MATRIX

- It is used for distributing task scheduler for multiple tasks

computing purpose.

- Enhanced data locality via shared and dedicated queues.

- The data size and location are used to organize queues,

task dependency and data-locality.

- The metadata is scaled and organized, with the help of a

distributed key-value store.

- Not versatile for large-scale

computing.

- Not support HPC workloads.

[17]

Falkon

- A centralized task scheduler to support Many-task

computing (MTC) applications via naive hierarchical

scheduling.

- Difficult to scale to the

petascale system.

- The hierarchical

implementation also affects

the load balancing during

uncertain task execution

times.

[18]

Charm++

- An independent machine on a parallel programming

system.

- Entire load balancing occurs statically or dynamically or

in distributed style.

- Poor scalability. [20]

Mesos

- A resource-sharing platform of cluster computing for tasks

scheduling.

- It lets frameworks to attain data locality via data reading

stored on each machine.

- It deploys the delay scheduling system to get data storing

nodes.

- Generates substantial waiting

time for any task to be

scheduled on time

particularly for the larger set

of data.

[21]

Quincy

- A highly dynamic and flexible framework for concurrent

distributed jobs scheduling.

- Uses fine-grain resources sharing system.

- Uses both load balancing and data locality to find the best

solution by mapping the graph structure.

- Requires a significant amount

of time due to the mapping of

graph structure.

-

[22]

Dryad

- Distributed execution system for coarse-grained

information parallel applications.

- It supports running of applications structured as work

process DAGs like the Hadoop scheduler.

- Centralized scheduling of

mapping processes to where

the information presents is

neither reasonable nor

versatile.

[23]

CloudKon

- Like the MATRIX architecture with emphasizing on the

Cloud environment.

- It is dependent on the various cloud services such to

perform distributed load balancing.

- Lacks support for data-aware

scheduling at an existing

stage.

[25]

Generally, a computer-centric architecture is preferred for

scientific applications that are based on MPI processes. The

MPI processes run on various nodes using a file system,

and they access the data needed to run the scientific

applications. However, the high performance and efficiency

of these MPI-based applications are threatened by the

volatile growth of scientific data. The study [31] presents a

solution to this problem: Data Locality MPI (DL-MPI). The

DL-MPI proposes that the MPI-based applications obtain

152 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

data information from computer nodes through a data

locality API alongside a scheduling algorithm. The premise

behind DL-MPI is that the scheduling algorithm will task

each node based on their individual capacity thus

increasing the efficiency and performance of the MPI.

Similarly, data locality API will assess the amount of

unprocessed local data and help the scheduling algorithm

allocate processing to compute nodes. While the solution is

novel and noteworthy, it requires sophistication as the

algorithm does not scale effectively when the number of

nodes is large. It would seem that the data movement

overhead obstructs the scaling of the system in the baseline

of the system.

In the literature, a multitude of data distribution methods

for non-uniform memory access (NUMA) systems has been

suggested. Huang et al. [32] proposition of extensions to

OpenMP to allocate data to an undefined, immaterial

notion of locations is one such suggestion. The method

advocates block-wise distribution of data; while the effort

required to program this distribution method is more than

its counterparts, it allows for greater and more accurate

control of data distribution.

Alternatively, the Minas framework [33] advocated for a

data distribution API that uses an automated code

transformation to find the best distribution for a given

program based upon the unique profile of that program.

Like, Huang et al. [32], this method also allows for precise

control over the data distribution and expert programmers

are needed for its execution.

Majo and Gross [34] proposes another method. Their

method relies on the use of a fine-grained API to distribute

data. The API makes use of execution profiling to obtain

the data access patterns of loops that are simultaneously

used for directing the distribution of code and data. Loop

iterations are pivotal in this method, as data distribution is

executed between the iteration of these loops which ensures

that memory pages are accessed locally in every iteration.

Nikolopou-Los et al. [35] proposed yet another method, a

runtime tracing technique that uses automatic page

migration. The salient feature of this method is that unlike

the above approaches, minimal programming effort is

required. Moreover, the page migration is based on the

continuous monitoring of hardware through performance

counters. The need for programming is minimal because of

the performance counters as well as the user-level

framework approach in which page access runs in the

background whereas hot pages are shifted closer to the

node that will access it, thus increasing performance.

The data and task affinity techniques, as discussed in [35],

rely heavily on the concept of OpenMP runtime systems

NUMA optimizations. The co-scheduling and local

distribution elements of the concept influence this work

significantly and are implemented in the runtime systems

developed within the paper. Broquedis et al. [36] have

presented a similar methodology.

Data distribution and locality-aware scheduling on many-

core processors have not been addressed adequately in the

literature. Yoo et al. [37] give a point by quantitative point

examination of territory aware planning for data parallel

projects on many center processors. It has been concluded

that work-stealing scheduling cannot capture locality

because scheduling algorithms are ineffective in data-

parallel programs. Therefore, a systemized locality-aware

streaming and scheduling method is suggested that ensures

probability maximization of exploring the joined memory

impression of a task group in the least level store to

guarantee accommodating footprint. The method, however,

cannot perform effectively without prior order information

and task groupings that are acquired via profiling read-

write task sets and offline graph analysis.

Vikranth et al. [38] suggest confining stealing to groups of

core centers in light of the topology of the processor.

Tousimojarad and Vanderbauwhede [40] embraced a smart

approach. They recommended diminishing the entrance

latencies to data distributed by utilizing duplicates, rather

than originals, whose access is local in nature to the thread

access on the TILEPro64 processor. Alternatively, Zhou

and Demsky [39] approached the problem from another

angle and suggested that objects should be migrated to

numerous processors to increase local access. They

developed a NUMA- aware adaptive garbage collector for

this purpose. However, programs written in C are more

laborious to migrate and thus limit the efficiency of this

approach.

Lu et al. [40] suggested the method proposed by Zhou and

Demsky [39] of migrating data for multiple core

processors. Lu et al. [40] claimed that rearranging affinity

for-loops during compilation reduces access latency to data

which has been distributed uniformly on the caches of

multiple core processors. On the other hand, Marongiu and

Benini [41] suggested partition arrays to rearrange data and

increase access latency. Data is rearranged to reduce

latency and then redistributed according to its profiling.

Marongiu and Benini [41] were motivated to adopt this

approach because they wanted to enable data distribution

on MPSoCs framework without any memory management

hardware support.

Another approach is by Li et al. [42, 43]. They deployed

the compilation-time information system to monitor the

data placement runtime system. Finally, R-NUCA [44], like

Tousimojarad and Vanderbauwhede [45], uses an

automated system to migrate shared memory pages to the

cache memory.

The research study in [46] claims that energy waste from

High-Performance Parallel-Systems can be reduced by

leveraging the locality-awareness principle in order to

implement optimized power-efficient techniques. It

elaborates that two symbiotic techniques can be used to

achieve power efficiency in high-performance parallel

systems: (i) intra-locality power driven power optimization

and (ii) inter-process locality-driven power optimizations.

The intra-locality technique gives programmers and system

designers the control and flexibility to assign processor

frequency and manage sleep states within the sequence of

the same process. On the other hand, the inter-process

technique uses the concepts of co-placement and co-

scheduling of jobs to a varied set of threads from a diverse

set of processes which are executed simultaneously on an

HPC cluster. Co-placement and co-scheduling group

threads and processes based on the similarity of their

affinity patterns and symbiosis allows for a reduction of as

much as 25% in energy consumption. The efficiency of

energy reduction depends heavily on the correct

identification of CPU capacity and computer memory

functions. These two techniques, when used in unison,

proved to be more fruitful than independent attempts. Thus,

it is prudent to analyze the results of these techniques in a

systematic framework. Since, the breakthrough of

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 153

January-February

measuring the framework itself is a great innovation, which

contributes significantly to the growing numbers of

researchers in HPC power optimization.

2.2 Job Scheduling Strategies

Resource and energy allocation techniques are needed for

Quality of Service (QoS) and to slash system operational

costs, which is needed in a large-scale parallel computing

environment. The reason why the cost of energy

consumption needs to be reduced is due to its importance in

both the user and the owner’s budget. Resource allocation

strategies are very complicated when the matter of energy

efficiency is a focus, and this can infringe on both the

response and queue time.

In the same large-scale and parallel computing system,

another factor impacting storage and computational

resource access is the Resource Provider (RP). It uses the

finite resource at hand, for some users. It also plays a part

in maintaining QoS levels. Job scheduling technique should

be chosen carefully in order to tackle the resource

management dilemma. Scheduling techniques are used in

performance optimization. Resource management

scheduling techniques are a focus in research such as [47]–

[53]. These researches solve the resource allocation

problem under different QoS constraints. For example,

there is a metric-aware scheduling policy suggested by Wei

et al. [47] where the scheduler balances the different

competing scheduling objectives. These objectives include

efficiency, job response time and system utilization.

Research conducted by Khan et al. deploys a self-adaptive

and a weighted sum method as mentioned in [48] and [49].

Moreover, game theoretical methodologies [50] and goal

programming approach [51]. These are used for

optimization of system performance for grid resource

allocation, and this is done under different QoS constraints.

Eleven static heuristics were researched by Braun et al.

[52]; he wanted to map independent tasks on a

heterogeneous distributed computing system. There were

common assumptions undertaken by the author, who

evaluated and executed task mapping policies.

2.2.1 Resource Management

There are applications that have resource requirements that

need HPC schedulers, and these schedules are specifically

designed for the applications. Monolithic simulation is an

example of an HPC application. It has a requirement for a

massive set of cores and uses tightly coupled MPI-base

parallelism. These MPI applications are high latency

sensitive. The resource demands in these applications do

not vary. The number of cores, memory and wall clock

time needed do not change. Gang scheduling can be used

here. Scheduling is primarily carried out on application-

level tasks, which are also called job-level tasks. These

tasks include the implementation of individual processing

on compute nodes and are not shown to the resource

manager. Both short-running and long-running batch-

oriented tasks all come under the heterogeneous scheduling

workload. This then challenges the traditional centralized

and monolithic cluster scheduling systems. In order to

eliminate the flexibility limitation and to provide support to

the dynamic application that has heterogeneous tasks, Pilot-

Jobs are used. HPC does not focus on data locality. The

intensive data workloads can be broken down into loosely

coupled parallel tasks. The utilization of resources, along

with the improvement in their fairness, can be done at the

task, rather than job, level [54].

YARN [55] and Mesos [21] are multi-level schedulers. The

advantage of these two schedules is that they are can

support data-intensive workloads that have lightly coupled

tasks. They also make dynamic resource allocation and

usage possible with the help of application-level

scheduling. The interactive workloads low latency and

scalability bottleneck requirements are addressed through

the decentralized schedulers. There are two application-

level schedulers for Spark, called Omega, which is from

Google [56], and Sparrow [54]. These are decentralized

schedulers.

Hadoop deploys a centralized task scheduling approach that

is based on the Job Tracker, which is, in fact, a resource

manager. Hadoop presents the Job Tracker with an

advanced scalability bottleneck displayed in the

MapReduce framework, which controls flexibility. Initially,

this issue was not identified at all, and Hadoop was in use

in the top HPC clusters. Hadoop used five things: Hadoop

on Demand [57], SAGA Hadoop [58], My Hadoop [59],

Amazon’s Elastic Map Reduce [60] and Microsoft’s

HDInsight [61]. These approaches can be limited by not

having sufficient data locality, which means that moving

data to the Hadoop filesystem (HDFS) becomes necessary

and this data move has to happen before computation.

However, there were usage modes for Hadoop clusters that

started to emerge. There was an emerging demand for an

increase in different sizes and varieties of frameworks and

applications and their requirements. This meant that

supporting batch, interactive data processing, and streaming

became very important.

Resource usage and performance was not easy to predict

when a higher-level framework, like HBase or Spark, was

deployed with Hadoop daemons. YARN [55] was the core

of Hadoop 2 and was developed to address this problem

while supporting the Hadoop environment based on large,

heterogeneous workloads. Mesos [21] is a multi-level

scheduler developed for Hadoop. The ecosystem that

evolved on top of HDFS and YARN was large. The

runtime system integrates an application-level scheduler

that synchronized with YARN including HBase, Spark, and

MapReduce. The general requirements are then embedded

with the advanced-level shared runtime systems structures,

like using DAGs, which support longer, interactive or

multi-stage applications. Llama [62] provides a longer

application controller for YARN-based applications. It is

designed specifically for the Imapa SL engine. An example

of a DAG processing engine is TEZ [63], which is designed

to support the Hive SQL engine.

Short-running and data parallel tasks can be found in

typical data-intensive workloads. If a job-level scheduler is

used instead of a task-level scheduler, like YARN, then the

overall cluster utilization can be made better, as the

resources can be shifted between the applications. The

scheduler can do things like removing resources from

applications by waiting until task completion. In order to

make resource usage as dynamic as possible, tighter

integration of an application is required by YARN. The

application should register as an Application Master

process, which has a subscription to callbacks. The

container is the unit of scheduling, and they are required

from the Resource Manager. As compared to HPC

schedulers, the requested number of resources is not asked

for by the Resource Manager. This means that the

application should use the resources elastically when they

154 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

are allocated by YARN and YARN can even request

container de-allocation as well. This means that the

application will have to make a note of the resources that

are available at that time.

2.2.2 A Convergence of High-Performance and Big Data

Computing

HPC and Hadoop were designed to support multiple

workload types and requirements. In the Hadoop case, the

combination of various levels can be seen as the top of the

line in parallel computing in HPC against modest data

storage and recovery. Hadoop clusters have deployed more

compute-demanding workloads. Data parallel tasks and

workflows are also implemented on the Hadoop

infrastructure. As Mesos and YARN were introduced, the

ecosystem of Hadoop developed the ability to support

heterogeneous workloads. There were tools like Pilot-Jobs,

which supported loosely coupled and data-intensive

workloads on HPC infrastructure. However, the Pilot-Jobs

tools and other tools supported a large number of

computing tasks for specific domains, and they could not

reach the scalability and diversity of the ecosystem made

for Hadoop.

MapReduce, iterative MapReduce, diagram analytics,

machine learning and other advanced level applications for

data storage, data processing and data analytics were

supported by the Apache Big Data Stack (ABDS)

ecosystem. This ecosystem is created from extensible

components like the HDFS and YARN. In contrast to HPC

schedulers, YARN is made to help heterogeneous

workloads that deploy staggered and data-aware

scheduling. To achieve this goal, a higher level of joining

between the application or the structure and the framework

level scheduler is a necessity. This is higher as compared to

the HPC schedulers. YARN applications do not request

static resources before they run, but instead request

resources in an efficient way. When applications optimize

resource usage, the cluster’s usage becomes better as well.

Even though YARN is not part of the HPC resource fabric,

there have been suggestions to integrate Hadoop/YARN

and HPC because of the many advantages that YARN

brings. Three things need to be considered. Firstly,

assurance of local resource management level system

integration. Secondly, integration with multiple external

resources such as parallel and shared file systems, which

are HPC storage resources. Thirdly, the deployment of

advanced network features like remote direct memory

access (RDMA) and several other efficient abstractions that

include joint operations. In resource management

integration, integration can be achieved with the help of

system level resource management system. The Hadoop-

level scheduler needs to be adopted on top of the system-

level scheduler. Condor and SLURM are resource

managers that give support to Hadoop. Moreover, there are

third-party systems like SAGA-Hadoop [58], JUMMP [64]

and MyHadoop [59] as well. However, the main problem

with the approach is that data locality is missing, and the

system-level scheduler is not aware of it. Further, when the

HDFS is used, data is copied from HDFS, after which it is

processed. This also represents a substantial overhead.

Hadoop is used in a single user mode here, and there is no

optimal way to use the resource cluster.

In Storage Integration, a pluggable filesystem abstraction is

given by Hadoop. This filesystem interoperates with any

POSIX compliant filesystem. Parallel file systems can be

used with Hadoop, but there are cases in which the Hadoop

layer will not be aware of data locality maintained on the

parallel file system. This includes the Intel-supported

Hadoop, which is on top of Lustre [65], IBM on GPFS

[66]. With the help of the shared file system, the

MapReduce shuffling phase is carried out and, therefore, is

an optimization concern [67]. These filesystems and their

scalability, as compared to HDFS, is constrained. This is

because much of the data is processed locally requiring

data movement across the network. HDFS does not rely on

fast interconnects.

In Network Integration, Ethernet environments are a fit for

Hadoop as they use Java sockets for communication.

RDMA, which is a high-performance feature, is not used

here. In order to solve this issue, it is proposed that RDMA

be used in supporting MapReduce, HDFS, HBase and a

wide range of other components for 10 Gigabit Infiniband

networks.

Direct Acyclic Graphs are scientific workflows, and even

though they are useful in understanding the dependence of

relationships, they do not give information about temporary

data files, input or output. This type of information is

essential because it helps eliminate performance issues. The

paper in [68] shows a multi-workflow store-aware

scheduler that is found in a cluster environment, known as

Critical Path File Location (CPFL). In this approach, disk

access time is imperative when contrasted with the entire

network system, as it is an augmentation to the traditional

list scheduling policies. The primary point here is the

discovery that the best area for data documents in a

progressive stockpiling framework and the algorithm that

left it was tried in an HPC cluster with impressive

execution performance.

A prologue/epilogue mechanism is used as a foundation for

a Resource and Job Management System (RJMS) [69]. It

promotes communication between HPC and Big Data

systems, as it reduces the disturbance on HPC workloads.

This is carried out by leveraging the resilience of Big Data

frameworks.

There is advanced performance hardware in HPC,

including Parallel File Systems (PFS), and fast interconnect

systems which can be advantageous [70]. Some take HPC

traditional technologies, totally opposite to what is

mentioned before, and build new Big Data tools. MPI is

one way to do it. They use such tools because of their

resilience, and they do not compensate for the lack of

performance [71]. Using traditional Big Data tools is not a

waste when used on HPC infrastructure if their resilience

and dynamism are leveraged. There are many techniques to

use Big Data when it comes to the resource management

level. Big Data and HPC workloads can run side by side.

The straightforward approach is to design two clusters,

which will be committed to each workload type. However,

the exchange between the groups will be a bottleneck.

There is likewise no heap when the two clusters are

adjusted to account for the partition of concern. A less

complicated approach here is giving the client a chance to

deal with Big Data programming inside HPC all alone. This

can be connected to straightforward work processes that

don't convey much information. However, it has its

drawbacks. Right off the bat, regardless of whether the

contents are useful for the client, the client may think that it

is hard to maintain awareness of the system.

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 155

January-February

Furthermore, the Big Data programming stacks must be

sent, arranged, begun and shutdown for each activity

completed. The overhead should be noted if there should be

a need for one-off applications or frameworks. Finally, if

the information is too vast and can't fit on the client’s

resources, an outsider stockpiling would be required for

moving information and this can affect execution time [72].

Another thing to do here is to run HPC jobs, using a Big

Data stack. However, most HPC applications are not

compatible with Big Data RJMS, and a communication

layer is required. HPC applications have to be rewritten to

make use of the Big Data systems. In an integrated

approach, new abstractions are needed to make it one

system; this converts Big Data RJMS resource

requirements into HPC RJMS allocations [73]. However,

these approaches apply to some technologies. They evolve

with them but have limitations as well. Thus, the solution is

limited to implemented adaptors, and their cost can be high.

A more suitable approach here is to summarise HPC on

Hadoop or vice versa, by using a Pilot base abstraction

[74]. The two systems can be joined using software, as

suggested by the authors.

2.3 Topology Awareness

The computing platforms expanding intricacy fueled the

requirement for programmers and developers to

comprehend hardware organization and to adjust their

applications accordingly. As a component of the general

enhancement process, there is a substantial requirement for

an ability to visualize a model of the hardware platform.

hwloc is the most famous programming tool for uncovering

a static perspective of the topology of CPUs and memory.

The paper in [75] shows how hwloc reaches out to these

computing assets by joining I/O devices topology and

offering approaches to deal with different hubs. I/O

territory data has been added to the hwloc tree speaking to

the equipment and additionally to enable applications to

recognize the resources they utilize, put undertakings close

to them or to adjust their area. Later on, to control the

remote host's topologies with pressure for useful

adaptability, an API was introduced.

The features that this paper is highlighting are mentioned in

the hwloc v1.9 (released in Spring 2014). On-going work is

currently concentrating on enhancing topology discovery

on developing ARM designs for elite figuring and also

programmed conflict management between constant

sources of data.

Deploying the advanced hardware resource to a particular

application is not something new and has been discovered

in earlier researches. It can be grasped clearly in a grid

environment context [76–78], as the choice of the best

combination of resources (clusters) to use is an essential

factor. The advantage of using such an approach is to

reduce the WAN communication impact in grids but does

not account for real topology details, such as the effects of

NUMA or cache hierarchy.

More recently, a specific type of application has been

targeted by some work, such as MapReduce- based

applications. Like Topology-Aware Resource Adaptation

(TARA) [79] that uses the application description for

resources allocation purposes. However, the work is

designed for a particular set of applications only and not

meant to address other hardware details.

The network topology backs parallel applications mapping

jobs to physical hardware. It can lead to significant

improvements in performance [80]. The scheduler can

consider the network topology characteristics [81] to favor

selecting a set of nodes being connected to the same

network under the same switch or even placed near each

other to avoid long-distance communication. Most open-

source and proprietary RJMS takes this kind of feature into

account by using the underlying physical topology

characteristics. However, they eventually failed to consider

the importance of application behavior during resource

allocation. An approach named HTCondor, formerly

Condor [82], is proposed to take advantage of the

matchmaking method, which allows matching the

requirements of applications with the available hardware

resources. However, this matchmaking method does not

consider the application behavior, and HTCondor applies to

both clusters and connected workstations. Slurm [83]

provides a feature to minimize the number of network

switches used in the allocation, thereby reducing

communication costs during the execution of the

application. Obviously, switches located deep in the

topology tree are supposed to have less communication cost

than those at the top layer.

Similarly, PBS Pro [84] and LSF [85] exploit the same

concept of topology-aware placement. Os Fujitsu [86]

employs a similar technique, but only for its proprietary

interconnect called Tofu. According to our knowledge,

Slurm [83] is still the only one that provides a best-fit

topology-aware selection system while the others only

suggest the first-fit algorithm system.

Part of RJMS offers alternatives for task placement that can

provide an appropriate arrangement for different

application forms. Torque [87] recommends NUMA based

job task placement system. Be that as it may, in this current

work, just the system topology is considered and the hubs

intuitive design is left unresolved when execution results

are conventional from misusing the memory chain of

command.

Multiple binding strategies are accessible and supported

with the Open MPI approaches. In every one of these

solutions, the user first needs to recover the compositional

points of interest before delivering their job or task.

Moreover, the placement choices offered to put the weight

on the client to decide on their approach and the application

correspondence plot is not considered.

2.4 Decomposition Techniques

The way toward software application parallelization can be

exceptionally dreary, and error inclined, specifically the

data decomposition task [88], [89].

While choosing a parallelization methodology, data

decomposition and the consequent conveyance of data or

task processing running on available cores is a fundamental

point to consider [90], [91].

Several researchers have conducted different studies to a

better understanding of parallel program needs and the

state-of-practice of parallelization [92–94]. Such studies

have played a role in understanding the project

organization, software usage, debugging, testing and

tuning. On the other hand, data decomposition is an area of

limited attention. This surprise leads us to the fact that data

decomposition is a significant challenge in a parallel

programming environment [89].

Up until this point, there have been insufficient empirical

researches in the HPC field that has concentrated on these

issues. The assignment of performing data disintegration

156 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

and correspondence while parallelizing applications has

been examined in empirical research [95]. The use of

techniques to help with this task and the current state of

practice was examined. To support the undertaking of data

deterioration and correspondence, while parallelizing

applications, an arrangement of crucial necessities is

inferred for tools of this system.

Table 2. Key Features of OpenACC, OpenMP, OpenCL, and CUDA

Features OpenMP OpenACC OpenCL CUDA

Supported

parallelism

- Data and task

parallelism.

- Data and task

parallelism.

- Data and task

parallelism.

- Data and task

parallelism.

Supported

parallelization

system

- Host and device. - Device only. - Host and device. - Device only.

Synchronization

- Barrier

- Reduction

- Join

- Reduction

- Join

- Barrier

- Reduction
- Barrier

Implemented code

- Programa (compiler

directives) for C/C++

and Fortran.

- Compiler-time.

- Programa (compiler

directives) for C/C++

and Fortran.

- Compiler-time.

- C/C++ extension.

- Run-time.

- C/C++ extension.

- Run-time.

Architecture level - High level. - High level. - Low level. - Low level.

Supported GPUs

manufacturers

- Numerous core

accelerated devices.

- Numerous core

accelerated devices.

- Numerous core

accelerated devices.
- NVIDIA GPUs.

The idea of decomposing multi-dimensional arrays in a

multi-view data model [96] is common to that of

distributed arrays supported by specific languages and

frameworks. High-Performance Fortran (HPF) offers

compiler directives that define array element distributions

[97]. The easiest way to decompose an array is to designate

keywords, such as BLOCK or CYCLIC, to each dimension.

Partitioned Global Address Space (PGAS) provides a

locality-aware shared address space among multiple

processes and is supported by languages developed for

high-performance computing, such as Co-array Fortran,

Unified Parallel C [98], UPC++ [99], X10 [100], and

Chapel [101]. PGAS languages also provide simple

notations for describing data decomposition. However,

HPF and this PGAS do not have a concept of View as in

[96]. As a result, users have to manually write code for

mapping tasks to processes by considering data location

when the task itself should be run in parallel. Hierarchically

Tiled Array (HTA) is a distributed array that enhances

locality and parallelism for improving performance on

multicore systems [102]. An HTA is composed of

hierarchical tiles that contain sub-tiles or values, and a unit

of tiles performs data assignment to processes and data

processing. Although it may be possible to achieve the

same effect of data distribution and processing by using

HTA, users have to carefully consider the hierarchy and

indices of tiles when writing such codes. Habanero-Java

provides Array-View, in which a one-dimensional array

can be viewed as any higher-dimensional array, to improve

productivity [103].

3 PROGRAMMING MODELS

3.1 Parallel Programming Models

Recently, parallel computing systems have been making

greater use of heterogeneous tools at the node level. The

types of nodes in use may include universally useful CPUs

and performance accelerators, e.g., GPUs or Intel Xeon

Phis, that give superior qualities in terms of energy

utilization. However, it is not easy to exploit the

performance available in heterogeneous systems, and this

may be a tedious and challenging process. There are a wide

range of parallel programming models (such as OpenCL,

OpenMP, CUDA) and selecting the right one for the target

context is not so easy and straightforward.

above summarises features of parallel programming models

as considered in the study in [104], i.e., OpenMP [105],

OpenACC [106], OpenCL [107], and CUDA [108].

OpenACC and OpenMP are mainly implemented as C,

C++, and FORTRAN compiler directives, which

significantly hide the detailed information of the computing

architecture from the programmer. Interestingly, CUDA

and OpenCL are executed as programming/software

libraries for only C and C++ and open the developer to

lower architectural details. As far as the boost from

parallelism is concerned, the majority of the models

considered widely support task parallelism and data

parallelism. While OpenCL and OpenMP give

parallelization to both multi-center CPUs and numerous

core accelerated devices, CUDA and OpenACC support for

parallelization are implied only for accelerators such as

NVIDIA GPUs [109].

Concerning distributed computing, MPI based parallel

executions are, for the most part, flexible to a broad number

of processors but may be less efficient when used on

specialist hardware. Precisely when various processor

centers are established their parallel efficiency is

significantly lower [110]. Of course, OpenMP is a

conventional memory parallel programming system, which

grants thread level parallelism. Joining OpenMP and MPI

parallelization for hybrid program assembly can achieve

two levels of parallelism. This approach decreases the

overhead of MPI while minimizing OpenMP overhead due

to thread creation and deletion. MPI/OpenMP have been

shown to have better execution in comparison with MPI

frameworks, for a couple of use cases [111, 112]. The

OpenACC Application Program Interface gives compiler

orders, library calls and condition factors that empower

programmers to make the parallel code for various systems

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 157

January-February

such as General Purpose Graphics Processing Units

(GPGPUs) [113]. Uniting OpenACC and MPI gives the

limit of running a parallel code in a collecting mode with

more than one GPU, distributed among the cluster nodes,

increasing the total number of cores joined.

3.2 Parallel and Big Data Programming Models:

Performance Perspective

It has been widely noted that MPI-based HPC frameworks

outperform Spark or Hadoop-based big data frameworks by

order of magnitude or more for a variety of different

application domains, e.g., support k-nearest neighbors and

vector machines [71], k-means [114], graph analytics [115,

116], and large-scale matrix factorizations [117]. Recent

performance analysis of Spark showed that compute load

was the primary bottleneck in some Spark applications,

specifically serialization and deserialization time [118].

Other work has tried to bridge the HPC-big data gap by

using MPI-based communication primitives to improve

performance. For example, Lu et al. [119] indicate how

replacing map-reduce communicators in Hadoop (Jetty)

with an MPI derivative (DataMPI) can lead to better

performance; the limitation of this approach is that it is not

a drop-in replacement for Hadoop and existing modules

need to be re-coded to use DataMPI. It has been shown that

it is possible to extend simple MPI-based applications to be

elastic in the number of nodes [120] through periodic data

redistribution among required MPI ranks. Efforts to add

fault tolerance to MPI have been ongoing since at least

2000 when Fagg and Dongarra proposed FTMPI [121].

Although the MPI standard has still not integrated any fault

tolerance mechanism, proposed solutions continue to be put

forth, e.g., Fenix [122]. However, there is a tremendous

productivity gap between the APIs of Fenix and Spark.

Several machine learning libraries have support for

interoperating with Spark, such as H2O.ai [123] and

deeplearning4j [124], and include their communication

primitives. However, these are Java-based approaches and

do not provide for direct integration of existing native-code

MPI-based libraries. Spark With Accelerated Tasks

(SWAT) [125] creates OpenCL code from JVM code at

runtime to improve Spark performance. As opposed to our

work, SWAT is limited to single-node optimizations; it

does not have access to the communication improvements

available through MPI.

4 EVALUATION

The techniques discussed in this survey are widely used by

high-performance computing for big data applications.

Each of these techniques has its own advantages and

disadvantages when compared to each other. While a

technique is good for a given dataset, it may not be suitable

for another dataset or application. In one case, the

technique may give very positive results with high

performance, but it may fail in another case.

Recently, big data has emerged as a universal concept, and

its management has attracted the attention of the research

community. In any big data computing system, there are

two important factors: the data-centric programming

model, and the underlying infrastructure, which is an

integration of storage and computation resources in each

node [126]. Processing such large and complex datasets

require collaborative High-Performance Computing (HPC).

One of the prime challenges in HPC is how to allocate

resources effectively, especially since each paradigm has a

different software stack [127] as shown in Figure 2. This

raises this question: are the existing techniques of HPC

scheduling and resource allocation effective enough to

support big data computing?

4.1 Optimum performance

Performance is an important metric used to evaluate

software systems. Optimality of system performance varies

from one system to another based on system requirements,

software packages used, and the underlying hardware

infrastructure supporting the computation. All the

techniques presented in Sections 2 and 3 were designed to

enhance performance explicitly or implicitly based on

relevant influencing factors.

Many big data platforms, such as MapReduce and Spark,

have the ability to support data locality by sending

processes near the location of the data to be processed.

However, such platforms are written in high-level

programming languages, which do not provide the same

level of support for parallelism as dedicated parallel

programming models. This consequently impacts

performance when running on HPC clusters.

Additionally, the enormous volume of big data may hinder

parallel programming models from maximizing parallelism.

In this sense, it is necessary to use effective domain

decomposition to tackle this concern. Granularity of

decomposition can play a vital role with options ranging

from fine-grain to coarse-grain. Choice of granularity can

affect performance with fine-grain granularity encouraging

high parallelism by decomposing the data into small chunks

and evenly distributing them among processors, which

facilitates load balancing. It would seem that performance

could be enhanced by employing a large number of

processors, but this leads to communication and

Figure 2. HPC and Big Data Software Stacks.

158 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

synchronization overhead, and inevitably consumes power.

This kind of parallelism is appropriate for fast

communication architectures like shared memory. In

contrast, coarse-grained granularity splits the data into large

tasks and places them in processors. This approach

employs a lesser number of processors that results in some

processors working on some tasks with other processors

being idle, resulting in load imbalance. However, this

approach has low communication and synchronization

overhead, which is suitable for MPI based architectures.

Medium-grained granularity supports parallelism as a

compromise between both fine-grained and coarse-grained

parallelism. Accordingly, it can be deduced that to achieve

optimal performance, all of these factors should be

employed collectively based on the given application and

dataset.

There is, ordinarily, a positive correlation between

performance and energy consumption: increasing

performance increases the amount of power consumed. The

problem of sacrificing power consumption as a result of

increased performance can be solved by using power

saving strategies such as race to halt [128]. This strategy

aims to employ maximum system speed to create long

intervals of idle time during which power consumption can

be minimized.

Parallel programming can be achieved by implementing

parallel programming models, whether for CPUs and GPU

accelerators. By comparing these programming models, via

the features in Table 3, it can be summarised that OpenMP,

OpenAcc and OpenCL re-enforce portability. Moreover, it

can be claimed that Cuda and OpenCL make a preference

for control of the low-level system. It can be argued that

OpenAcc can have the same performance, which makes it a

more productive model [109, 128]. Trends are now

targeting exascale computing and there is a need to employ

hybrid models (dual or tri) to fulfill the requirements of the

exascale future.

Integrating parallel and big data programming models such

as MPI with Spark [14] can enhance the performance and

get the best from both worlds. However, this will work for

specific scenarios and cannot be considered a general

purpose solution that can be applied as an independent big

data platform.

4.2 Resource utilization

Exploiting HPC resources is highly dependent on providing

metadata of the capabilities and availabilities of these

resources. Although this paper has already mentioned static

techniques to explore hardware topology, like hwloc [75],

such techniques have to be dynamic since resource

monitoring and dynamic updates can play a very critical

role for supporting data locality, load balancing and

decomposition from a scheduling perspective. The

availability of resources and system architecture can

determine the decomposition paradigm and granularity

options that support efficient resource and job management

system.

In this context, [129] investigated the efficiency of HPC

resource allocation using Google cluster datasets and

various data mining tools to determine the correlational

coefficient between resource allocation, resource usage and

priority. Initial analysis focused on the correlation between

resource allocation and resource use. The results show that

a high proportion of the resources allocated by the system

for a job did not get used by that job. Furthermore, it was

identified, using clustering, classification and prediction

techniques, that there is a very loose correlation between

the priority of the jobs with the allocation and use of

resources. This research finding emphasizes the need to

improve current HPC scheduling and resource allocation

techniques in order to enhance the performance of big data

applications and to efficiently accommodate its challenges.

As far as we know, and based on the review of prior work,

there is a necessity to establish a research roadmap that

considers all the aforementioned factors in the context of

resource and job management within HPC environments

for big data applications. This trend stems from the

performance gap between big data platforms and high-

performance computing due to different software stacks

and architecture designs for each domain. This disparity

leads to the fact that these platforms do not fully exploit the

performance available in HPC clusters. As a result,

improving the performance of big data applications and

optimizing HPC resource utilization without sacrificing the

power consumption of HPC is still a key challenge.

5 CONCLUSION
In this survey paper, various HPC techniques based on the

most important factors have been studied and compared in

the domain of big data and scientific workflow. All of the

aforementioned factors can play a critical role in

determining the efficiency of any HPC-based system used

to support big data applications. Each technique has its own

benefit and drawback. We have studied the techniques of

load balancing and data locality, job scheduling strategies,

topology aware, and data decomposition. Furthermore,

different features of parallel programming models have

been compared, highlighting a performance gap in

comparison with some big data programming models.

While each method is suitable for a given scenario and

datasets, it cannot be generalized for all kinds of

parallelization. Accordingly, it is desirable to customize

each method for the given application, datasets, and the

underlying architecture.

We have discussed how resource allocation is a critical part

in the case of high-performance computing as well as big

data. In both cases, a separate resource manager is

generally needed to manage the resources and to ensure

that the resources are loaded optimally to get the best

performance out of the clustered environment.

In future work, we will consider all of the previous factors

for employing a hybrid parallel programming model to

build a high-level scheduling technique to enhance the

performance of big data applications and exploit the

availability of HPC resources without sacrificing the power

consumption of HPC.

REFERENCES
[1] Y. Georgiou and M. Hautreux, ―Evaluating

Scalability and Efficiency of the Resource and Job

Management System on Large HPC Clusters,‖

Springer, Berlin, Heidelberg, 2013, pp. 134–156.

[2] E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and

G. Zheng, ―Communication and topology-aware load

balancing in Charm++ with TreeMatch,‖ in 2013

IEEE International Conference on Cluster Computing

(CLUSTER), 2013, pp. 1–8.

[3] H. Luu et al., ―A Multiplatform Study of I/O

Behavior on Petascale Supercomputers,‖ Proc. 24th

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 159

January-February

Int. Symp. High-Performance Parallel Distrib.

Comput. - HPDC ’15, pp. 33–44, 2015.

[4] Z. Zhou et al., ―I/O-aware batch scheduling for

petascale computing systems,‖ Proc. - IEEE Int.

Conf. Clust. Comput. ICCC, vol. 2015–Octob, pp.

254–263, 2015.

[5] N. Capit et al., ―A batch scheduler with high level

components,‖ in CCGrid 2005. IEEE International

Symposium on Cluster Computing and the Grid,

2005., 2005, p. 776–783 Vol. 2.

[6] E. Jeannot and G. Mercier, ―Near-Optimal Placement

of MPI Processes on Hierarchical NUMA

Architectures,‖ 2010, pp. 199–210.

[7] Z. Tan, L. Du, D. Feng, and W. Zhou, ―EML: An I/O

scheduling algorithm in large-scale-application

environments,‖ Futur. Gener. Comput. Syst., vol. 78,

pp. 1091–1100, 2018.

[8] R. Ross, R. T.-P. of the 4th annual L. showcase, and

undefined 2000, ―PVFS: A parallel file system for

Linux clusters,‖ usenix.org.

[9] X. Zhang, S. Jiang, and K. Davis, ―Making resonance

a common case: A high-performance implementation

of collective I/O on parallel file systems,‖ in 2009

IEEE International Symposium on Parallel &

Distributed Processing, 2009, pp. 1–12.

[10] S. Bergamaschi, C. Cavazzoni, A. Curioni, and G.

Fox , "New Opportunities in High-Performance Data

Analytics (HPDA) and High-Performance Computing

(HPC) ,‖ ieeexplore.ieee.org .
[11] K. M. Tolle, D. S. W. Tansley, and A. J. G. Hey, "The

Fourth Paradigm: Data-intensive scientific

discovery," Proc. IEEE, vol. 99, no. 8, pp. 1334–

1337, 2011.

[12] S. Fiore, M. Bakhouya, and W. W. Smari, "On the

road to exascale: Advances in High-Performance

Computing and Simulations—An overview and

editorial," Futur. Gener. Comput. Syst., vol. 82, pp.

450–458, 2018.

[13] D. A. Reed and J. Dongarra, ―Exascale computing

and big data,‖ Commun. ACM, vol. 58, no. 7, pp. 56–

68, 2015.

[14] M. Anderson et al., ―Bridging the gap between HPC

and big data frameworks,‖ Proc. VLDB Endow., vol.

10, no. 8, pp. 901–912, 2017.

[15] P. Xuan, J. Denton, P. K. Srimani, R. Ge, and F. Luo,

―Big data analytics on traditional HPC infrastructure

using two-level storage,‖ Proc. 2015 Int. Work. Data-

Intensive Scalable Comput. Syst. - DISCS ’15, pp. 1–

8, 2015.

[16] M. Chen, S. Mao, and Y. Liu, ―Big data: A survey,‖

Mob. Networks Appl., vol. 19, no. 2, pp. 171–209,

2014.

[17] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I.

Raicu, ―Optimizing load balancing and data-locality

with data-aware scheduling,‖ Proc. - 2014 IEEE Int.

Conf. Big Data, IEEE Big Data 2014, pp. 119–128,

2015.

[18] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M.

Wilde, ―Falkon,‖ in Proceedings of the 2007

ACM/IEEE conference on Supercomputing - SC ’07,

2007, p. 1.

[19] I. Raicu, Y. Zhao, I. T. Foster, and A. Szalay,

―Accelerating large-scale data exploration through

data diffusion,‖ in Proceedings of the 2008

international workshop on Data-aware distributed

computing - DADC ’08, 2008, pp. 9–18.

[20] G. Zheng, E. Meneses, A. Bhatele, and L. V. Kale,

―Hierarchical Load Balancing for Charm++

Applications on Large Supercomputers,‖ in 2010 39th

International Conference on Parallel Processing

Workshops, 2010, pp. 436–444.

[21] B. Hindman, A. Konwinski, A. Platform, F.-G.

Resource, and M. Zaharia, ―Mesos: A platform for

fine-grained resource sharing in the data center,‖

Proc. …, p. 32, 2011.

[22] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K.

Talwar, and A. Goldberg, ―Quincy,‖ in Proceedings

of the ACM SIGOPS 22nd symposium on Operating

systems principles - SOSP ’09, 2009, p. 261.

[23] M. Isard et al., ―Dryad,‖ in Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on

Computer Systems 2007 - EuroSys ’07, 2007, vol. 41,

no. 3, p. 59.

[24] BIALECKI and A., ―Hadoop : a framework for

running applications on large clusters built of

commodity hardware,‖

http://lucene.apache.org/hadoop, 2005.

[25] I. Sadooghi et al., ―Achieving Efficient Distributed

Scheduling with Message Queues in the Cloud for

Many-Task Computing and High-Performance

Computing,‖ in 2014 14th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing,

2014, pp. 404–413.

[26] ―What is Amazon Simple Queue Service? - Amazon

Simple Queue Service.‖ [Online]. Available:

https://docs.aws.amazon.com/AWSSimpleQueueServ

ice/latest/SQSDeveloperGuide/welcome.html.

[Accessed: 12-Aug-2018].

[27] G. DeCandia et al., ―Dynamo,‖ ACM SIGOPS Oper.

Syst. Rev., vol. 41, no. 6, p. 205, Oct. 2007.

[28] Y. Guo et al., ―SLAW,‖ in Proceedings of the 15th

ACM SIGPLAN symposium on Principles and

practice of parallel programming - PPoPP ’10, 2010,

vol. 45, no. 5, p. 341.

[29] Yi Guo, R. Barik, R. Raman, and V. Sarkar, ―Work-

first and help-first scheduling policies for async-finish

task parallelism,‖ in 2009 IEEE International

Symposium on Parallel & Distributed Processing,

2009, pp. 1–12.

[30] J. Paudel, O. Tardieu, and J. N. Amaral, ―On the

Merits of Distributed Work-Stealing on Selective

Locality-Aware Tasks,‖ in 2013 42nd International

Conference on Parallel Processing, 2013, pp. 100–

109.

[31] J. Yin, A. Foran, and J. Wang, ―DL-MPI: Enabling

data locality computation for MPI-based data-

intensive applications,‖ Proc. - 2013 IEEE Int. Conf.

Big Data, Big Data 2013, pp. 506–511, 2013.

[32] L. Huang, H. Jin, L. Yi, and B. Chapman, ―Enabling

locality-aware computations in OpenMP,‖ Sci.

Program., vol. 18, no. 3–4, pp. 169–181, 2010.

[33] C. Pousa Ribeiro, M. Castro, J. F. Méhaut, and A.

Carissimi, ―Improving memory affinity of geophysics

applications on NUMA platforms using minas,‖ Lect.

Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 6449

LNCS, pp. 279–292, 2011.

[34] Z. Majo and T. R. Gross, ―Matching memory access

160 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

patterns and data placement for NUMA systems,‖

10th Int. Symp. Code Gener. Optim. CGO 2012, pp.

230–241, 2012.

[35] D. S. Nikolopoulos, T. S. Papatheodorou, C. D.

Polychronopoulos, J. Labarta, and E. Ayguadé, ―Is

Data Distribution Necessary in OpenMP?,‖

ACM/IEEE Int. Conf. High Perform. Comput.

Networking, Storage Anal., 2000.

[36] N. Furmento, B. Goglin, and R. Namyst, ―Dynamic

Task and Data Placement over NUMA Architectures :

an OpenMP Runtime Perspective e Wacrenier To cite

this version : Dynamic Task and Data Placement over

NUMA Architectures : an OpenMP Runtime

Perspective,‖ 2009.

[37] R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C.

Kozyrakis, ―Locality-aware Task Management for

Unstructured Parallelism: A Quantitative Limit

Study,‖ Proc. 25th ACM Symp. Parallelism

algorithms Archit., pp. 315–325, 2013.

[38] B. Vikranth, R. Wankar, and C. Raghavendra Rao,

―Topology aware task stealing for on-chip NUMA

multi-core processors,‖ Procedia Comput. Sci., vol.

18, pp. 379–388, 2013.

[39] J. Zhou, B. Demsky, J. Zhou, and B. Demsky,

―Memory management for many-core processors with

software configurable locality policies,‖ in

Proceedings of the 2012 international symposium on

Memory Management - ISMM ’12, 2012, vol. 47, no.

11, p. 3.

[40] Q. Lu et al., ―Data layout transformation for

enhancing data locality on NUCA chip

multiprocessors,‖ Parallel Archit. Compil. Tech. -

Conf. Proceedings, PACT, pp. 348–357, 2009.

[41] A. Marongiu and L. Benini, ―An OpenMP Compiler

for Efficient Use of Distributed Scratchpad Memory

in MPSoCs,‖ IEEE Trans. Comput., vol. 61, no. 2, pp.

222–236, Feb. 2012.

[42] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones,

―Compiler-assisted Data Distribution for Chip

Multiprocessors,‖ Parallel Archit. Compil. Tech., vol.

23, no. 11, pp. 501–512, 2010.

[43] Y. Li, R. G. Melhem, and A. K. Jones, ―Practically

Private: Enabling High Performance CMPs through

Compiler-Assisted Data Classification,‖ 21st Int’l

Conf. Parallel Archit. Compil. Tech., pp. 231–240,

2012.

[44] N. Hardavellas, M. Ferdman, B. Falsafi, and A.

Ailamaki, ―Reactive NUCA: Near-Optimal Block

Placement and Replication in Distributed Caches,‖

Proc. Int. Symp. Comput. Archit., no. June, pp. 184–

195, 2009.

[45] A. Tousimojarad and W. Vanderbauwhede, ―A

Parallel Task-based Approach to Linear Algebra,‖

2014.

[46] B. A. I. Relations, ―for High-Performance Parallel

Systems,‖ 2016.

[47] W. Tang, D. Ren, Z. Lan, and N. Desai, ―Adaptive

Metric-Aware Job Scheduling for Production

Supercomputers,‖ in 2012 41st International

Conference on Parallel Processing Workshops, 2012,

pp. 107–115.

[48] S. Khan, ―A Self-adaptive Weighted Sum Technique

for the Joint Optimization of Performance and Power

Consumption in Data Centers.,‖ Isca Pdccs, pp. 13–

18, 2009.

[49] S. Khan, C. A.-I. J. of Electrical, undefined

Computer, undefined and, and undefined 2009 , ―A

weighted sum technique for the joint optimization of

performance and power consumption in data centers ,‖

Citeseer .
[50] S. U. Khan and I. Ahmad, ―Non-cooperative, semi-

cooperative, and cooperative games-based grid

resource allocation,‖ in Proceedings 20th IEEE

International Parallel & Distributed Processing

Symposium, 2006, p. 10 pp.

[51] S. U. Khan, ―A goal programming approach for the

joint optimization of energy consumption and

response time in computational grids,‖ in 2009 IEEE

28th International Performance Computing and

Communications Conference, 2009, pp. 410–417.

[52] T. D. Braun et al., ―A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks

onto Heterogeneous Distributed Computing

Systems,‖ J. Parallel Distrib. Comput., vol. 61, no. 6,

pp. 810–837, Jun. 2001.

[53] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo,

―A comparative study of online scheduling algorithms

for networks of workstations,‖ Cluster Comput., vol.

3, no. 2, pp. 95–112, 2000.

[54] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica,

―Sparrow: Scalable scheduling for sub-second parallel

jobs ”,3102 .

[55] V. K. Vavilapalli et al., ―Apache Hadoop YARN,‖ in

Proceedings of the 4th annual Symposium on Cloud

Computing - SOCC ’13, 2013, pp. 1–16.

[56] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,

and J. Wilkes, ―Omega,‖ in Proceedings of the 8th

ACM European Conference on Computer Systems -

EuroSys ’13, 2013, p. 351.

[57] Apache Hadoop Project, ―Hadoop on demand,‖ 2008.

[Online]. Available:

https://svn.apache.org/repos/asf/hadoop/common/tags

/release-0.17.1/docs/hod.html.

[58] SAGA, ―SAGA-Hadoop,‖ 2014. [Online]. Available:

https://github.com/drelu/saga-hadoop.

[59] MyHadoop, ―myhadoop,‖ 2013. [Online]. Available:

https://portal.futuregrid.org/tutorials/%0Arunning-

hadoop-batch-job-using-myhadoop.

[60] Amazon Web Services, ―Elastic Map Reduce

Service,‖ 2013. [Online]. Available:

https://aws.amazon.com/emr/.

[61] Microsoft Azure, ―HDInsight Service,‖ 2013.

[Online]. Available: https://azure.microsoft.com/en-

us/services/hdinsight/.

[62] ―Llama,‖ 2013. [Online]. Available:

http://cloudera.github.io/llama.

[63] ―Apache TEZ,‖ 2014. [Online]. Available:

https://hortonworks.com/apache/tez/.

[64] W. C. Moody, L. B. Ngo, E. Duffy, and A. Apon,

―JUMMP: Job Uninterrupted Maneuverable

MapReduce Platform,‖ in 2013 IEEE International

Conference on Cluster Computing (CLUSTER), 2013,

pp. 1–8.

[65] O. Kulkarni, ―Hadoop mapreduce over lustre–high

performance data division,‖ 2013.

[66] P. Zikopoulos et al., Understanding Big Data:

Analytics for Enterprise Class Hadoop and Streaming

Data. 2011.

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 161

January-February

[67] R. H. Castain, O. Kulkarni, and X. Zhenyu,

―MapReduce and Running Hadoop in a High

Performance Computing Environment Lustre :

Agenda,‖ Lustre User Gr. 2013 China Japan, 2013.

[68] C. Acevedo, P. Hernández, A. Espinosa, and V.

Méndez, "A Critical Path File Location (CPFL)

algorithm for data-aware multi-workflow scheduling

on HPC clusters," Futur. Gener. Comput. Syst., vol.

74, pp. 51–62, 2017.

[69] M. Mercier, D. Glesser, Y. Georgiou, and O. Richard,

―Big Data and HPC collocation : Using HPC idle

resources for Big Data Analytics,‖ pp. 347–352,

2017.

[70] M. Wasi-ur-Rahman, X. Lu, N. S. Islam, R.

Rajachandrasekar, and D. K. Panda, ―High-

Performance Design of YARN MapReduce on

Modern HPC Clusters with Lustre and RDMA,‖ in

2015 IEEE International Parallel and Distributed

Processing Symposium, 2015, pp. 291–300.

[71] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, ―Big

Data Analytics in the Cloud: Spark on Hadoop vs

MPI/OpenMP on Beowulf,‖ Procedia Comput. Sci.,

vol. 53, pp. 121–130, Jan. 2015.

[72] S. Krishnan and D. Ph, ―myHadoop 0 . 2a : Hadoop-

on-demand on Traditional HPC Resources,‖ Lustre,

pp. 0–3, 2011.

[73] M. V. Neves, T. Ferreto, and C. De Rose,

―Scheduling MapReduce Jobs in HPC Clusters,‖

Springer, Berlin, Heidelberg, 2012, pp. 179–190.

[74] A. Luckow, I. Paraskevakos, G. Chantzialexiou, and

S. Jha, ―Hadoop on HPC: Integrating Hadoop and

Pilot-Based Dynamic Resource Management,‖ in

2016 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), 2016,

pp. 1607–1616.

[75] B. Goglin, ―Managing the topology of heterogeneous

cluster nodes with hardware locality (hwloc),‖ Proc.

2014 Int. Conf. High Perform. Comput. Simulation,

HPCS 2014, pp. 74–81, 2014.

[76] Chuang Liu, Lingyun Yang, I. Foster, and D. Angulo,

―Design and evaluation of a resource selection

framework for Grid applications,‖ in Proceedings

11th IEEE International Symposium on High

Performance Distributed Computing, pp. 63–72.

[77] O. Sonmez, H. Mohamed, and D. Epema,

―Communication-Aware Job Placement Policies for

the KOALA Grid Scheduler,‖ in 2006 Second IEEE

International Conference on e-Science and Grid

Computing (e-Science’06), 2006, pp. 79–79.

[78] A. Sahai and S. F. Wu, Utility computing : 15th

IFIP/IEEE International Workshop on Distributed

Systems: Operations and Management, DSOM 2004,

Davis, CA, USA, November 15-17, 2004 :

proceedings. Springer, 2004.

[79] G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz,

―Topology-aware resource allocation for data-

intensive workloads,‖ in Proceedings of the first ACM

asia-pacific workshop on Workshop on systems -

APSys ’10, 2010, p. 1.

[80] A. Bhatelé, E. Bohm, and L. V. Kalé, ―Topology

aware task mapping techniques,‖ ACM SIGPLAN

Not., vol. 44, no. 4, p. 301, Feb. 2009.

[81] J. Navaridas, J. Miguel-Alonso, F. J. Ridruejo, and

W. Denzel, ―Reducing complexity in tree-like

computer interconnection networks,‖ Parallel

Comput., vol. 36, no. 2–3, pp. 71–85, Feb. 2010.

[82] R. Raman, M. Livny, and M. Solomon,

―Matchmaking: distributed resource management for

high throughput computing,‖ in Proceedings. The

Seventh International Symposium on High

Performance Distributed Computing (Cat.

No.98TB100244), pp. 140–146.

[83] A. B. Yoo, M. A. Jette, and M. Grondona, ―SLURM:

Simple Linux Utility for Resource Management,‖

Springer, Berlin, Heidelberg, 2003, pp. 44–60.

[84] PBSWorks, ―PBS Professional.‖ [Online]. Available:

https://www.pbsworks.com/PBSProduct.aspx?n=PBS

-Professional&c=Overview-and-Capabilities.

[85] C. Smith, B. Mcmillan, and I. Lumb, ―Topology

Aware Scheduling in the LSF Distributed Resource

Manager,‖ Proc. Cray User Gr. Meet., 2001.

[86] T. Mikamo, ―Technical Computing Suite Job

Management Software,‖ 2012.

[87] Adaptive computing, ―Torque resource manager.‖

[Online]. Available:

http://docs.adaptivecomputing.com/torque/6-0-

0/Content/topics/torque/2-jobs/monitoringJobs.htm.

[Accessed: 14-Aug-2018].

[88] H. Vandierendonck and T. Mens, ―Averting the Next

Software Crisis,‖ Computer (Long. Beach. Calif).,

vol. 44, no. 4, pp. 88–90, Apr. 2011.

[89] A. Meade, J. Buckley, and J. J. Collins, ―Challenges

of evolving sequential to parallel code,‖ in

Proceedings of the 12th international workshop and

the 7th annual ERCIM workshop on Principles on

software evolution and software evolution - IWPSE-

EVOL ’11, 2011, p. 1.

[90] B. L. Massingill, T. G. Mattson, and B. A. Sanders,

―Reengineering for Parallelism: an entry point into

PLPP for legacy applications,‖ Concurr. Comput.

Pract. Exp., vol. 19, no. 4, pp. 503–529, Mar. 2007.

[91] V. Pankratius, C. Schaefer, A. Jannesari, and W. F.

Tichy, ―Software engineering for multicore systems,‖

in Proceedings of the 1st international workshop on

Multicore software engineering - IWMSE ’08, 2008,

p. 53.

[92] R. Eccles and D. A. Stacey, ―Understanding the

Parallel Programmer,‖ in 20th International

Symposium on High-Performance Computing in an

Advanced Collaborative Environment (HPCS’06),

2006, pp. 12–12.

[93] V. R. Basili et al., ―Understanding the High-

Performance-Computing Community: A Software

Engineer’s Perspective,‖ IEEE Softw., vol. 25, no. 4,

pp. 29–36, Jul. 2008.

[94] L. Hochstein and V. R. Basili, ―The ASC-Alliance

Projects: A Case Study of Large-Scale Parallel

Scientific Code Development,‖ Computer (Long.

Beach. Calif)., vol. 41, no. 3, pp. 50–58, Mar. 2008.

[95] A. Meade, D. K. Deeptimahanti, J. Buckley, and J. J.

Collins, ―An empirical study of data decomposition

for software parallelization,‖ J. Syst. Softw., vol. 125,

pp. 401–416, Mar. 2017.

[96] S. Takizawa, M. Matsuda, N. Maruyama, and Y.

Nakamura, ―A Scalable Multi-Granular Data Model

for Data Parallel Workflows,‖ Proc. Int. Conf. High

Perform. Comput. Asia-Pacific Reg. - HPC Asia

2018, pp. 251–260, 2018.

162 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1), 149-163,2019

January-February

[97] D. B. Loveman, "High Performance Fortran," IEEE

Parallel Distrib. Technol. Syst. Appl., vol. 1, no. 1,

pp. 25–42, Feb. 1993.

[98] C. Coarfa et al., ―An evaluation of global address

space languages,‖ in Proceedings of the tenth ACM

SIGPLAN symposium on Principles and practice of

parallel programming - PPoPP ’05, 2005, p. 36.

[99] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K.

Yelick, ―UPC++: A PGAS Extension for C++,‖ in

2014 IEEE 28th International Parallel and

Distributed Processing Symposium, 2014, pp. 1105–

1114.

[100] P. Charles et al., ―X10,‖ in Proceedings of the 20th

annual ACM SIGPLAN conference on Object-

oriented programming systems languages and

applications - OOPSLA '05, 2005, vol. 40, no. 10, p.

519.

[101] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E.

Choi, ―User-defined distributions and layouts in

chapel: philosophy and framework,‖ Proceedings of

the 2nd USENIX conference on Hot topics in

parallelism. USENIX Association, pp. 12–12, 2010.

[102] G. Bikshandi et al., ―Programming for parallelism

and locality with hierarchically tiled arrays,‖ in

Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel

programming - PPoPP ’06, 2006, p. 48.

[103] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar,

―Habanero-Java,‖ in Proceedings of the 9th

International Conference on Principles and Practice

of Programming in Java - PPPJ ’11, 2011, p. 51.

[104] S. Memeti, L. Li, S. Pllana, J. Kolodziej, and C.

Kessler, ―Benchmarking OpenCL, OpenACC,

OpenMP, and CUDA: programming productivity,

performance, and energy consumption,‖ pp. 1–14,

2017.

[105] OpenMP, ―OpenMP 4.0 Specifications.‖ [Online].

Available: https://www.openmp.org/specifications/.

[Accessed: 14-Aug-2018].

[106] S. Wienke, P. Springer, C. Terboven, and D. an Mey,

―OpenACC — First Experiences with Real-World

Applications,‖ Springer, Berlin, Heidelberg, 2012, pp.

859–870.

[107] J. E. Stone, D. Gohara, and G. Shi, ―OpenCL: A

Parallel Programming Standard for Heterogeneous

Computing Systems,‖ Comput. Sci. Eng., vol. 12, no.

3, pp. 66–73, May 2010.

[108] NVIDIA, ―CUDA C Programming Guide.‖

[109] and M. W. Y. Yan, B. M. Chapman, ―A Comparison

of Heterogeneous and Manycore Programming

Models,‖ 2015. [Online]. Available:

https://www.hpcwire.com/2015/03/02/a-comparison-

of-heterogeneous-and-manycore-programming-

models/. [Accessed: 14-Aug-2018].

[110] D. Li, X. Ji, Z. Zhou, and Q. Wang, ―A Hybrid

MPI/OpenMP Model Based on DDM for Large-Scale

Partial Differential Equations,‖ in 2012 IEEE 11th

International Conference on Trust, Security and

Privacy in Computing and Communications, 2012,

pp. 1839–1843.

[111] H. Jin, D. Jespersen, P. Mehrotra, L. Huang, and B.

Chapman, ―High performance computing using MPI

and OpenMP on multi-core parallel systems,‖

Parallel Comput., vol. 37, no. 9, pp. 562–575, Sep.

2011.

[112] P. D. Mininni, D. Rosenberg, R. Reddy, and A.

Pouquet, ―A hybrid MPI–OpenMP scheme for

scalable parallel pseudospectral computations for

fluid turbulence,‖ Parallel Comput., vol. 37, no. 6–7,

pp. 316–326, Jun. 2011.

[113] D. Kirk and W. Hwu, Programming massively

parallel processors : a hands-on approach. Morgan

Kaufmann Publishers, 2010.

[114] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox,

―A Tale of Two Data-Intensive Paradigms:

Applications, Abstractions, and Architectures,‖ in

2014 IEEE International Congress on Big Data,

2014, pp. 645–652.

[115] N. Satish et al., ―Navigating the maze of graph

analytics frameworks using massive graph datasets,‖

in Proceedings of the 2014 ACM SIGMOD

international conference on Management of data -

SIGMOD ’14, 2014, pp. 979–990.

[116] G. M. Slota, S. Rajamanickam, and K. Madduri, ―A

Case Study of Complex Graph Analysis in

Distributed Memory: Implementation and

Optimization,‖ in 2016 IEEE International Parallel

and Distributed Processing Symposium (IPDPS),

2016, pp. 293–302.

[117] A. Gittens et al., ―Matrix factorizations at scale: A

comparison of scientific data analytics in spark and

C+MPI using three case studies,‖ in 2016 IEEE

International Conference on Big Data (Big Data),

2016, pp. 204–213.

[118] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,

and B.-G. Chun, ―Making Sense of Performance in

Data Analytics Frameworks,‖ 12th USENIX Symp.

Networked Syst. Des. Implementation (NSDI 2015),

pp. 293–307, 2015.

[119] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu,

―DataMPI: Extending MPI to Hadoop-Like Big Data

Computing,‖ in 2014 IEEE 28th International

Parallel and Distributed Processing Symposium,

2014, pp. 829–838.

[120] A. Raveendran, T. Bicer, and G. Agrawal, ―A

Framework for Elastic Execution of Existing MPI

Programs,‖ in 2011 IEEE International Symposium

on Parallel and Distributed Processing Workshops

and PhD Forum, 2011, pp. 940–947.

[121] G. E. Fagg and J. J. Dongarra, ―FT-MPI: Fault

Tolerant MPI, Supporting Dynamic Applications in a

Dynamic World,‖ Springer, Berlin, Heidelberg, 2000,

pp. 346–353.

[122] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky,

and M. Parashar, ―Exploring Automatic, Online

Failure Recovery for Scientific Applications at

Extreme Scales,‖ in SC14: International Conference

for High Performance Computing, Networking,

Storage and Analysis, 2014, pp. 895–906.

[123] ―H2O.ai. Sparkling Water.‖ [Online]. Available:

https://github.com/h2oai/sparkling-water. [Accessed:

14-Aug-2018].

[124] ―deeplearning4j. Deep Learning for Java. Open-

Source, Distributed, Deep Learning Library for the

JVM.‖ [Online]. Available:

https://deeplearning4j.org/. [Accessed: 14-Aug-2018].

Sci.Int.(Lahore),31(1), 149-163,2019 ISSN 1013-5316;CODEN: SINTE 8 163

January-February

[125] M. Grossman and V. Sarkar, ―SWAT,‖ in

Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and

Distributed Computing - HPDC ’16, 2016, pp. 81–92.

[126] S. Caíno-Lores, A. Lapin, J. Carretero, and P. Kropf,

―Applying big data paradigms to a large scale

scientific workflow: Lessons learned and future

directions,‖ Futur. Gener. Comput. Syst., pp. 1–13,

2018.

[127] H. R. Asaadi, D. Khaldi, and B. Chapman, ―A

comparative survey of the HPC and big data

paradigms: Analysis and experiments,‖ Proc. - IEEE

Int. Conf. Clust. Comput. ICCC, pp. 423–432, 2016.

[128] W. Wang, ―Performance, power, and energy tuning

using hardware and software techniques for modern

parallel architectures,‖ 2016.

[129] B. R. Ray, M. Chowdhury, and U. Atif, ―Future

Network Systems and Security,‖ vol. 759, pp. 97–

112, 2017.

