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.INTRODUCTION 

The concepts of the linear second order multi-value 

problems are generalized to be hold for the linear second 

order delay multi-value problems. This study is made 

especially for the Sturm-Liouville problems that coined in 

this paper as linear second order delay multi-value 

problems. Also one of the most common numerical 

methods named the Galerkin's is developed to solve this 

type of problems. 

2. Basic definitions and facts  

In this section, the basic definitions and facts related to this 

work are recalled, which starts with the following 

definition that given by Driver [1]. 

Definition 2.1  

A delay differential equation is an equation in which the 

unknown function and some of its derivatives, evaluated at 

arguments which are different by any of fixed number or 

function of values. 

Consider the n-th order delay differential equation: 

K(x, y(x), y(x– 1),, y(x– m), y (x), y (x– 1),, 

 y (x– m), y
(n)

 (x),, y
(n)

 (x– m)) = f(x)  

                                                                                    (1) 

where K is a given function and  1, 2, , m are given 

fixed positive numbers called the time delays, [2].  

We say that equation (1) is homogenous delay differential 

equation in case f(x)=0, which we handle in this paper, 

otherwise this equation is called non-homogenous delay 

differential equation,(3). 

For simplicity, we can write a first order linear delay 

differential equation with constant coefficients and one 

time delay as follows: 

a0 y (x) + a1 y'(x–  ) + a2 y(x) + a3 y(x–  ) = f(x)  

                                                                                       (2) 

where f(x) is a given continuous function and   is a 

positive constant  and  a0, a1, a2 and a3 are constants. 

   Now it is important to recall the following definition 

which is given by Halanay [5]. 

Definition 2.2  

A delay Eigen-value problem is a problem in which the 

unknown Eigen-function and some of its derivatives, 

evaluated at arguments which are different by any of fixed 

number or function of values. 

Consider the following linear second order delay Eigen-

value Sturm- Liouville problem: 

– (P(x) y (x)) + (q(x) – r(x))y(x–) = 0                    (3) 

together with the boundary conditions: 

a1 y(a) = a2 y (a)                     ,x  [a – , a ] 

b1 y(b) = b2 y (b)                     ,x  [b – , b ]              (4) 

   ,  xxy if  ax   

where ai, bi (i=1,2)are prescribed constants such that not 

both in each case equal to zero, > 0 is the time delay, p ,p, 

q and r are given real continuous functions in [a, b], p and 

r are positive in [a, b],  is a constant plays the role of the 

eigen-value.   is the initial function defined on 

].,[ 00 xxx       

Hence, the new concept of this work is given by the 

following definition. 

Definition 2.3 

A delay multi-value problem is a problem in which the 

unknown multi-function and some of its derivatives, 

evaluated at arguments which are different by any of fixed 

number or function of values. 

Consider the following linear second order delay boundary 

multi-value Sturm- Liouville problem: 

(pi(x)yi(x))+(qi(x) – jrij(x))yi(x–) = 0 , i, j=1,2,,n  

(5) 

together with the boundary conditions: 

 ai1 yi(a) = ai2 yi (a)                   ,x  [a – , a ] 

bi1 yi(b) = bi2 yi (b)                   ,x  [b – , b ]                 (6) 

   ,  xxy ii
if  ax   

where aik, bik (k=1,2)are prescribed constants such that not 

both in each case equal to zero,  > 0 is the time delay,  pi, 

pi, qi  and  rij  are given  real continuous functions in [a, b], 

pi and rij are positive in [a, b], ij are constants play the role 

of the multi-values.  i  are the initial functions defined on 

].,[ 00 xxx       

Thus, all the facts that satisfied for the linear second order 

multi-value problems given by Bhattacharyya and others 

[6, 7, 8], are also hold for the problem given by equations 

(5) and (6). That is, the following remarks are hold: 

Remark 2.1 

All the delay eigen-values are real. 

Remark 2.2 

The delay eigen-functions of the problem given by 

equations (5) and (6) are orthogonal to the weight functions 

rij where i=j. 

Remark 2.3 

The delay eigen-functions are complete and normalized in 

L
2
[a,b]. 

Remark 2.4 

 There are infinite number of delay eigen-values forming a 

monotone increasing sequence with            ij   as j  

. Moreover, the delay eigen-functions corresponding to 

the delay eigen-values ij has exactly j roots on the interval 

(a,b) for each i=1,2,,n. 
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Remark 2.5 

Each delay Eigen-value of the problem given by equations 

(5) and (6) correspond only one delay Eigen-function in 

L
2
[a,b]. 

More generally, if we rewrite the problem given by 

equations (5) and (6) as L y=0 where                           y=[ 

y1, y2, , yn],            L= [L1, L2, ,Ln].  

        nixqxAxp
dx

d
xp

dx

d
L iiiii ,,2,1,

2
  

                                                                                      (7)  

where Ai(x) are operators defined by:  

Ai(x)yi(x) = yi(x–) 
Then, the operator given by equation (7) is self-adjoint, (9). 

Therefore L satisfies the following property: 

Proposition 2.1 

The operator L is self-adjoint. Hence, the qualitative proof 

of the above proposition is the same as, the qualitative 

proof of the multi-value problems given by Volkmer and 

Binding, [10]. 

3. Galerkin's method 

In this section we use the Galerkin's method to solve the 

problem given by equations (5) and (6). This method is one 

of the important methods that used to approximate the 

solution of differential and integral equations. The method 

is described as a special case of the weighted residual 

methods, [11]. 

For simplicity, fix n=2, therefore the problem given by 

equation (5) and (6) reduces to the following one: 

(p1(x)y1(x))+(q1 (x) – jr1j(x))y1(x–) = 0, j=1, 2       (8 

a) 

(p2(x)y2(x))+(q2(x) – jr2j(x))y2(x–) = 0        (8 b) 

together with the boundary conditions  

ai1 yi(a) = ai2 yi (a)           ,x  [a – , a ] , i=1, 2        (9 a) 

bi1 yi(b) = bi2 yi (b)           ,x  [b – , b]        (9 b) 

   ,  xxy ii
if  ax   

where the same assumptions  given  for the problem given 

by equations (5) and (6) hold. 

 This method based on approximating the unknown 

function y1 as a linear combination of n linearly 

independent functions {t}
n

t=1. That is , write 

y1 = ct t,  t=1,2,,n                                            (10) 

where ct are the unknown parameters that must be 

determined. But this approximated solution must satisfy the 

boundary conditions given by equation (9 a). Therefore by 

substituting the new approximated solution into equation (8 

a) one can get: 

R1(x,1,2, c


) = – (p1(x) (ct't(x))' + (q1(x) – 

jrij(x))(ctt(x–))                                               (11) 

where R1 is the error in the approximation of equation (11) 

and c


is the vector of n–2 elements of ct, i,j=1,2. 

To find c


and 1,2 , choose n linearly independent 

{f}
n
f=1 which are orthogonal  to R1. 

     That is,  

nfdxcxRx
b

a

f ,,2,1,0),,,()( 211 


         

                                                                                     (12) 

From equation (10) we obtained that equation (12) can be 

expressed as: 

      

     0)()()()()()(
111


 



dxxcxrxqxcxpx t

n

t
t

n

j
ijjit

n

t
ti

b

a

f 

                                                                                    (13) 

where f=1,2,,n.             

By evaluating the above equation at each f one can obtain a 

system of n nonlinear equations with n unknowns that can 

be solved easily. 

To illustrate this method see the following example: 

Example 3.1 

Consider the following linear second order delay two-value 

Sturm- Liouville problem: 

0)1()31()( 1211  xyxxxy            (14 a) 

0)1()3()( 2212  xyxxxy          (14 b)  

together with the boundary conditions (15 a) 

y2(1) = 0     y2(2) – y2'(2) = 0          , x  [1,2]         (15 b) 

yi(x–1)= x–1    , i= 1,2. 

First, approximate the unknown function y1 as a polynomial 

of degree three, i.e., 

 y1(x) =  ct x
t 
- 

1
 , x  [0,1]. 

But, this approximated solution must satisfy the boundary 

conditions given by equation (15 a), therefore this solution 

reduces to:   

y1(x) = c2 x – 2 c4 x
2
 + c4 x

3
,    x  [0,1].  

That is, 

y1(x –1) = c2 (x –1) – 2 c4 (x –1)
2
 + c4 (x –1)

3
, x  [1,2]. 

By substitute this approximated solution into equation (14 

a) one can get: 

R1(x,1,2,c2,c4) = 6c4x–10 c4 +(1+3x–1–2x) 

.(c2(x–1)+6c4(x–1)+c4x
3
–5c4x

2
)                                (16)  

 Choose the functions 1,x,x
2
 and x

3
 to be orthogonal to the 

error function R1 to get the following system of equations: 

0
2

1

1  dxR
 

0
2

1

1  xdxR
 

02
2

1

1  dxxR  

03
2

1

1  dxxR  

Thus, the nontrivial solution of the above system is 1=1 

2=3, c4=0 and c20.  

Second, substitute the values of 1 and 2 into equation      

(14 b) to get: –y2"=0. The solution of this equation is y2(x) 

= d1 + d2x, x [0,1] , therefore y2(x–1) = d1 + d2(x–1) is the 

approximated solution for equation (14 b) where           x 

[1,2]. 

But, this approximated solution must satisfy the boundary 

conditions given by equation (15 b).Thus d1=0 and d20. 

Hence, ((1,3),( c2x, d2x)) is the double Eigen-pair of the 

problem given by equations (14) and (15) where x [0,1]. 

That is, ((1,3),( c2(x–1), d2(x–1))) is the nontrivial solution 

of equation (14) where x [1,2].  

Hint 

Math-Cad software package has been used for help to solve 

the above problems and the programs are so easy that 

omitted. 
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