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ABSTRACT: The Nelder-Mead Algorithm (NMA) possesses a good local search ability, but gives poor results in global 

searching. Reproductive operators are structures of evolutionary algorithms (EAs), which make the EAs competent in global 

search. In this paper, reproductive operators are hybridized with NMA to enhance NMA’s performance in global searching. 

Mutation and crossover are implemented in the initial stage. The proposed hybrid algorithm is referred as Reproductive 

Nelder-Mead Algorithm (R-NMA). We also investigate the influence of this hybridization on NMA’s performance. This study 

indicates that reproduction operators played an important role in R-NMA. That is why, R-NMA performed superior than NMA 

on majority of the tested problems. However, it is observed that R-NMA is computationally expensive. 
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1. INTRODUCTION. 
Local Search (LS) methods start from a point and depend on 

gradient/objective function values to solve an optimization 

problem [1]. Nelder-Mead Algorithm (NMA) [2, 3] is one of 

the famous derivative-free LS methods. It is designed to find 

solution for a nonlinear optimization problem [4].  

In recent years, NMA is frequently in use, largely because, on 

a range of practical engineering problems, it is capable of 

returning a very good result [7]. It is also robust to small 

perturbations or inaccuracies in objective function values [8]. 

NMA performs well in local search areas, if the optimization 

starts from points in the neighbourhood of the known 

optimum. This means that its global exploration is very 

limited. The role of LS methods is to stabilize the search 

especially in the environs of a local minimum. NMA is good 

in local search space, but fails in global search [9]; sometimes 

it exhibits drawbacks of limited convergence. Hence to heal 

its early convergence and to analyse the performance of 

reproductive operators in NMA, in this paper, we hybridized 

reproduction operators with NMA. This combination of 

reproductive operators and NMA is called the Reproductive 

Nelder-Mead Algorithm (R-NMA). Here, we combined the 

advantages of two algorithms [14], because if we take only 

NMA, then we have a problem of reaching to local minimum 

(not to global minimum). If we take just reproduction 

operators, then we will face problem of low accuracy [15].  

The remaining paper is organized in the following sections. 

In Section 2, we state the existing techniques on which the 

proposed method is based, that is we detail NMA and 

reproductive operators. Section 3 reviews the previous work 

related to NMA. Section 4 contains the general framework of 

new R-NMA. Section 5 presents numerical results along with 

the comparison of R-NMA against NMA. In Section 6, the 

conclusion of the contribution of this paper is presented. 

2. Nelder-Mead Algorithm (NMA) and 

Reproductive Operators 

In this section, we present the details of NMA, a well-

established algorithm. We also detail the reproduction 

operators that are hybridized with NMA, and thus resulted in 

R-NMA. 

 

2.1. The Nelder- Mead Algorithm (NMA)  

The most famous NMA (also known as simplex method) was 

invented by Nelder and Mead in the mid of 1960s [4]. At that 

time, there was an interest in solving complex nonlinear real-

world optimization problems computationally.  It was often 

impossible to optimize first derivative of a given function 

[4].The new version of NMA performed well than other 

existing algorithms at that time. Since then, NMA is 

frequently used in the field of unconstrained optimization. 

NMA has the ability to work in local search areas [11]. The 

optimization procedure, described below by Algorithm 1, 

starts with     random points,            , in the 

solution space to form the simplex.  In each iteration, points 

in simplex   are arranged in ascending order according to 

their objective function values, i.e.,   (  )   (  )    
 (    ). Suppose that the best (minimum) solution candidate 

is   (  ) , the worst (maximum) candidate is  (    ) and 

 (  ) is the second worst candidate. The steps of NMA [4] 

are demonstrated in Algorithm 1.  Further, the worst vertex, 

     is considered as a bad direction, hence it will be 

reflected with respect to the centroid as follows: 

       ̅     ( ̅–     )                                   (1) 

where the centroid  ̅ of the remaining   points is computed 

as follows: 

 ̅  
 

 
∑   
 
                                                          (2) 

Furthermore, compute the function value of the reflected 

point, (i.e.,   (  )) . In the case where   (  )   (  ) , the 

reflected point    was able to improve (i.e., reduce) the 

function value. In that case, the algorithm tries to expand the 

simplex so that function value is improved even more. 

If (  )   (  )  and (  )   (  ) , then the worst vertex 

      is rejected from the simplex and the reflected point    is 

accepted. Further, compute the expansion point    as follows: 

       ̅    (  –     )                                   (3)                            

Find function value at this point (i.e.,  (  )). If the expansion 

point allows improving function value, the worst vertex      

is rejected from the simplex and expansion point    is 
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accepted; otherwise, the reflection point    is accepted.  Next 

calculate the contraction point      as under:      
       ̅    (  –  ̅)                                         (4) 

 

Algorithm 1: Nelder-Mead Algorithm (NMA) [4] 

Control parameters:    problem dimension,      function evaluations,             chosen parameters, where   is 

coefficients of reflection,   is expansion,   is contraction, and δ is shrinkage. 

Step 0: Initialization: Uniformly and randomly sample      points from the search space to form the vertices of the initial 

simplex  . Evaluate each one of these vertices. 

 Step 1: Sorting: Sort the objective function values such that  (  )   (  )     (    ), where  (  ) is   minimum and 

  (    ) is maximum.  

Step 2: Centroid: Compute the centroid  ̅ of the best   vertices as:  ̅  
 

 
∑   
 
       

Step 3: Reflection: Compute the new point    by:         ̅     ( ̅–     )  If  (  )    (  )    (  )   set          , and 

go to Step 8. 

Step 4: Expansion: If  (  )     (  ), calculate new point as:        ̅     (   –      ).   If  (  )     (  ), set        
       otherwise, set            and go to Step 8. 

Step 5: Outside Contraction:  If  (  )      (  )     (    ), calculate new point as:       ̅    (  –  ̅).   If  (  )   

  (  ),   set         , and go to Step 8; otherwise, go to Step 7. 

Step 6: Inside Contraction: If  (  )     (    ), calculate         ̅      ( ̅         ). If  (  )      (     ), set      
   , and go to Step 8; otherwise, go to Step 7 

Step 7: Shrinking: Compute            (       ) , where               . Replace              by new 

vertices             , and go to Step 8.  

Step 8:  Stopping Condition: If the number of maximum iterations is met, stop and output the best solution and its 

corresponding objective function value, obtained so far; otherwise, set       and go to Step1

 

If the point    is better than the reflection point   , then it is 

accepted. If not, a shrink step is performed, where all vertices 

are moved in the direction of the best vertex    . In other 

cases, consider the point    , If the point    is better than 

worst vertex     , then it is considered. If not, a shrink step is 

performed as shown in Algorithm 1 (Step7).  After describing 

NMA, we will introduce reproduction operators in the 

following section of this paper. 

2.2. The Reproduction Operators 

The reproduction operators are two main procedures of the 

Genetic Algorithm (GA) [9].  Reproduction operators such as 

mutation and crossover play a very important role in locating 

the global optimum and maintaining population diversity in 

GAs [5]. There is a little difference between mutation and 

crossover that is mutation is unary operator, while crossover 

is binary operator [5]. Both operators are used to produce 

new offspring in Evolutionary Algorithms (EAs). In the next 

section mutation and crossover operators are discussed in 

detail.  

2.2.1 Mutation Operator  

The mutation is a small random change in genetic structure 

[5]. It is good for change or perturbation in random elements 

[5]. In mutation, a solution may change entirely from 

previous one [6]. Hence, we can get more diversified 

solutions, which may perform better. Since, it is more 

efficient in global search, but poor at exploiting the solutions 

locally. In literature, three distinct parameter 

vectors,             and      (                      )  are 

chosen randomly from the current population to perform 

mutation  A mathematical expression for mutation  is defined 

as follows [8]: 

           (            )   (           )                                

(5) 

In the above equation,       are distinct integers randomly 

chosen from *        +. While       is the best individual 

in current population. The parameter   (   )is mutation 

scale factor, which adjusts the length of the differential factor 

in Equation (5), during the search for optimal solution.   

2.2.2 The Crossover Operator  

The aim of crossover operator is to interchange genes 

between chromosomes [11], therefore, crossover requires two 

parents to produce new promising solutions (offspring) in the 

search space [5]. The newly produced offspring takes some 

bits from one parent and the remaining from the other. Thus, 

it is expected that the new offspring hopefully would be more 

diversified than the parents. The steps of crossover are the 

following [6]: 

        {
                 (   )                

                                                          
 (6) 

Where     (   )  is a uniform random number and 

independently generated for each   and   and       is an 

integer randomly chosen from   to    and newly generated 

for each  . 
3. Related Work to NMA 

There is an abundant literature on NMA. Most of the existing 

algorithms have used to combine NMA with Genetic 

Algorithms (GAs) [3] and EAs [4] to improve their search 

capabilities. In contrast, to improve the convergence rate of 

GA, NMA is hybridized with GA [3], [10]. In [5], the NMA 

is hybridized with Marriage in Honey Bees Optimization 

(MBO) to change the structure of MBO and utilized the 

NMA’s local characteristics. Further, Simulated Annealing 

(SA) is combined with NMA for multiple response quality in 

[9]. To solve bi-level nonlinear programming problems, 

NMA has been combined with Estimation of Distribution 

Algorithm (EDA) in [10].  In another experiment, NMA is 
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exploited to improve its convergence to non-stationary points 

[11]. Furthermore, a new method has been designed in [12], 

called NM+SPC, by combining NMA with Statistical Process 

Control (SPC) to deal with stochastic response surface 

optimization problems. A meta-heuristic has combined with 

NMA to overcome drawbacks of its slow convergence [2]. 

4. General Framework of R-NMA 

In this section, we give the details of our main hybrid method 

R-NMA. The R-NMA is the combination of two algorithms 

in which one explores a promising area likely to contain the 

global minima and other exploits the area to find the desired 

point, it would be promising if properly performed. First we 

will discuss the main features of the algorithm. Then we will 

describe it explicitly.    

4.1. Reproductive Nelder-Mead Algorithm (R-NMA)  

As we mentioned earlier that NMA is one of the best known 

LS methods to solve the problems of unconstrained 

optimization without using the derivative information of 

problem [4]. The NMA is very competent in local search and 

shows high accuracy, but it has the problem to reach at global 

minima. In contrast, there are EAs, which show high 

accuracy to find global minima. EAs are composed of 

reproduction operators, which make it globally efficient. That 

is why, we hybridized the reproduction operators, i.e., 

mutation and crossover into NMA to improve its efficiency. 

Hybridization is the only motivation that brings back the 

hope to approach required goal as long as using only one 

search algorithm leads to dim results [13]. The role of 

reproduction operators such as mutation and crossover is to 

create new promising solutions in search field [13]. Hence, 

we hybridized these two methods to create a new algorithm 

called the Reproductive Nelder-Mead Algorithm (R-NMA). 

The proposed algorithm R-NMA is given in Algorithm 2. 

This algorithm starts by choosing randomly     points, 

                from search space to form the simplex  . 

Then  evaluate S and sort  ( ) from minimum to maximum 

in each iteration. Next, choose three mutually exclusive 

vectors, i.e.,                    from current simplex    and 

implement the mutation strategy [6] as follws: 

            (       
 

     )    (           )          (7) 

This mutation technique produces       also given in Step 2 

below. Further, to compute the offspring, we implement 

crossover between parents   and      the mutants by Equation 

6.  

The implementation of crossover is described in Step 3 of 

Algorithm 2.  In crossover procedure the offspring are either 

selected from mutants or taken from parents. After applying 

these techniques on  , we get new offspring as        .   
 
 

 Algorithm 2:  Reproductive Nelder-Mead Algorithm (R-NMA)  

Control parameters:     problem dimension,      function evaluations,             chosen parameters, where   is 

coefficients of reflection,   is expansion,   is contraction, and δ is shrinkage,     crossover probability,     mutation scale 

factor. 

Step 0: Initialization: Uniformly and randomly sample      points from the search space to form the vertices of the initial 

simplex  . Evaluate each one of these vertices. 

 Step 1: Sorting: Sort the objective function values such that  (  )   (  )     (    ), where  (  ) is   minimum and 

  (    ) is maximum.    

Step 2: Mutation:  Generate     and    for each individual   . Randomly choose                     from the current 

simplex to perform mutation as:             (       
 

     )    (           )    

Step 3: Crossover: If           or     (   )         set                  ; otherwise, take               , where  random 

number generator. Set      i to form the new simplex. 

Step 4: Centroid: Compute the centroid  ̅ of the best   vertices as:  ̅   
 

 


n

i 1

    . 

Step 5: Reflection: Compute the new point     by:      ̅     ( ̅       ).  If  (  )     (  )     (  ), set             , 

and go to Step 10. 

Step 6: Expansion: If (  )     (  ),  compute new point as:         ̅     (   –     ). If  (  )     (  ), set        
       otherwise, set            and go to Step 10. 

Step 7: Outside Contraction: If  (  )      (  )     (    ), calculate new point as:     ̅    (  –  ̅). If  (  )     (  ),   

set         , and go to Step 10; otherwise, go to Step 9. 

Step 8: Inside Contraction: If  (  )     (    ), calculate         ̅      ( ̅         ). If  (  )      (     ), set      
   , and go to Step 10; otherwise, go to Step 9. 

Step 9: Shrinking: Compute           (       ), where              .  Replace              by new 

vertices             , and go to Step 10.  

Step 10:  Stopping Condition: If the number of maximum iterations is met, stop and output the best solution and its 

corresponding objective function value, obtained so far; otherwise, set       and go to Step 1. 

Next, we evaluate the updated simplex  , then the points in   

are arranged in ascending order in terms of their 

corresponding objective function values. In this procedure 

consider  (  )  as minimum (best),  (    )  as maximum 

(worst) and  (  )  as second worst candidate. Further, 

calculate the centroid of remaining   vectors from simplex   
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except the best vector. Furthermore, compute the reflection 

point     following step 5 of Algorithm 2. Next, if  (  ) is 

best than  (  ) and worse than the best point, then replace 

the worst point      by new computed reflection point  . 

Otherwise, follow the step 6, if  (  )    (  ), generate the 

expansion point  , and apply expansion if  (  ) is better, if 

not, perform reflection. If  (  )  is not better than  (  ) , 

create new contraction point     and generate (  ). If   (  ) 
is better than (  ), then contraction steps will be followed; 

otherwise, simplex is shrieked, as demonstrated in Step 9 

(Algorithm 2).  

5. Numerical Results  

To check the capability of our new algorithm, we have taken 

            and     . The algorithm is run 25 

times with maximum iterations equal to 200. To perform 

experiments with our proposed algorithm, we have chosen 

mutation scalar factor,       and crossover probability, 

       as suggested in JADE [8]. The R-NMA has four 

deterministic scalar parameters,    coefficient of 

reflection,   : expansion,  : contraction and  : shrinking. 

These parameters are chosen as:             
        as given by [14]. All the parameters kept fixed 

throughout experiment except   and   . The termination 

criterion for NMA and R-NMA algorithms is a fixed cost, 

i.e., the maximum number of iterations. Hence, the algorithm 

will terminate when the maximum iteration number, 200 is 

reached. 

5.1. The Comparison of R-NMA with NMA 

To check the efficiency of R-NMA against NMA, both the 

algorithms have been tested on ten benchmarks test problems 

developed in the CEC2005 special session on real-parameter 

optimization in [4]; these are the first ten functions from that 

test suit. We will refer the first function of the test suit as F1 

and second as F2 and so on. A detailed description of these 

test instances can be found in [6]. 

The results obtained for both algorithms R-NMA and NMA 

are recorded in Table 1. Further, the number of function 

evaluations and time elapsed used by each test function are 

recorded in the same table.   The best values of algorithms are 

typed in bold. It is very clear from Table 1 that the results of 

R-NMA on these test functions are more competent than 

NMA. It shows better performance on 7 test functions. 

However, R-NMA is not efficient on F7, this might be due to 

its global optima, which is out of initializing range.  

Further, on F4 and F8 the results of R-NMA and NMA are 

almost same, which are typed in italic. This similarity may be 

due to some hard nature of these test functions. The R-NMA 

is more competent than NMA on 7 test functions out of 10. 

This efficient performance is due to the merging of 

reproduction operators, i.e., crossover and mutation into 

NMA. 

Furthermore, to show results of our new algorithm R-NMA 

more clearly, we plot some box plots. Box plots present the 

large set of data graphically [15]. The box plots summarize 

and interpret the tabular data rapidly [17]. The first step to 

construct a box plot is the data ordering. In the univariate 

setting, the ranking is simply from the smallest observation to 

the largest [18]. Further, five values from a set of data are 

conventionally used; the extremes (maximum and minimum 

values), the upper and lower hinges (quartiles), and the 

median [16]. The whiskers are red plus signs as shown in 

Figure 1, extending from each end of the box to show the 

extent of the remaining data. 

From box plots, we see that R-NMA performed very well on 

F1, F2, F3, F6, and F9. Furthermore, the result of R-NMA 

and NMA on F4 is almost same, as we can see easily from 

box plots that the medians are almost at same level

TABLE 1:  EXPERIMENTAL RESULTS OF R-NMA AND NMA OVER 25 INDEPENDENT RUNS ALONG WITH FUNCTION 

EVALUATIONS AND TIME ELAPSED. 

 

Problems 

Avg: objective function 

values 
Function-evaluations Time elapsed in Seconds 

R-NMA NMA R-NMA NMA R-NMA NMA 

F1 8.3608e+04 8.9700e+04 162996 164089 44.54 31.41 

F2 8.1990e+04 8.6078e+04 163920 165020 92.11 71.01 

F3 2.2132e+09 2.4288e+09 163325 164714 353.95 125.73 

F4 1.0637e+05 1.0833e+05 163689 161667 401.64 157.34 

F5 5.6205e+04 6.7035e+04 161743 164218 443.93 191.83 

F6 4.0835e+10 4.4773e+10 163033 164620 486.58 226.63 

F7 9.5902e+03 6.2220e+02 161903 163569 594.81 278.95 

F8 1.1837e+02 1.1838e+02 160485 160948 822.58 321.64 

F9 1.8251e+02 1.9442e+02 161771 163381 896.79 353.42 

F10 5.1495e+02 5.7708e+02 162682 163413 1142.23 404.11 
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Figure 1: Box plots of R-NMA and NMA for F1-F4, F6 and F9 representative test functions with n=3 and NP =31 

6. CONCLUSION   
This paper addressed the handling of global exploration in 

local search technique, in continuous unconstrained single 

objective optimization. Traditional optimization techniques, 

like NMA, face difficulties in handling global optimization 

problems. One of the major reasons behind their failure is 

that they cannot utilize the global information needed to find 

the global minimum for a function with multiple local 

minima [5]. Thus, new practical problem solvers are needed 

to invoke exploration and exploitation search procedures in 

order to solve optimization problems with high accuracy. To 

deal with poor exploration of NMA, reproduction operators 

are inserted into NMA and a new hybrid algorithm is devised 

and investigated in this paper. This combination is motivated 

by the need to improve exploration in the NMA algorithm, 

which shows weakness in this area. The choice of global 

search operators to use in the hybridization has been 

motivated by their exploitation and diverse nature. Indeed, 

one of the main contributions of this work is to use the 

mutation and crossover operators together in a local search to 

increase its overall performance. From the experimental work 

in this paper, we conclude that R-NMA is more competent 

and flexible than NMA on majority of the tested problems, in 

the solution quality. However, it is computationally 

expensive.  
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