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ABSTRACT: Classical Nelder-Mead Algorithm (NMA) is widely used for local optimization in many domains. It was 

proposed in 1965; since then a lot of improvements had been made to this optimizer. NMA was also hybridized with other 

search techniques. We developed very recently a hybrid algorithm Reproductive Nelder-Mead Algorithm (R-NMA), which 

showed performance improvement over NMA. This paper devises modifications to R-NMA and presents two new hybrid 

algorithms. In the first hybrid, JADE’s mutation strategy is combined with NMA, and the crossover is kept passive.  In the 

second hybrid, only crossover is employed in NMA, and mutation is paused. The proposed hybrids are known as Mutated 

Nelder-Mead Algorithm (M-NMA) and Crossover-based Nelder-Mead Algorithm (C-NMA). Additionally, this paper 

investigates the performance of M-NMA and C-NMA against R-NMA and NMA. The new proposed methods have been tested 

on ten CEC2005 contest test problems.  Experimental results show that the performance of NMA is improved by these 

modifications in terms of solution eminence. 
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1. INTRODUCTION  

The Local Search (LS) methods start from a point and use the 

gradient or objective function value to guide the search. 

Nelder-Mead Algorithm (NMA) [1, 2] is a gradient-free LS 

method designed for nonlinear optimization. The search done 

by NMA is based on geometric operators (reflection, 

expansion, contraction and shrinking) on a current set of 

points. NMA can find the solution to an optimization problem 

with more accuracy, if it is started from the points in the 

neighbourhood of the known optimum [3].  In other words, it 

is not optimal at global search [3]. Evolutionary Computation 

(EC) is nature inspired field of optimization. Evolutionary 

Algorithms (EAs) are stochastic optimizers in EC, which 

depend upon three basic operators, i.e., selection, mutation 

and crossover to guide it in searching the solution space [4]. 

EA is good in exploration, but not as good at exploitation as 

LS methods [4]. Thus, it makes sense to hybridize NMA with 

global search techniques to improve its exploration ability. 

Inspired by the above pitfalls of optimization methods, we 

previously merged two evolutionary operators into NMA and 

proposed R-NMA, which produced encourageing results. In 

this paper, we modify R-NMA and present two new 

algorithms to solve the continuous unconstrained 

optimization problem. These algorithmsare called Mutated 

Nelder-Mead Algorithm (M-NMA) and Crossover-based 

Nelder-Mead Algorithm (C-NMA), respectively.  M-NMA 

invokes a local search method and a reproduction operator 

“mutation”, which is borrowed from an efficient EA, JADE 

[4]. Moreover, stagnation may be achieved due to an 

inappropriate configuration of mutation strategy and its over 

exploration [6]. JADE has shown performance improvement 

over the state-of-the-art algorithms [7, 8, 9] according to the 

reported results in [4]. That is why, we borrowed its mutation 

strategy in our new algorithm. The novelty of M-NMA is 

based on incorporation of mutation operator inside NMA to 

increase its global search ability.The C-NMA, on the other 

hand is based on interchanging genes of two subpopulations, 

and thus producing more diversified offspring for NMA. 

The rest of this paper is designed as follows. Section 2 

reviews briefly the related work. Section 3 is devoted to the 

proposed M-NMA and C-NMA. In section 4, M-NMA and 

C-NMA are used to solve 10 benchmark test problems. In 

addition, comparisons between the proposed M-NMA, C-

NMA and R-NMA and NMA are presented. Finally,  Section 

5 concludes this paper. 

2. RELVIEW 

In recent years, a great interest has been devloped for solving 

optimization problems in the fields of engineering, chemical 

sciences and economics [10]. In real world optimization 

problems, quality of a product is considered. The LS methods 

perform very efficient to solve optimization problems without 

using their slopes information [11]. Therefore NMA is 

hybridized with many other huristics, like Genetic 

Algorithms (GAs) [1] and other Evoloutionary Algorithm 

(EAs) [12] to improve their search capabilities. Some hybrids 

of NMA with  GA are available in [13, 14, 22]. Some 

researchers preferd to hybridize NMA with Honey Bees 

Optimization [15] and Simulated Annealing (SA) [16]. A 

new method is designed in [17] by combining NMA with 

statistical process control to deal with stochastic response  

optimization problems.  A meta-heuristic is employed in 

NMA to overcome drawbacks of its slow convergence in 

[18]. NMA is also hybridized with artificial intelligence 

techniques to solve complex optimization problems  [17]. 

Thus, various hybrid algorithms have been proposed in the 

past to improve NMA’s performance for solving 

unconstrained optimization problems. Some algorithms were 

good for one type functions, but failed at the others. Other 

algorithms were good at low dimension and small population 

size, but faced difficulties in solving high dimension 

problems with large population size. Indeed, it makes room 
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for devising new algorithms which can solve complex real 

world problems with more accuracy. 

We have already given the detailed description of NMA and 

reproduction operators in our previous work R-NMA [5], 

upon which this work is based. In our previous work, we 

employed reproduction operators, mutation and crossover 

together into the simplex to keep a balance between 

exploration versus exploitation. This combination returned 

fruitful results. In this work, we invesigate that if only one 

reproduction operator  is hybridised at one time and the other 

is paused, what would be the effect then on the results? In the 

next section, we introduce our two new proposed algorithms 

M-NMA and C-NMA to answer the above question. 

3. THE PROPOSED MODIFICATIONS 
3.1 MUTATED NELDER-MEAD ALGORITHM (M-NMA)  

The NMA is an old but widely used search method to solve 

various optimization problems.  It is mostly intended for 

function minimization [3]. No doubt NMA has local search 

ability; however, it is not competent at global search [1]. Our 

aim is to find global minima for an optimization problem and 

to improve NMA’s efficiency globally.  Thus, it would be a 

good idea to hybridize mutation with NMA to improve its 

performance, since mutation is efficient in exploration. Thus, 

we designed a new hybrid algorithm M-NMA, which 

possesses both the global and local search properties at the 

same time. The M-NMA is the combination of two 

techniques, namely NMA and genetic alteration from genetic 

algorithms.  The working algorithm of M-NMA is illustrated 

as follows. 

The process of optimization described by Algorithm 1 starts 

with creating a sample of    random points in the search 

space to form a simplex  . Then, evaluate the simplex, i.e., 

find  ( )  In each iteration re-adjust the indices of   in terms 

of  ( )  values from minimum to maximum. Next, choose 

randomly three distinct vertices,              and      from the 

current simplex to perform mutation as given in the loop, 

steps 3-10 of Algorithm 1.  

 

 

Algorithm 1: Pseudo-code of M-NMA.   
 

00 Control parameters:     problem dimension,      function evaluations,              NMA parameters, where   is 

coefficients of reflection,   is expansion,   is contraction, and δ is shrinkage,      mutation scale factor, and MaxIter: max 
iterations. 
01  Choose   , set      , and create a random initial population *                 +  to generate simplex S. 
02   Evaluate   to generate   ( ) and set         . 

03   For             

04   Rank the indices of   in terms of  ( ) values from best to worst. 

05    For        
07          Generate     for each individual   
08           Randomly collect distinct elements                    from the  simplex. 

09           Generate mutant vector  as:             (       
 

     )    (           )   

10           Set         and find  ( ) 

11           Re-index all individuals in the current    in ascending order of their fitness values, i.e., individual     is the  

               worst one and     is the best one, in the sense of minimization. 

12   End for 

13  Apply NMA to exploit the search on these mutant vectors and terminate the  current iteration.
 

14 End for 

13Output: The point with the minimum objective value in the entire optimization. 

 
After that compute a new simplex   on mutant points, then 

re-order   in ascensing order in terms of  fitttnes values. i.e., 

                
Assume that the elit one is   and the worst one is     . 

Compute the centere of mass of points from    to     as:  

  ̅   
 

 


n

i 1

                                                                (1) 

First, produce the reflection point    along with its function 

value,       ̅     ( ̅       ). If  (  ) is better than the 

second worst point, then replace worst point, i.e.,     by new 

calculated reflection point   . Otherwise, if  (  )   (  )  
determine the expansion point,  

      ̅     (   –      ). After words, replace the worst 

point by the  better of    and   . If 

 (  )   (  ) and  (  )   (    )  then compute the 

contraction point,      ̅      ( ̅         ) if not, then 

shrink the simplex by halving  the distance of vertices from 

best vertex     
The major difference between proposed method M-NMA and 

classical NMA is that after the initialization of simplex, M-

NMA performs mutation strategy among the vertices of the 

simplex. In essence, the purpose of mutation operation is to 

determine the searching direction and the size of the 

searching area. Thus, offering potential offspring to construct 

the new simplex, which then undergos  reflection, contraction 

and expansion. In the NMA, there is no mutation mechanism. 

There the initialized simplex directly goes through reflection, 

contraction and expansion. 
3.2 CROSSOVER-BASED NELDER-MEAD ALGORITHM (C-

NMA) 

Here, we combine the same NMA with another reproduction 

operator, known as binomial crossover [23]. The resulting 

new algorithm is known as Crossover-based Nelder-Mead 

Algorithm (C-NMA). The novelty of C-NMA lies in its 
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implementation of crossover in the beginning of  

optimization. Since C-NMA possesses the ability of both 

global and local search, it is expected that C-MNA will solve 

optimization problems better than the classical NMA.The 

basic idea of C-NMA is that it incorporates the binomial 

crossover operator [24] between the two subsets of the initial 

simplex. In this way, it not only preserves the diversity of the 

simplex, but also helps the algorithm in exploration as well. 

The formal algorithm of C-NMA is given in Algorithm 2. 

After  the vertices of the simplex are ranked according to 

their objective function values from best (minimum) to worst 

(maximum). Except the best vertex, the remaining n vertices 

are partitioned into two equal disjoint sub populatios, A and 

B, as shown in step 7 of Algorithm 2. Crossover operator 

interchanges the genes of each pair of vertices from 

populations, A and B as follows: 

        {
                 (   )                

                                                         
 (6) 

where          A and        B. 

In this way,   new offspring are produced which are more 

divercified than their parents. This operation is also 

illustrated in Algorithm 2 (see steps 8 to 15).  

 

 

Algorithm 2: Pseudo-code of C-NMA.  
 

00 Control parameters:     problem dimension,      function evaluations,              NMA parameters, where   is 

coefficients of reflection,   is expansion,   is contraction, and δ is shrinkage,     crossover probability. 

01 Create a uniform and random initial population *                 + from the  feasible solution space to generate simplex 

    S  
02   Evaluate   to generate   ( ) and set         . 

03   For             

04   Rank the indices of  ( ) from best to worst. 

05    For         . 
06          Generate      for each individual   
07 Partition    except the best solution into two disjoint subsets   and  .  

08  For       

09                                      Generate              (   ) 
10   If     (   )                 
11                  where          A  

12   Else 

13                   where               

14    End If 

15  End For 

16 Combine the best vertex    and      to form new simplex    

17  Evaluate   and sort  ( ) from best to worst.  

18  Calculate centroid of remaining   vertices except the best vertex.  
19  Implement NMA to complete the iteration. 

20 End For 

21End For 

22 Output: The  point with the smallest objective function value from entire search. 

 

The new population of   offspring is evaluated, and 

combined with the best vertex to form a new simplex  . This 

simplex is now reordered from best to worst in terms of the 

fitness values of its indices. Afterwards, the classical NMA is 

applied to terminate the current iteration. In C-NMA each 

iteration starts with our crossover strategy and is terminated 

by NMA algorithm. In this way a balance between global 

versus local search is maintained.  

4. EXPERIMENTAL STUDY 

We have run M-NMA, C-NMA, R-NMA and NMA 25 times 

independently with a maximum of 200 iterations per run to 

check the performance of these algorithms. 
4.1. Parameters setting 

This section describes the control parameters setting which 

are used in our experimental work of this paper. We keep 

     and       . 

Furthermore, we have chosen mutation scalar factor   as 

suggested in litrature  [4]. There are four fixed parameters, 

            in NMA, M-NMA, C-NMA and R-NMA. 

These parameters are chosen as:             
        as given by [2], [5]. Further, the specific used 

values are given in Table 1. 

Table 1: Parameters values used in this work 

Parameters 
Parameters 

Name 

Numerical 

values 

  
Starting mutation scale 

factor 
0.5 

   
Starting crossover 

probability 
0.5 

  
Coefficient  of 

Reflection 
1 

  Coefficient of 2 
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Expansion 

  
Coefficient of 

Contraction 
0.5 

  
Coefficient  of 

Shrinking 
0.5 

The algorithms M-NMA, C-NMA, R-NMA, and NMA 

terminate at the maximum number of iterations. 

To perform the experimental work, we have taken the first 10 

test instances from the CEC2005 test problems [21].These 

test problems support three types of complicated structures, 

including rotating the function, shifting the global optimum 

to a new position, and combining different optimization 

problems.These test instances are low dimensional, like 10, 

30 and 50, single objective and unconstrained. 

4.2. Comparison of M-NMA against NMA  

For both algorithms, the average error of objective function 

values  ( )   (  ) are recorded at the termination of each 

experiment and are presented in Table 2.The best results are 

typed in bold. The M-NMA has achieved good solutions than 

NMA on problems, 1, 2, 3, 5, 6, 9 and 10. On 8 both the 

algorithms have equal performance. However, our proposed 

algorithm has failed on problems 4; basically 4 is made from 

2  by multiplying a factor “(1 + 0.4 |N(0,1)|)” to its 

objective function. Which adds uncertainty/noise to the 

landscape of the problem. Thus, it may be a cause of its 

failure. Similarly, M-NMA is failed on 7. In case of 7, the 

global optima is out of the initializing range.  

Table 2 shows  that the performance of M-NMA is much 

better than NMA on 7 test functions out of 10. This better 

performance is due to the merging of mutation operator into 

NMA, which is good in global search and it increases the 

diversity of the population (simplex). Table 2 illustrates that 

the number of function evaluation used by M-NMA exceed 

than NMA. Since M-NMA introduces one extra strategy in 

each iteration, i.e., the strategy of mutation, while NMA does 

not.  Thus, NMA utilized less function evaluations than M-

NMA. However, M-NMA found superior solutions than 

NMA as revealed by the Table 2. Furthermore, our objective 

was to improve the solution quality, which is achieved, but at 

a higher computational cost.   

4.3. Comparison of C-NMA with NMA 

In Table 3 the bold results in the second column evident the 

fact that C-NMA outperformed NMA in terms of average 

objective function values, on 8 out of 10 test problems, 1-6, 9 

and 10. This superior performance can be attributed to 

merging of crossover operator into NMA. On one test 

Problem, 8 both, C-NMA and NMA found the same solution, 

which is made italic in the same Table. However, C-NMA 

has failed on 7, this might be due the fact that there is no 

bound for variable x. 

4.4. Comparison of M-NMA, C-NMA, R-NMA  and 

NMA 

Table 4 shows the results of these algorithms. The 

comparison of these four algorithms with each other shows 

that C-NMA is the most superior and robust algorithm than 

others. The minimum values of each algorithm are printed in 

bold. From the same table, we can see that C-NMA 

outperformed than other algorithms. The C-NMA shows 

good performance on 8 test problems out of 10, i.e., 1-6, 9 

and 10. On 8 it shows almost equal results, but on 7 the 

performance of all algorithms are not satisfactory due to its 

nature. M-NMA stood second and the third comes R-NMA in 

this comparison. 

For the purpose of fair comparison, we draw box plots of N-

NMA, C-NMA, R-NMA and NMA. The red horizontal line 

in the middle of the box (see Figure 1) shows the median of 

the data. Since we are solving minimization problems, so if 

lower is the box, better is the performance of that algorithm. 

Figure 1 reveals that on 8 test problems, 1-6, 9 and 10 the C-

NMA is very proficient. M-NMA is good on 8 and NMA on 

7 as is evident from Figure 1.  

 

Table 2: Comparison statistics obtained by  M-NMA and NMA 

Test   Instances 
       ( )    (  ) FES T / seconds 

M-NMA NMA M-NMA NMA M-NMA NMA 

1 8.7104e+04 8.9700e+04 318565 164089 43.36 31.41 

2 8.2495e+04 8.6078e+04 318813 165020 91.20 71.01 

3 2.2720e+09 2.4288e+09 318765 164714 164.74 125.73 

4 1.1582e+05 1.0833e+05 318391 161667 213.25 157.34 

5 5.9846e+04 6.7035e+04 317295 164218 258.70 191.83 

6 4.3417e+10 4.4773e+10 318563 164620 304.57 226.63 

7 8.5760e+03 6.2220e+02 317207 163569 373.78 278.95 

8 1.1824e+02 1.1838e+02 315517 160948 437.32 321.64 

9 1.8297e+02 1.9442e+02 317846 163381 482.63 353.42 

10 5.5491e+02 5.7708e+02 318063 163413 555.17 404.11 

 

5. CONCLUSION  

In this paper, we first presented a brief review of work in the 

field of NMA optimization. Some of the  pitfalls of  current 

methods are also identified. Next, we described M-NMA and 

C-NMA, which combined only one genetic alteration 

procedure in NMA. In our previous work R-NMA, we 
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inserted two gentic strategies togather into NMA.  Which 

performed superior than NMA. In this experiment we inlaid 

two operator separately and studied the effects on the 

performance of NMA. The following conclusions can be 

drawn from the experimental results displayed in this paper:  

1) In the above results M-NMA and C-NMA, in 

comparison with NMA, performed better in terms of 

solution quality on seven and eight out of ten CEC2005 

test instances, respectively. M-NMA was worse on two 

problems as well. The superior performance of M-NMA 

can be attributed to its exploration skills. However, the 

reason for the inferiority of M-NMA on two test 

problems might be the complicated nature of these 

problems.  

2)  We gave the comparison of all proposed algorithms, i.e., 

M-NMA, C-NMA and R-NMA against NMA. The C-

NMA performed well on 8 out of 10 representative test 

problems. So the achievement of C-NMA is more 

valuable than the other algorithms.  

3) The numerical results further unveiled that these 

combinations are computationally  

4) costly than NMA 

 

.Table 2: Comparison statistics obtained by  C-NMA and NMA 

Test 

instances 

       ( )   (  ) FES T/seconds 

C-NMA NMA C-NMA NMA C-NMA NMA 

1 8.4023e+03 8.9700e+04 239752 164089 46.65 sc 31.41sc 

2 5.9293e+04 8.6078e+04 239784 165020 98.28 sc 71.01sc 

3 3.9200e+08 2.4288e+09 239756 164714 171.06sc 125.73sc 

4 9.5505e+04 1.0833e+05 238622 161667 219.47sc 157.34sc 

5 1.2312e+04 6.7035e+04 239408 164218 267.76sc 191.83sc 

6 2.4027e+09 4.4773e+10 239650 164620 316.47sc 226.63sc 

7 2.2266e+03 6.2220e+02 237526 163569 382.61sc 278.95sc 

8 1.1833e+02 1.1838e+02 235663 160948 441.86sc 321.64sc 

9 38.1242 1.9442e+02 239812 163381 491.19sc 353.42sc 

10 57.3365 5.7708e+02 239509 163413 562.69sc 404.11sc 

 

Table 4: Experimental results of M-NMA,C-NMA,R-NMA and NMA over 25 independent runs along with function evaluations and time 

elapsed. 

Test instances 

       ( )    (  ) 

M-NMA C-NMA R-NMA NMA 

1 8.9700e+04 8.4023e+03 8.3608e+04 8.9700e+04 

2 8.6078e+04 5.9293e+04 8.1990e+04 8.6078e+04 

3 2.4288e+09 3.9200e+08 2.2132e+09 2.4288e+09 

4 1.0833e+05 9.5505e+04 1.0637e+05 1.0833e+05 

5 6.7035e+04 1.2312e+04 5.6205e+04 6.7035e+04 

6 4.4773e+10 2.4027e+09 4.0835e+10 4.4773e+10 

7 6.2220e+02 2.2266e+03 9.5902e+03 6.2220e+02 

8 1.1838e+02 1.1833e+02 1.1837e+02 1.1838e+02 

9 1.9442e+02 38.1242 1.8251e+02 1.9442e+02 

10 5.7708e+02 57.3365 5.1495e+02 5.7708e+02 
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Figure 1: Box plots of M-NMA, C-NMA, R-NMA and NMA  F1-F10. 
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