
Sci.Int.(Lahore),31(1),41-48,2019 ISSN 1013-5316;CODEN: SINTE 8 41

January-February

DESIGN SUITABLE FEED FORWARD NEURAL NETWORK TO SOLVE
TROESCH'S PROBLEM

Luma Naji Mohammed Tawfiq
1
 and Othman M. Salih

Department of Mathematics, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

 1Email: luma.n.m@ihcoedu.uobaghdad.edu.iq

ABSTRACT: Purpose – The aim of this research is to find accurate solution for the Troesch’s problem by using high

performance technique based on parallel processing implementation.

Design/methodology/approach – Feed forward neural network is designed to solve important type of differential equations that

arises in many applied sciences and engineering applications. The suitable designed based on choosing suitable learning rate,

transfer function, and training algorithm. The authors used back propagation with new implement of Levenberg - Marquardt

training algorithm. Also, the authors depend new idea for choosing the weights. The effectiveness of the suggested design for

the network is shown by using it for solving Troesch problem in many cases.

Findings – New idea for choosing the weights of the neural network, new implement of Levenberg - Marquardt training

algorithm which assist to speeding the convergence and the implementation of the suggested design demonstrates the

usefulness in finding exact solutions.

Practical implications – The authors have applied the suggested design of feed forward neural network to solve Troesch’s

problem which is an important equation in Magnetostatic Fields, Electrochemical, a Magnetic Field and others.

Originality/value – In this paper, main types of the differential equation have been solved by using parallel processing

technique based on feed forward neural network.

The design has been accompanied with new implementation of training algorithm. This process constructs an efficient dealing

to get the exact solutions of the non-linear problems which is easy to implement.

In addition to that, the accompanied regularization design with the used design proved its efficiency in handling many

problems especially ill-posed problems.

KEYWORDS: Ordinary Differential Equation, Troesch’s Problem, Feed Forward Neural Network, Back propagation Training Algorithms,

Levenberg - Marquardt algorithm.

1. INTRODUCTION
Artificial Neural Networks (Ann) have achieved employment

in many specialties: neurosciences, arithmetic, statistics,

physical processes, information technology, and

manufacturing. Greatest of the preceding workings in solving

differential equations by using Ann is limited to the item of

resolving the linear system of algebraic equations which

product from the discretization of the domain. The reduce of

the networks power function delivers the result to the system

of equations [1]. Mohsen and Behnam [2] used modified Ann

is called relax state to solve the Burger's equation in one

dimensional partial differential equation. Hamid et al., [3]

employed a numerical technique combines with Ann's for

solving the Lane-Emden equations. Many researchers such

[4-6] used multilayer perceptron and Radial basis function

neural networks for solving differential equations of various

types. Mall and Chakraverty [7] used Feed Forward Neural

Network (FFNN) for solving ordinary differential equations

(ODE) with regression based algorithm and discuss score

with random initial weights for various number of neuron in

hidden layers. Modjtaba et al., in [8] used Ann's has been

expanded for solving the Stokes problem. In [9] Ladislav

developed a new kind of Anns which is differential

polynomial neural networks, it’s implementation on

principles, which are employed in the human brain learning.

Yashtini and Malek [10] suggested a recurrent neural

networks technique for solving a type of monotone variation

inequalities problem. Vartziotis et al., [11] used Ann to solve

system of ordinary and partial differential equations to supply

health professionals with explanations for surgical planning

and actual-time decision action. Ahmad Jafarian et al., [12]

suggest combines the neural networks technique with the

power series method to insert an effective iterative approach

to product an approximate polynomial solution for particular

kind of fractional Volterra integro-differential equation.

Parand et al., [13] solved Lane-Emden equations by using an

Unsupervised collective neural network. Sarkhosh et al., [14]

Used the Chebyshev neural networks to get the numerical

solution of specific modules of fractional integro-differential

equation. Silvia and Robert [15] applied FFNN technique to

presented algebraic approach for illustrate a multidimensional

nonlinear function.

Nonlinear ordinary differential equations (ODEs) arise in an

extensive variety of problems in applied science and

engineering. Usually these non-linear problems are solved by

using approximate analytical methods or numerical technique

such as Homotopy perturbation method (HPM) [16],

collocation method [17], Variational iteration method (VIM)

[18], Adomian decomposition method (ADM) [19], Shooting

method [20] etc.

The Troesch’s problem is a type of ODE appear in an

inspection of the restriction of a plasma column by

corpuscular-radiation pressure [21], and furthermore in the

model of gas porous electrodes [22, 23]. The problem was 1st

modeled and resolved by Weibel [24]. Then resolved again

by analytical closed type [25] or by using shooting method

[26], and by using a Laplace remodel decomposition method

[27].

The Troesch’s problem has been widely studied and different

methods have been suggested to get the solution. Such

methods are Homotopy analysis method (HAM), HPM,

ADM, B-Spline Collocation, Shooting method and

Reproducing Kernel method (RKM) for more details see [20],

[26-31].

mailto:luma.n.m@ihcoedu.uobaghdad.edu.iq

42 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1),41-48,2019

January-February

In this paper, the authors design suitable FFNN with new

implementation of training algorithm to obtain the

approximate solution of the Troesch’s problem with

boundary condition, and then to illustrate the efficiency and

accuracy of suggested design some example are solved with

comparisons between the results and exact solution are

introduced

2. ARTIFICIAL NEURAL NETWORKS

A neural network is an interconnected assemblage of

simplified process elements is said to be neurons, whose

functionality is inaccurately based on the human neurons.

This neuron is arranging in the network as a layer connected

between them by the inter component connection say

weights, where its initial value can be choosing randomly.

Then adjust by suitable training algorithm.

The first layer says input layer, then hidden layers and last

layer say output layer. Each neuron in the hidden or output

layers has transfer function or activation function which is

bounded monotonically increasing, differentiable function,

that is sigmoid function. The most popular transfer function

in hidden layer is tanh. transfer function and linear (pure lin.)

transfer function in the output layer [32, 33].

There are two main connection procedures: forward

connections and feedback connections (recurrent), The

Feedback neural network (FBNN) have connection from

neurons of output layer feeding backwards to the input nodes

of former layers, or to the similar layer, while the FFNN is

linking forwards starting from input layer to hidden then

output layer [34]. Here, we suggest FFNN for solving the

problem. A general structure of Ann's is illustrated in Figure

(1).

The training of Ann's can be classified into three distinct

types. These are supervised, unsupervised, and reinforcement

learning [35]. Here, supervised training type has been

presented, based on back propagation training algorithm. The

back-propagation rule is a generality of the least mean square

rule that adjusts network weights to reduce the mean square

error among the preferred and real outputs of the network.

That is, FFNN trained to minimize the error up to an

acceptable accuracy.

Figure (1): Structure of Ann's

3. ARCHITECTURES OF SUGGESTED DESIGN
The authors suggest fully connected three layers FFNN

consist of five hidden neurons in the hidden layer with

sigmoid transfer function such tansig and linear sigmoid for

the output neuron (linsig.).

Let us consider the following represent the 2
nd

 order

differential equation:

F(𝑥, y(𝑥), yʹ(𝑥), yʹʹ(x)) = 0, 𝑥 ∈ 𝐷 (1)

where 𝐷 ⊂ 𝑅, denotes the domain, and y(𝑥) is the solution to

be computed. Here, 𝐺 is the function which defines the

structure of the problem. For solving a discretized domain 𝐷

over finite set of points is considered. Thus, the problem

changed into the system of equations as follows:

F(𝑥i, y(𝑥i), yʹ(𝑥i), yʹʹ(xi)) = 0, 𝑥i ∈ �̅� (2)

Let yt(𝑥, w) denote the trail solution and then the problem can

be formulated as:

F(𝑥i, yt(𝑥i, w),
 (𝑥i, w),

 (xi, w)) = 0, 𝑥i ∈ �̅� (3)

The error function with respect to each input data is written

as:

∑ ((()
 ()

 ()))

()

 ∈ ̅

The trail solution () of the problem by suggested FFNN

can be computation from the following formula:

 (𝑥) [

] *

()

+ 𝑥

 [(𝑥)(𝑥)] ̅(𝑥) ()

where; ̅(x, w) is the results of the suggested FFNN.
Now, rewrite equation (5) to concerting the problem

 ()

∑ *(
 ()

) (𝑥 (𝑥) (
 ()

))+

 𝑥 (6)

while:

 (

) (𝑥) (𝑥) ̅ (𝑥)(𝑥) ̅

 (7)

So,

 ̅ (𝑥) (𝑥) ̅ (𝑥)(𝑥) ̅

 (8)

For checking the performance of the suggested designs, the

calculating of the absolute error will be considered:

absolute error | (𝑥)– (𝑥)| (9)

4. BUILD TRAIN OF SUGGESTED DESIGN

The suggested FFNN initialized with randomly values of the

parameters especially, the weights then adjust by suitable

training algorithm. Here the Levenberg - Marquardt training

algorithm (LM) and its MATLAB code is (trainlm) will be

used with new implementation, the classical LM training

update is as follow:

 () () ()
where, is the learning rate and choosing randomly in most

of networks. Here, the authors suggest rule for estimate this

value. The rule based on take value in weight space for each

iteration of the weight update equation will be controlling the

distance between wk+1 and wk.

The training process starts with randomly initialize weights

on all the connections in the FFNN. In step 2, distributing

inputs feed forwarding. Therefore, each neuron in the hidden

layer computes the summing for the inner product of its

weights with the inputs. Take suitable transfer function for

Sci.Int.(Lahore),31(1),41-48,2019 ISSN 1013-5316;CODEN: SINTE 8 43

January-February

summing that value. Then its output is sent to the output layer

as an input. So, the neurons in the output layer, sums its

weighted inputs. Then its transfer function (purelin.)

computes its output which is also the output of overall

network. Hence, the error can be calculated. If the error is

less than a specific value, the training stops and the weights

are sent. Otherwise, the training proceeds to the next step.

According to the equation (10) the correction laws of the

weights between the hidden layer and the output layer are

calculated.

The sensitivity term of the output is sent back to the hidden

layer. Each hidden unit gets its input from the output layer,

and then the sensitivity is computed for updating the weights

in the hidden layer. Because there are 5 nodes in the hidden

layer, the sensitivity term is a vector. Again, the correction

laws (equation (10)) for the weights are calculated. Return to

step 2, for next iteration and so on.

There are many types of costs associated with using LM

training algorithm such derivatives, computation and storage.

For this limitation, LM can fail to converge, or it can

converge to a point that is not a minimum. To overcoming

these disadvantages, we suggest the following improvement.

The improvement based on choosing the weights to guarantee

that the Jacobian J is positive definite, to get this, we need to

satisfy the following:

Let E(x) be an n-vector of functions of ()
Assume that the Jacobian of E is Lipschitz continuous on an

open convex set S with constant L. Then for any x, y∈ S,

‖ () (𝑥) (𝑥) (𝑥)‖

‖ 𝑥‖ (11)

Now, we illustrate the basic idea for new implementation for

the Levenberg - Marquardt training algorithm, where the

given data are divided into three sets of data: training, testing

and validation set. Firstly, store pattern pairs (training data)

so that when n-dimensional vector X from training set is

presented as input, the FFNN recalls m-dimensional vector Y

(output vector), but when Y is presented as input, the FFNN

recalls X.

To develop the FFNN, we need to create a correlation matrix

for each pattern pair we want to store. The correlation matrix

is the matrix product of the input vector X, and the transpose

of the output vector Y
T
. The FFNN weight matrix is the sum

of all correlation matrices, that is,

 ∑

 (12)

where n is the number of pattern pairs to be stored in the

training set.

Now, to guarantee the convergence of new implementation

for LM algorithm, we must satisfy the following condition

(descent condition):

 () () (13)

This is possible if the search direction is a descent direction,

that is, if E(w) = g(w), where g is the gradient of performance

function.

We note that, the necessary condition for a minimizer the

gradient of performance function at the optimal weights w∗

are equal to zero, i.e., g(w∗) = 0, which guarantee the

convergence.

5.SOLVING TROESCH’S PROBLEM BY SUGGESTED

NETWORK

Troesch’s problem arises of the confinement of a plasma

column by radiation pressure. In this section, the suggested

design of FFNN will be implemented to solve Troesch’s

problem. Consider the following nonlinear Troesch’s

problem:

yʹʹ = γ sinh(γ y);

subject to Dirichlet boundary conditions: y(0) = 0 , y(1) = 1

The analytic solution was considered in [22], [23], [36], by

using other methods as follow:

 (𝑥) (

) ,(

 ()

) (𝑥|

 (())
)-

Such that:

 () (√)

where m is that the resolution of this equation:

 (

)

√
 (|)

 and;

 (|) () ()⁄
Such that and m are associated over the integral:

 ∫

√

According to the equation (5), the suggested FFNN present

solution for the problem as:

 () () ̅
The results of suggested FFNN with LM train algorithm, its

new implementation and its new implementation with

suggested rule of are given at different point in the domain

in Table (1), where and the accuracy of the results

are given in Table (2). Similarly, the results of the problem

when γ = 1, 10 can gives in Table (3) and (5) respectively and

the accuracy of that results can give in Table (4) and (6)

respectively. To assess the performance of suggested training

algorithm in comparison with others in: time of training,

number of iterations (epoch), performance of training, and

mean square error of regularization (Mse.reg.) for each value

of γ will be evaluated as in Tables (7-9).

Table 1: Results of FFNN for Troesch Problem, when (= 0.5)

results of FFNN analytic solution

Train (LM) New Train (LM) New Train(LM)& new ya(x) x

8.030546116977177e-09 1.221245327087672e-13 -2.220446049250313e-16 0 0

0.095176868643766 0.095173245757378 0.095175139198288 0.095176902000000 0.1

0.190633913685827 0.190633869099879 0.190633869100000 0.190633869100000 0.2

0.286653402997715 0.286653402999235 0.286653403000000 0.286653403000000 0.3

0.383522893845726 0.383520422227102 0.383522547631396 0.383522928800000 0.4

44 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1),41-48,2019

January-February

0.481537379265672 0.481533866102942 0.481537385400000 0.481537385400000 0.5

0.581002010366724 0.581000087157298 0.581002381646378 0.581001974900000 0.6

0.682235144861293 0.682235132599731 0.682235132600000 0.682235132600000 0.7

0.785571734361145 0.785571786701434 0.785571786700000 0.785571786700000 0.8

0.891367021147331 0.891366987500929 0.891369265944251 0.891366987500000 0.9

0.999999992469936 0.999999999999724 1 1 1

Table 2: Accuracy of the results for Troesch’s Problem, when = 0.5

Error = | yt(x) - ya(x) |, where ya is analytic solution & yt given by

Train (LM) New Train (LM) New Train (LM) & new

8.030546116977177e-09 1.221245327087672e-13 2.220446049250313e-16

3.335623403877275e-08 3.656242621594141e-06 1.762801712310025e-06

4.458582694710778e-08 1.214306433183765e-13 2.775557561562891e-17

2.284505917771185e-12 7.646105970593453e-13 1.110223024625157e-16

3.495427386424055e-08 2.506572898186565e-06 3.811686036248041e-07

6.134327934503858e-09 3.519297058218740e-06 1.110223024625157e-16

3.546672344700852e-08 1.887742702044726e-06 4.067463783563596e-07

1.226129342501992e-08 2.693401057740630e-13 1.110223024625157e-16

5.233885469468902e-08 1.434186103210777e-12 2.220446049250313e-16

3.364733103250472e-08 9.289236047038685e-13 2.278444250602973e-06

7.530064127792002e-09 2.764455331316640e-13 0

Table 3: Results of FFNN for Troesch Problem, when (= 1)

Results of FFNN yt(x) analytic solution

Train (LM) New Train (LM) New Train (LM) & new ya(x) x

2.145591815327919e-09 3.723621411211298e-11 -1.110223024625157e-16 0 0

0.081796985130997 0.081796996689098 0.081796996600000 0.081796996600000 0.1

0.164530904607417 0.164530870922984 0.164561561223236 0.164530870900000 0.2

0.249167313014770 0.249166899526918 0.249191414088678 0.249167360800000 0.3

0.336732237994166 0.336731772513958 0.336732209200000 0.336732209200000 0.4

0.428347179161660 0.428347161042117 0.428338569286573 0.428347161000000 0.5

0.525273980428399 0.525274029627832 0.525274029600000 0.525274029600000 0.6

0.628971187696739 0.628970590160913 0.628971143400000 0.628971143400000 0.7

0.741168356745979 0.741168378209879 0.741153563056388 0.741168378200000 0.8

0.863970026460652 0.863973133295373 0.863970020600000 0.863970020600000 0.9

0.999999999353309 1.000000000008383 1 1 1

Table 4: Accuracy of the results for Troesch’s Problem, when = 1

Error = | yt(x) - ya(x) |, where ya is analytic solution &yt given by

Train(LM) New Train (LM) New Train (LM) & new

9.949124594621495e-06 9.681144774731365e-14 0

1.811043796381836e-05 3.637846758150350e-05 8.189792160412379e-17

8.716584308026689e-06 5.849265299548434e-14 6.476880911145344e-05

7.650600952155981e-07 3.874076623736067e-13 7.663632431025946e-05

1.903633290691520e-06 2.494911829215019e-13 5.448357568935505e-05

7.262222605167873e-07 2.736848680126060e-05 3.295974604355934e-17

1.774033088382254e-07 1.688759363077490e-04 9.367506770274758e-17

4.662853937686950e-08 5.047955415286159e-04 2.795214898675541e-04

1.897660294875037e-08 3.501574030728705e-13 6.938893903907228e-18

9.057067845708033e-09 7.757405828812125e-13 8.326672684688674e-17

2.423705347531779e-09 1.220801237877822e-12 2.220446049250313e-16

Sci.Int.(Lahore),31(1),41-48,2019 ISSN 1013-5316;CODEN: SINTE 8 45

January-February

Table 5: Results of FFNN for Troesch Problem, when (= 10)

results of FFNN yt(x) analytic solution

Train (LM) New Train (LM) New Train (LM)& new ya(x) x

9.949124594621495e-06 -9.681144774731365e-14 0 0 0

5.818956203618164e-05 3.992153241849650e-05 7.629999999991810e-05 7.630000000000000e-05 0.1

1.386165843080267e-04 1.298999999415074e-04 1.946688091114535e-04 1.299000000000000e-04 0.2

3.596650600952156e-04 3.589000003874077e-04 4.355363243102595e-04 3.589000000000000e-04 0.3

9.759963667093086e-04 9.778999997505090e-04 0.001032383575689 9.779000000000000e-04 0.4

0.002659726222261 0.002686368486801 0.002659000000000 0.002659000000000 0.5

0.007228722596691 0.007397775936308 0.007228900000000 0.007228900000000 0.6

0.019664046628539 0.020168795541529 0.019943521489868 0.019664000000000 0.7

0.053730281023397 0.053730299999650 0.053730300000000 0.053730300000000 0.8

0.152114009057068 0.152113999999224 0.152114000000000 0.152114000000000 0.9

0.999999997576295 0.999999999998779 1.000000000000000 1 1

Table 6: Accuracy of the results for Troesch’s Problem, when = 10

Error = | yt(x) - ya(x) |, where ya is analytic solution &yt given by

Train(LM) New Train (LM) New Train (LM) & new

2.145591815327919e-09 3.723621411211298e-11 1.110223024625157e-16

1.146900258097716e-08 8.909833981718407e-11 5.551115123125783e-17

3.370741694097568e-08 2.298425338942423e-11 3.069032323585463e-05

4.778522963433396e-08 4.612730821473843e-07 2.405328867841061e-05

2.879416560741532e-08 4.366860422155838e-07 1.110223024625157e-16

1.816165967616357e-08 4.211658799491147e-11 8.591713426819858e-06

4.917160156825418e-08 2.783218100432805e-11 0

4.429673927663913e-08 5.532390874307680e-07 0

2.145402089315240e-08 9.878764473114643e-12 1.481514361179048e-05

5.860652185774029e-09 3.112695372564645e-06 0

6.466911450786483e-10 8.382627925129782e-12 0

Table 7: The details of training of FFNN, when = 0.5

Mse.reg. Times epochs Performance Training rule

7.4593e-009 0000023 3113 3.36e-33 New Train (LM) & new

2.3352e-008 0:00:19 1671 3.49e-25 New Train(LM)

4.1541e-011 0:00:19 2500 5.08e-10 Train(LM)

Table 8: The details of training of FFNN, when = 1

Mse.reg. Times epochs Performance Training rule

7.0441e-013 0000012 1315 1.95e-32 New Train (LM) & new

2.9127e-012 0:00:34 2946 5.26e-25 New Train (LM)

7.9862e-016 0:01:23 10341 9.76e-15 Train(LM)

Table 9: The details of training of FFNN, when = 10

Mse.reg. Times epochs Performance Training rule

1.4840e-010 0000001 131 3.96e-33 New Train (LM) & new

8.5078e-013 0:00:43 3839 4.22e-26 New Train (LM

7.8462e-016 0:01:32 11331 9.59e-15 Train(LM)

46 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1),41-48,2019

January-February

There are several previous studies have shown the importance

to solve this equation such: The Adomian decomposition

method (ADM) [19], the variational iteration method (VIM)

[18], the modified homotopy perturbation method (MHPM)

[30], a combination of the ADM with the reproducing kernel

method (RKM) [28], and others. Table (10), represents a

comparison between those solutions of Troesch’s Problem

when γ = 10.

It is worth mentioning that the main advantages of the

suggested design of FFNN in comparison to the other

methods are the fact that there is no need to construct a

homotopy and solve the corresponding equations in HPM. No

need for the large evaluating the Lagrange multiplier like the

VIM. Without any restricted assumption for nonlinear terms

like finding Adomian polynomials to deal with the nonlinear

terms in ADM. Moreover, the FFNN provided good accuracy

even for a few number of neurons and layers. Moreover, the

suggested FFNN provided good accuracy even for γ = 0.5

and 1. Also, Figures (2-4) illustrate the efficiency of

implemented suggested network wherein demonstrate its

results in validation, training, and testing where γ = 0.5, 1 and

10 respectively.

Table 10: Comparison between the different methods for solving Troesch’s problem, γ = 10

x ADM-RKM VIM ADM MHPM

0.1 0.0000576 0.1186109866 667081.1874 17.61750

0.2 0.0001902 0.4461962517 1333955.1189 33.69333

0.3 0.0005676 3.8003366781 1999860.1189 46.78583

0.4 0.0016654 79.89147273 2661970.7366 55.65333

0.5 0.0048331 1880.3539472 3310585.4201 59.35417

0.6 0.0137488 41642.365193 3914127.8659 57.34667

0.7 0.0374013 878764.64189 4374578.5342 49.58917

0.8 0.0936540 18064027.967 4406724.4178 36.64000

0.9 0.2189270 366613074.02 3290268.6374 19.75750

Figure 2: Accuracy of suggested network in validation,

training, and testing where γ = 0.5

Figure 3: Accuracy of suggested network in validation,

training, and testing where γ = 1

Sci.Int.(Lahore),31(1),41-48,2019 ISSN 1013-5316;CODEN: SINTE 8 47

January-February

Figure 4: Accuracy of suggested network in validation, training,

and testing where γ = 10

6. CONCLUSION

In this work, a feed forward neural network (FFNN) with new

implementation of training algorithm is successfully applied

to get an accurate solution for Troesch’s Problem. This

technique appears to be very promising to get the solution. its

characterized by applying without any restrictive assumptions

for nonlinear terms, discretization or perturbation techniques.

The numerical results showed that the FFNN accurate,

reliable and better than other methods such HPM, ADM and

VIM.

REFERENCES

[1] Hoda, S. A. and Nagla, H. A., “Neural network methods

for mixed boundary value problems,” International

Journal of Nonlinear Science, 11(3): 312-316(2011)

[2] Hayati, M. and Karami, B., “Feedforward neural

network for solving partial differential equations,”

Journal of Applied Sciences, 7(19): 2812-2817(2007)

[3] Jalab, H. A., Ibrahim, R. W., Murad, S. A., Melhum, A.

I. and Hadid, S. B., “Numerical solution of Lane-Emden

equation using neural network,” In AIP Conference

Proceedings, 1482(1): 414-418 AIP (2012, September)

[4] Kumar, M. and Yadav, N., “Multilayer perceptrons and

radial basis function neural network methods for the

solution of differential equations: a survey,” Computers

& Mathematics with Applications, 62(10): 3796-

3811(2011)

[5] Tawfiq, L. N. M., “On Training of Artificial Neural

Networks,” Al-Fatih journal, 1(23): 130-139(2005)

[6] Tawfiq, L. N. M., “Design and training artificial neural

networks for solving differential equations,” [Ph. D.

thesis]. University of Baghdad, College of Education-

Ibn-Al-Haitham, Baghdad, Iraq(2004)

[7] Mall, S. and Chakraverty, S., “Comparison of artificial

neural network architecture in solving ordinary

differential equations,” Advances in Artificial Neural

Systems, 2013: 12(2013)

[8] Baymani, M., Kerayechian, A. and Effati, S., “Artificial

neural networks approach for solving stokes

problem,” Applied Mathematics, 1(04): 288(2010)

[9] Zjavka, L., “Construction and adjustment of differential

polynomial neural network,” Journal of Engineering

and Computer Innovations, 2(3): 40-50(2011)

[10] Yashtini, M. and Malek, A., “Solving complement-arity

and variational inequalities problems using neural

networks,” Applied Mathematics and Comput-

ation, 190(1): 216-230(2007)

[11] Vartziotis, F., Fotiadis, D. I., Likas, A. and Lagaris, I.

E., “A portable decision making tool for health

professionals based on neural networks,” Health

Informatics Journal, 9(4): 273-282(2003)

[12] Jafarian, A., Rostami, F., Golmankhaneh, A. K. and

Baleanu, D., “Using ANNs approach for solving

fractional order Volterra integro-differential

equations,” International Journal of Computational

Intelligence Systems, 10(1): 470-480(2017)

[13] Parand, K., Roozbahani, Z. and Bayat Babolghani, F.,

“Solving nonlinear Lane-Emden type equations with

unsupervised combined artificial neural

networks,” International Journal of Industrial

Mathematics, 5(4): 355-366(2013)

[14] Chaharborj, S. S., Chaharborj, S. S. and Mahmoudi, Y.,

“Study of fractional order integro-differential equations

by using Chebyshev Neural Network,” Journal of

Mathematics and Statistics, 13: 1-13(2017)

[15] Ferrari, S. and Stengel, R. F., “Smooth function

approximation using neural networks,” IEEE

Transactions on Neural Networks, 16(1): 24-38(2005)

[16] Mirmoradia, S. H., Hosseinpoura, I., Ghanbarpour, S.

and Barari, A., “Application of an approximate

analytical method to nonlinear Troesch’s

problem,” Applied Mathematical Sciences, 3(32): 1579-

1585(2009)

[17] Salih, H., Tawfiq, L. N. M., Yahya, Z. R. and Zin, S.

M., “Solving Modified Regularized Long Wave

Equation Using Collocation Method,” Journal of

Physics: Conference Series, 1003(1): 012062, IOP

Publishing (2018)

[18] Momani, S., Abuasad, S. and Odibat, Z., “Variational

iteration method for solving nonlinear boundary value

problems,” Applied Mathematics and

Computation, 183(2): 1351-1358(2006)
[19] Deeba, E., Khuri, S. A. and Xie, S., “An algorithm for

solving boundary value problems,” Journal of

Computational Physics, 159(2): 125-138(2000)
[20] Chang, S.H., “Numerical solution of Troesch’s problem

by simple shooting method,” Applied Mathematics and

Computation, 216(11): 3303-3306(2010)
[21] Weibel, E.S., “On the confinement of a plasma by

magnetostatic fields,” The Physics of Fluids, 2(1): 52-

56(1959)
[22] Gidaspow, D. and Baker, B. S., “A model for discharge

of storage batteries,” Journal of the Electrochemical

Society, 120(8): 1005-1010(1973)
[23] Markin, V. S., Chernenko, A. A., Chizmadehev, Y. A.

and Chirkov, Y. G., “Aspects of the theory of gas

porous electrodes,” Fuel Cells: Their Electrochemi-cal

Kinetics, 22-33(1966)
[24] Tawfiq, L. N. M. and Jabber, A.K., “Steady State Radial

Flow in Anisotropic and Homogenous in Confined

48 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(1),41-48,2019

January-February

Aquifers,” Journal of Physics: Conference Series,

1003(012056):1-12, IOP Publishing (2018).

[25] Roberts, S. M. and Shipman, J. S., “On the closed form

solution of Troesch's problem,” Journal of Computational

Physics, 21(3): 291-304(1976)
[26] Troesch, B. A., “A simple approach to a sensitive two-

point boundary value problem,” Journal of

Computational Physics, 21(3): 279-290(1976)
[27] Khuri, S. A., “A numerical algorithm for solving

Troesch's problem,” International Journal of Computer

Mathematics, 80(4): 493-498(2003)
[28] Geng, F. and Cui, M., “A novel method for nonlinear

two-point boundary value problems: combination of

ADM and RKM,” Applied Mathematics and

Computation, 217(9): 4676-4681(2011)
[29] Feng, X., Mei, L. and He, G., “An efficient algorithm

for solving Troesch’s problem,” Applied Mathematics

and Computation, 189(1): 500-507(2007)
[30] Mohyud-Din, S. T., “Solution of Troesch’s problem

using He’s polynomials,” Rev. Un. Mat. Argentina, 52:

143-148(2011)
[31] Khuri, S. A. and Sayfy, A., “Troesch’s problem: A B-

spline collocation approach,” Mathematical and

Computer Modelling, 54(9-10): 1907-1918(2011)

[32] Oonsivilai, A. and Saichoomdee, S., “Distance

transmission line protection based on radial basis

function neural network,” World Academy of Science,

Engineering and Technology, 60(2009)
[33] Tawfiq, L. N. and Oraibi, Y. A., “Fast Training

Algorithms for Feed Forward Neural Networks,” Ibn Al-

Haitham Journal for Pure and Applied Science, 26(1):

275-280(2017)
[34] Tawfiq, L. N. and Hussein, A. A., “Neural Network and

Mathematical Modeling of a Spherical Body of

Gas,” International Journal of Modern Computer

Science and Engineering, 2(1): 1-11(2013)
[35] Abramowitz, M. and Stegun, I. A., “Handbook of

mathematical functions: with formulas, graphs, and

mathematical tables, 55: 886, New York: Dover

publications (1972)
[36] Tawfiq, L. N. M. and Hassan, M. A., “Estimate the

Effect of Rainwaters in Contaminated Soil by Using

Simulink Technique,” In Journal of Physics:

Conference Series, 1003(012057):1-7, (2018)

