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ABSTRACT:  Some properties of a subclass of harmonic functions defined by multiplier transformations like coefficient  

inequalities , distortion bounds and Extreme points are investigated in the present paper . 
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1- INTRODUCTION 

 A complex valued function         which is 

continuous that defined in simple connected domain   

is said to be harmonic if   and   are real in    , that is    

and    are satisfy , respectively, the Laplace equations . 

Follows from the above every analytic function is complex- 

valued harmonic function . 

Let                where   and   are analytic in  .     

is called the analytic part and    is called the co-analytic 

part of   . For   to be locally univalent and sense- 

preserving in   it must satisfy the necessary and sufficient 

condition  

                          |     |  |     |  [4] in    ,  

Let       denote the set of all multivalent harmonic 

functions       that are sense-preserving in the open 

unit disk      | |     ,    and   are of the form 

        ∑          
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   |  |    .          (1)  

Recall that Clunie and Sheil –Small [4] and Jahangiri et al  

[6] are studied the class      of harmonic univalent 

functions  . For        ,the differential 

 operator                 of   was introduce by 

Jahangiri et al [5] for fixed positive integer   and for 

      given by (1) ,the modified Salagean  operator 

    [5] is defined as  

                            

                                              (2)  

Where  
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Ahuja and Jahangiri [1] are studied the class     . Next 

for function       given by (1) which is belonging to 

     ,Cho and Srivastava [3] defined multiplier 

transformations , the modified multiplier transformation of 

  given by (1) is defined as 

     
                  , 
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Where     
 

 
 .If   is given by (1) ,then from (3) and 

(4) we see that  
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 Define                   be a subclass of     , 

a functions                      of the form (1) is in 

the class      if it is satisfy the following condition  

 ( (      )
    
       

    
     

      )         

                                         (6) 

Where      
      is given by (5) . 

Suppose                    consisting of harmonic 

functions                         

in      such that                      

        ∑          
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                                               (7) 
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and  

                                                           

2- MAIN RESULTS 

Theorem 1 . Let       be so that   and   are given by 

(1) with     , and  

∑ (
 (

       

 
)  

   
)

 

*      (
 (

       

 
)  

   
)       

   

  + |        |  

    ∑ (
 (

       

 
)  

   
)

 

*      (
 (

       

 
)  

   
)       

   

  + |        | 

                                    (8) 

Where    
 

 
        

 

   
   

 

   
 

.Then   is sense-preserving ,harmonic univalent in   ,and 
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Which proves univalence . Since   
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This shows that    is sense-preserving in  . 

Using the fact that           if and only 
 if |       |  |       | , it is suffices to show that  
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Putting                                     in the 

above Theorem , we obtain  

Corollary 1 . Let       be so that   and   are given 

by (1) with      . furthermore , let  
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 .Then   is 

sense-preserving ,harmonic univalent in   . 

Remark 1. We note that the result is obtained by Hasan 

Bayram and Sibel Yalcin [2] .  

Corollary 2 . Let       be so that   and   are given 

by (1) with      . furthermore , let  
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.Then   is sense-

preserving ,harmonic univalent in   . 
Remark 2. We note that the result is obtained by Yasar and 

Sibel Yalcin [7] .  

Theorem 2. Let         be so that   and   are given 

by (7) with      .Then                      if and 

only if   
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Proof . The " if " part functions holds immediately by 

Theorem 1 also  noting that 

                                      . For the 

"only if " part , if the condition (9) is not hold we show that 

                     . Note that a necessary and 

sufficient condition for         given by (9) to be in 

                   is that the condition (8) to be 

satisfied . This is equivalent to  
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This hold for all values of  , such that  | |     . 

Choosing   on the positive real axies such that     
    we obtain  
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The numerator in (10) is negative for r sufficiently 

close to 1 if  condition (9) does not hold ,therefore 

there exist       in       for which the quotient in 

(10) is negative .But this contradicts the required 

condition for                        and so the 

proof is complete . 

Theorem 3. Let     is agiven by (7) .Then    
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The proof for the left hand inequality is similar and will be omitted  . 
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Theorem 5. The class                    is closed 

under the convex combinations . 
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