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ABSTRACT: Purpose – The aim of this research is to find accurate solution for the Troesch’s problem by using high 

performance technique based on parallel processing implementation.   

Design/methodology/approach – Feed forward neural network is designed to solve important type of differential equations that 

arises in many applied sciences and engineering applications. The suitable designed based on choosing suitable learning rate, 

transfer function, and training algorithm. The authors used back propagation with new implement of Levenberg - Marquardt 

training algorithm. Also, the authors depend new idea for choosing the weights. The effectiveness of the suggested design for 

the network is shown by using it for solving Troesch problem in many cases.  

Findings – New idea for choosing the weights of the neural network, new implement of Levenberg - Marquardt training 

algorithm which assist to speeding the convergence and the implementation of the suggested design demonstrates the 

usefulness in finding exact solutions. 

Practical implications – The authors have applied the suggested design of feed forward neural network to solve Troesch’s 

problem which is an important equation in Magnetostatic Fields, Electrochemical, a Magnetic Field and others. 

Originality/value – In this paper, main types of the differential equation have been solved by using parallel processing 

technique based on feed forward neural network.  

The design has been accompanied with new implementation of training algorithm. This process constructs an efficient dealing 

to get the exact solutions of the non-linear problems which is easy to implement. 

In addition to that, the accompanied regularization design with the used design proved its efficiency in handling many 

problems especially ill-posed problems. 

 

KEYWORDS: Ordinary Differential Equation, Troesch’s Problem, Feed Forward Neural Network, Back propagation Training Algorithms, 

Levenberg - Marquardt algorithm. 

 
1. INTRODUCTION 
Artificial Neural Networks (Ann) have achieved employment 

in many specialties: neurosciences, arithmetic, statistics, 

physical processes, information technology, and 

manufacturing. Greatest of the preceding workings in solving 

differential equations by using Ann is limited to the item of 

resolving the linear system of algebraic equations which 

product from the discretization of the domain. The reduce of 

the networks power function delivers the result to the system 

of equations [1]. Mohsen and Behnam [2] used modified Ann 

is called relax state to solve the Burger's equation in one 

dimensional partial differential equation. Hamid et al., [3] 

employed a numerical technique combines with Ann's for 

solving the Lane-Emden equations. Many researchers such 

[4-6] used multilayer perceptron and Radial basis function 

neural networks for solving differential equations of various 

types. Mall and Chakraverty [7] used Feed Forward Neural 

Network (FFNN) for solving ordinary differential equations 

(ODE) with regression based algorithm and discuss score 

with random initial weights for various number of neuron in 

hidden layers. Modjtaba et al., in [8] used Ann's has been 

expanded for solving the Stokes problem. In [9] Ladislav 

developed a new kind of Anns which is differential 

polynomial neural networks, it’s implementation on 

principles, which are employed in the human brain learning. 

Yashtini and Malek [10] suggested a recurrent neural 

networks technique for solving a type of monotone variation 

inequalities problem. Vartziotis et al., [11] used Ann to solve 

system of ordinary and partial differential equations to supply 

health professionals with explanations for surgical planning 

and actual-time decision action. Ahmad Jafarian et al., [12] 

suggest combines the neural networks technique with the 

power series method to insert an effective iterative approach 

to product an approximate polynomial solution for particular 

kind of fractional Volterra integro-differential equation. 

Parand et al., [13] solved Lane-Emden equations by using an 

Unsupervised collective neural network. Sarkhosh et al., [14] 

Used the Chebyshev neural networks to get the numerical 

solution of specific modules of fractional integro-differential 

equation. Silvia and Robert [15] applied FFNN technique to 

presented algebraic approach for illustrate a multidimensional 

nonlinear function. 

Nonlinear ordinary differential equations (ODEs) arise in an 

extensive variety of problems in applied science and 

engineering. Usually these non-linear problems are solved by 

using approximate analytical methods or numerical technique 

such as Homotopy perturbation method (HPM) [16], 

collocation method [17], Variational iteration method (VIM) 

[18], Adomian decomposition method (ADM) [19], Shooting 

method [20] etc.  

The Troesch’s problem is a type of ODE appear in an 

inspection of the restriction of a plasma column by 

corpuscular-radiation pressure [21], and furthermore in the 

model of gas porous electrodes [22, 23]. The problem was 1st 

modeled and resolved by Weibel [24]. Then resolved again 

by analytical closed type [25] or by using shooting method 

[26], and by using a Laplace remodel decomposition method 

[27]. 

The Troesch’s problem has been widely studied and different 

methods have been suggested to get the solution. Such 

methods are Homotopy analysis method (HAM), HPM, 

ADM, B-Spline Collocation, Shooting method and 

Reproducing Kernel method (RKM) for more details see [20], 

[26-31]. 
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In this paper, the authors design suitable FFNN with new 

implementation of training algorithm to obtain the 

approximate solution of the Troesch’s problem with 

boundary condition, and then to illustrate the efficiency and 

accuracy of suggested design some example are solved with 

comparisons between the results and exact solution are 

introduced 

2. ARTIFICIAL NEURAL NETWORKS 

A neural network is an interconnected assemblage of 

simplified process elements is said to be neurons, whose 

functionality is inaccurately based on the human neurons. 

This neuron is arranging in the network as a layer connected 

between them by the inter component connection say 

weights, where its initial value can be choosing randomly. 

Then adjust by suitable training algorithm.  

The first layer says input layer, then hidden layers and last 

layer say output layer. Each neuron in the hidden or output 

layers has transfer function or activation function which is 

bounded monotonically increasing, differentiable function, 

that is sigmoid function. The most popular transfer function 

in hidden layer is tanh. transfer function and linear (pure lin.) 

transfer function in the output layer [32, 33].   

There are two main connection procedures: forward 

connections and feedback connections (recurrent), The 

Feedback neural network (FBNN) have connection from 

neurons of output layer feeding backwards to the input nodes 

of former layers, or to the similar layer, while the FFNN is 

linking forwards starting from input layer to hidden then 

output layer [34]. Here, we suggest FFNN for solving the 

problem.  A general structure of Ann's is illustrated in Figure 

(1).  

The training of Ann's can be classified into three distinct 

types. These are supervised, unsupervised, and reinforcement 

learning [35]. Here, supervised training type has been 

presented, based on back propagation training algorithm. The 

back-propagation rule is a generality of the least mean square 

rule that adjusts network weights to reduce the mean square 

error among the preferred and real outputs of the network. 

That is, FFNN trained to minimize the error up to an 

acceptable accuracy. 

 

 
 

Figure (1): Structure of Ann's 

 

3. ARCHITECTURES OF SUGGESTED DESIGN 
The authors suggest fully connected three layers FFNN 

consist of five hidden neurons in the hidden layer with 

sigmoid transfer function such tansig and linear sigmoid for 

the output neuron (linsig.). 

Let us consider the following represent the 2
nd

 order 

differential equation: 

F(𝑥, y(𝑥), yʹ(𝑥), yʹʹ(x)) = 0, 𝑥 ∈ 𝐷                         (1) 

where 𝐷 ⊂ 𝑅, denotes the domain, and y(𝑥) is the solution to 

be computed. Here, 𝐺 is the function which defines the 

structure of the problem. For solving a discretized domain 𝐷 

over finite set of points is considered. Thus, the problem 

changed into the system of equations as follows: 

F(𝑥i, y(𝑥i), yʹ(𝑥i), yʹʹ(xi)) = 0,   𝑥i ∈ �̅�                   (2) 

Let yt(𝑥, w) denote the trail solution and then the problem can 

be formulated as: 

F(𝑥i, yt(𝑥i, w),   
 (𝑥i, w),   

  (xi, w)) = 0, 𝑥i ∈ �̅�     (3) 

The error function with respect to each input data is written 

as: 
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The trail solution    ( ) of the problem by suggested FFNN 

can be computation from the following formula: 

  

   (𝑥  )  [
     

   
]  *

(   )

   
+ 𝑥

 [(𝑥   )(𝑥   )] ̅(𝑥  )       ( ) 

where;  ̅(x, w) is the results of the suggested FFNN. 
Now, rewrite equation (5) to concerting the problem 
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So,   
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For checking the performance of the suggested designs, the 

calculating of the absolute error will be considered: 

absolute error   |  (𝑥 )–   (𝑥)|                      (9) 

 
4. BUILD TRAIN OF SUGGESTED DESIGN 

The suggested FFNN initialized with randomly values of the 

parameters especially, the weights then adjust by suitable 

training algorithm. Here the Levenberg - Marquardt training 

algorithm (LM) and its MATLAB code is (trainlm) will be 

used with new implementation, the classical LM training 

update is as follow: 

             (       )      (  )                         (  )   
where,   is the learning rate and choosing randomly in most 

of networks. Here, the authors suggest rule for estimate this 

value. The rule based on take value in weight space for each 

iteration of the weight update equation will be controlling the 

distance between wk+1 and wk. 

The training process starts with randomly initialize weights 

on all the connections in the FFNN. In step 2, distributing 

inputs feed forwarding. Therefore, each neuron in the hidden 

layer computes the summing for the inner product of its 

weights with the inputs. Take suitable transfer function for 
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summing that value. Then its output is sent to the output layer 

as an input. So, the neurons in the output layer, sums its 

weighted inputs. Then its transfer function (purelin.) 

computes its output which is also the output of overall 

network. Hence, the error can be calculated. If the error is 

less than a specific value, the training stops and the weights 

are sent. Otherwise, the training proceeds to the next step. 

According to the equation (10) the correction laws of the 

weights between the hidden layer and the output layer are 

calculated.  

The sensitivity term of the output is sent back to the hidden 

layer. Each hidden unit gets its input from the output layer, 

and then the sensitivity is computed for updating the weights 

in the hidden layer. Because there are 5 nodes in the hidden 

layer, the sensitivity term is a vector. Again, the correction 

laws (equation (10)) for the weights are calculated. Return to 

step 2, for next iteration and so on. 

There are many types of costs associated with using LM 

training algorithm such derivatives, computation and storage. 

For this limitation, LM can fail to converge, or it can 

converge to a point that is not a minimum. To overcoming 

these disadvantages, we suggest the following improvement.  

The improvement based on choosing the weights to guarantee 

that the Jacobian J is positive definite, to get this, we need to 

satisfy the following: 

Let E(x) be an n-vector of functions of   (        )   
Assume that the Jacobian of E is Lipschitz continuous on an 

open convex set S with constant L. Then for any x, y∈ S, 

‖ ( )   (𝑥)    (𝑥) (  𝑥)‖  
 

 
‖  𝑥‖             (11) 

Now, we illustrate the basic idea for new implementation for 

the Levenberg - Marquardt training algorithm, where the 

given data are divided into three sets of data: training, testing 

and validation set. Firstly, store pattern pairs (training data) 

so that when n-dimensional vector X from training set is 

presented as input, the FFNN recalls m-dimensional vector Y 

(output vector), but when Y is presented as input, the FFNN 

recalls X. 

To develop the FFNN, we need to create a correlation matrix 

for each pattern pair we want to store. The correlation matrix 

is the matrix product of the input vector X, and the transpose 

of the output vector Y
T
. The FFNN weight matrix is the sum 

of all correlation matrices, that is, 

  ∑      
  

                                                                (12)   

where n is the number of pattern pairs to be stored in the 

training set. 

Now, to guarantee the convergence of new implementation 

for LM algorithm, we must satisfy the following condition 

(descent condition): 

 (    )   (  )                                                 (13) 

This is possible if the search direction is a descent direction, 

that is, if E(w) = g(w), where g is the gradient of performance 

function. 

We note that, the necessary condition for a minimizer the 

gradient of performance function at the optimal weights w∗ 

are equal to zero, i.e., g(w∗) = 0, which guarantee the 

convergence. 

5.SOLVING TROESCH’S PROBLEM BY SUGGESTED 

NETWORK 

Troesch’s problem arises of the confinement of a plasma 

column by radiation pressure. In this section, the suggested 

design of FFNN will be implemented to solve Troesch’s 

problem. Consider the following nonlinear Troesch’s 

problem:  

yʹʹ = γ sinh(γ y);            

subject to Dirichlet boundary conditions: y(0) = 0  , y(1) = 1            

The analytic solution was considered in [22], [23], [36], by 

using other methods as follow: 
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Such that     and m are associated over the integral: 

  ∫
 

√        
  

 

 

 

According to the equation (5), the suggested FFNN present 

solution for the problem as: 

  ( )      (   )  ̅ 
The results of suggested FFNN with LM train algorithm, its 

new implementation and its new implementation with 

suggested rule of   are given at different point in the domain 

in Table (1), where       and the accuracy of the results 

are given in Table (2). Similarly, the results of the problem 

when γ = 1, 10 can gives in Table (3) and (5) respectively and 

the accuracy of that results can give in Table (4) and (6) 

respectively. To assess the performance of suggested training 

algorithm in comparison with others in: time of training, 

number of iterations (epoch), performance of training, and 

mean square error of regularization (Mse.reg.) for each value 

of γ will be evaluated as in Tables (7-9). 

 

Table 1: Results of FFNN for Troesch Problem, when ( = 0.5)  

 

results of FFNN analytic solution  

Train (LM) New Train (LM) New Train(LM)& new   ya(x) x 

8.030546116977177e-09 1.221245327087672e-13 -2.220446049250313e-16 0 0 

0.095176868643766 0.095173245757378 0.095175139198288 0.095176902000000 0.1 

0.190633913685827 0.190633869099879 0.190633869100000 0.190633869100000 0.2 

0.286653402997715 0.286653402999235 0.286653403000000 0.286653403000000 0.3 

0.383522893845726 0.383520422227102 0.383522547631396 0.383522928800000 0.4 
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0.481537379265672 0.481533866102942 0.481537385400000 0.481537385400000 0.5 

0.581002010366724 0.581000087157298 0.581002381646378 0.581001974900000 0.6 

0.682235144861293 0.682235132599731 0.682235132600000 0.682235132600000 0.7 

0.785571734361145 0.785571786701434 0.785571786700000 0.785571786700000 0.8 

0.891367021147331 0.891366987500929 0.891369265944251 0.891366987500000 0.9 

0.999999992469936 0.999999999999724 1 1 1 

 

Table 2: Accuracy of the results for Troesch’s Problem, when   = 0.5 

 

Error = | yt(x) - ya(x) |, where ya is analytic solution & yt given by 

Train (LM) New Train (LM) New Train (LM) & new   

8.030546116977177e-09 1.221245327087672e-13 2.220446049250313e-16 

3.335623403877275e-08 3.656242621594141e-06 1.762801712310025e-06 

4.458582694710778e-08 1.214306433183765e-13 2.775557561562891e-17 

2.284505917771185e-12 7.646105970593453e-13 1.110223024625157e-16 

3.495427386424055e-08 2.506572898186565e-06 3.811686036248041e-07 

6.134327934503858e-09 3.519297058218740e-06 1.110223024625157e-16 

3.546672344700852e-08 1.887742702044726e-06 4.067463783563596e-07 

1.226129342501992e-08 2.693401057740630e-13 1.110223024625157e-16 

5.233885469468902e-08 1.434186103210777e-12 2.220446049250313e-16 

3.364733103250472e-08 9.289236047038685e-13 2.278444250602973e-06 

7.530064127792002e-09 2.764455331316640e-13 0 

 
Table 3: Results of FFNN for Troesch Problem, when ( = 1) 

 

Results of FFNN yt(x) analytic solution  

Train (LM) New Train (LM) New Train (LM) & new   ya(x) x 

2.145591815327919e-09 3.723621411211298e-11 -1.110223024625157e-16 0 0 

0.081796985130997 0.081796996689098 0.081796996600000 0.081796996600000 0.1 

0.164530904607417 0.164530870922984 0.164561561223236 0.164530870900000 0.2 

0.249167313014770 0.249166899526918 0.249191414088678 0.249167360800000 0.3 

0.336732237994166 0.336731772513958 0.336732209200000 0.336732209200000 0.4 

0.428347179161660 0.428347161042117 0.428338569286573 0.428347161000000 0.5 

0.525273980428399 0.525274029627832 0.525274029600000 0.525274029600000 0.6 

0.628971187696739 0.628970590160913 0.628971143400000 0.628971143400000 0.7 

0.741168356745979 0.741168378209879 0.741153563056388 0.741168378200000 0.8 

0.863970026460652 0.863973133295373 0.863970020600000 0.863970020600000 0.9 

0.999999999353309 1.000000000008383 1 1 1 

 
Table 4: Accuracy of the results for Troesch’s Problem, when   = 1 

 

Error = | yt(x) - ya(x) |, where ya is analytic solution &yt given by 

Train(LM) New Train (LM) New Train (LM) & new   

9.949124594621495e-06 9.681144774731365e-14 0 

1.811043796381836e-05 3.637846758150350e-05 8.189792160412379e-17 

8.716584308026689e-06 5.849265299548434e-14 6.476880911145344e-05 

7.650600952155981e-07 3.874076623736067e-13 7.663632431025946e-05 

1.903633290691520e-06 2.494911829215019e-13 5.448357568935505e-05 

7.262222605167873e-07 2.736848680126060e-05 3.295974604355934e-17 

1.774033088382254e-07 1.688759363077490e-04 9.367506770274758e-17 

4.662853937686950e-08 5.047955415286159e-04 2.795214898675541e-04 

1.897660294875037e-08 3.501574030728705e-13 6.938893903907228e-18 

9.057067845708033e-09 7.757405828812125e-13 8.326672684688674e-17 

2.423705347531779e-09 1.220801237877822e-12 2.220446049250313e-16 
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Table 5: Results of FFNN for Troesch Problem, when ( = 10) 

 

results of FFNN yt(x) analytic solution  

Train (LM) New Train (LM) New Train (LM)& new   ya(x) x 

9.949124594621495e-06 -9.681144774731365e-14 0 0 0 

5.818956203618164e-05 3.992153241849650e-05 7.629999999991810e-05 7.630000000000000e-05 0.1 

1.386165843080267e-04 1.298999999415074e-04 1.946688091114535e-04 1.299000000000000e-04 0.2 

3.596650600952156e-04 3.589000003874077e-04 4.355363243102595e-04 3.589000000000000e-04 0.3 

9.759963667093086e-04 9.778999997505090e-04 0.001032383575689 9.779000000000000e-04 0.4 

0.002659726222261 0.002686368486801 0.002659000000000 0.002659000000000 0.5 

0.007228722596691 0.007397775936308 0.007228900000000 0.007228900000000 0.6 

0.019664046628539 0.020168795541529 0.019943521489868 0.019664000000000 0.7 

0.053730281023397 0.053730299999650 0.053730300000000 0.053730300000000 0.8 

0.152114009057068 0.152113999999224 0.152114000000000 0.152114000000000 0.9 

0.999999997576295 0.999999999998779 1.000000000000000 1 1 

 

Table 6: Accuracy of the results for Troesch’s Problem, when   = 10 

 

Error = | yt(x) - ya(x) |, where ya is analytic solution &yt given by 

Train(LM) New Train (LM) New Train (LM) & new   

2.145591815327919e-09 3.723621411211298e-11 1.110223024625157e-16 

1.146900258097716e-08 8.909833981718407e-11 5.551115123125783e-17 

3.370741694097568e-08 2.298425338942423e-11 3.069032323585463e-05 

4.778522963433396e-08 4.612730821473843e-07 2.405328867841061e-05 

2.879416560741532e-08 4.366860422155838e-07 1.110223024625157e-16 

1.816165967616357e-08 4.211658799491147e-11 8.591713426819858e-06 

4.917160156825418e-08 2.783218100432805e-11 0 

4.429673927663913e-08 5.532390874307680e-07 0 

2.145402089315240e-08 9.878764473114643e-12 1.481514361179048e-05 

5.860652185774029e-09 3.112695372564645e-06 0 

6.466911450786483e-10 8.382627925129782e-12 0 

 

Table 7: The details of training of FFNN, when   = 0.5 

 

Mse.reg. Times epochs Performance Training rule 

7.4593e-009 0000023 3113 3.36e-33 New Train (LM) & new   

2.3352e-008 0:00:19 1671 3.49e-25 New Train(LM) 

4.1541e-011 0:00:19 2500 5.08e-10 Train(LM) 

 

Table 8: The details of training of FFNN, when   = 1 

 

Mse.reg. Times epochs Performance  Training rule 

7.0441e-013 0000012 1315 1.95e-32 New Train (LM) & new   

2.9127e-012 0:00:34 2946 5.26e-25 New Train (LM)  

7.9862e-016 0:01:23 10341 9.76e-15 Train(LM) 

 

Table 9: The details of training of FFNN, when   = 10 

 

Mse.reg. Times epochs Performance  Training rule 

1.4840e-010 0000001 131 3.96e-33 New Train (LM) & new   

8.5078e-013 0:00:43 3839 4.22e-26 New Train (LM 

7.8462e-016 0:01:32 11331 9.59e-15 Train(LM) 
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There are several previous studies have shown the importance 

to solve this equation such: The Adomian decomposition 

method (ADM) [19], the variational iteration method (VIM) 

[18], the modified homotopy perturbation method (MHPM) 

[30], a combination of the ADM with the reproducing kernel 

method (RKM) [28], and others. Table (10), represents a 

comparison between those solutions of Troesch’s Problem 

when γ = 10. 

It is worth mentioning that the main advantages of the 

suggested design of FFNN in comparison to the other 

methods are the fact that there is no need to construct a 

homotopy and solve the corresponding equations in HPM. No 

need for the large evaluating the Lagrange multiplier like the 

VIM. Without any restricted assumption for nonlinear terms 

like finding Adomian polynomials to deal with the nonlinear 

terms in ADM. Moreover, the FFNN provided good accuracy 

even for a few number of neurons and layers. Moreover, the 

suggested FFNN provided good accuracy even for γ = 0.5 

and 1. Also, Figures (2-4) illustrate the efficiency of 

implemented suggested network wherein demonstrate its 

results in validation, training, and testing where γ = 0.5, 1 and 

10 respectively. 
 

Table 10: Comparison between the different methods for solving Troesch’s problem, γ = 10 

x ADM-RKM  VIM  ADM  MHPM  

0.1 0.0000576 0.1186109866 667081.1874 17.61750 

0.2 0.0001902 0.4461962517 1333955.1189 33.69333 

0.3 0.0005676 3.8003366781 1999860.1189 46.78583 

0.4 0.0016654 79.89147273 2661970.7366 55.65333 

0.5 0.0048331 1880.3539472 3310585.4201 59.35417 

0.6 0.0137488 41642.365193 3914127.8659 57.34667 

0.7 0.0374013 878764.64189 4374578.5342 49.58917 

0.8 0.0936540 18064027.967 4406724.4178 36.64000 

0.9 0.2189270 366613074.02 3290268.6374 19.75750 

 

 

Figure 2: Accuracy of suggested network in validation, 

training, and testing where γ = 0.5   

Figure 3: Accuracy of suggested network in validation, 

training, and testing where γ = 1 
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Figure 4: Accuracy of suggested network in validation, training, 

and testing where γ = 10 

6. CONCLUSION 

In this work, a feed forward neural network (FFNN) with new 

implementation of training algorithm is successfully applied 

to get an accurate solution for Troesch’s Problem. This 

technique appears to be very promising to get the solution. its 

characterized by applying without any restrictive assumptions 

for nonlinear terms, discretization or perturbation techniques. 

The numerical results showed that the FFNN accurate, 

reliable and better than other methods such HPM, ADM and 

VIM.  
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