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ABSTRACT. An effective application of the recently developed semi-analytic technique, the generalized residual power series 

method (shortly GRPSM), is presented. The generalization provides the solution in closed-form series solution with easily 

computable components. The reported results, with application to fully developed shock wave equation that describes the flow 

of most gases and compressible, reveal the reliability of the proposed algorithm for handling diverse types of nonlinear partial 

differential equations in mathematical physics. 
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1. INTRODUCTION 

Linear and Nonlinear partial differential equations arise in 

enormous number of problems in physics and engineering, as 

well as in a variety of science fields. One of the most famous 

applications is the conservation law that comes from the 

formulation of familiar physical laws of conservation of 

energy, mass and momentum. Such models are of foremost 

importance in mathematical physics. 

In this study, the one-dimensional scalar conservation 

law, without resources, governed by the initial-value problem 

  0,t xDV D F V      0,V x t f x , 

 ,x t   , 

  (1) 

where 
tD

t





 and 
xD

x





, is considered. This 

equation describes the propagation of the finite amplitude 

sound waves in terms of the particle velocity  ,V x t  with 

respect to space x   and time t [1]. 

The closed-form exact-analytic solutions for most of such 

nonlinear phenomena are not derived. So, many works 

interested in approximating numeric-analytic solutions that 

allow physicists to draw conclusions in an efficient way. In 

the last three decades, many authors devoted their attention to 

solve shock wave and wave equations; for instance, the 

Adomian decomposition method (ADM) [2-5], homotopy 

perturbation method (HPM) [6-7], homotopy analysis method 

[8-9], variational iteration method (VIM) [9-10] and the 

reduced differential transform method (RDTM) [11-14]. 

Also, see references therein. 

In this work, the generalized residual power series 

method(GRPSM) [15] is improved to tackle the one-

dimensional scalar conservation law Eq.(1).  In section two, 

we begin with some basic facts and explain the use of the 

proposed method for Eq.(1). Section three is devoted to apply 

the GRPSM for some shock wave type equations. Numerical 

experiments are included in Section four. 

2. THE GENERALISED RESIDUAL POWER 

SERIES METHOD 

The residual power series method (RPSM) was first proposed 

by Abu Arqub [16] for the treatment of linear and nonlinear 

ordinary differential equations of integer and fractional 

orders, see [17-20] and references therein. This method based 

on constructing term-by-term series solutions in a form of 

Taylor series expansion without need of linearization, 

discretization, perturbation or unrealistic assumptions.  

An extension of the RPSM for solving Eq.(1) is presented. 

The analytic  ,v x t  can be expanded into a Taylor series 

about 0t t : 

           0 0

1 1

, ,0
n n

n n

n n

V x t V x x t t f x x t t 
 

 

      
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 (2) 

where,   i x  are to be determined consecutively by 

solving the algebraic equation 

 
0

limRes , 0m
t t

x t


 , 1,2,m    

where  Res ,m x t  is the analytic m th
- residual function 

defined by 

    ( 1)Res , m

m t t xx t D DV D F V  .  

Az-Zo'bi [15] proved the following related facts: 

Theorem 1. The residual function  Res ,m x t  vanishes as 

m  approaches the infinity. 

Theorem 2. For 0k  , the k th
-order approximate 

solution  

      0

1

,
k

n

k n

n

V x t f x x t t


   ,  

obtained by the GRPSM, to the exact solution  ,v x t  of 

Eq.(1) coincides the Taylor series expansion of   ,V x t  

about 0t t . 

Corollary 1. Suppose that the truncated series  ,kV x t  is 

used as an approximation to the solution  ,V x t  of 

problem Eq.(1) on a rectangle 

  0 0 0 0, : , , 0, 0R x t x h x x h t t t h D             

,then positive numbers  t , satisfies   0t t   , and 

k  exist with 
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
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Corollary 2. Suppose that the solution  ,V x t  is a 

polynomial of t , then the GRPSM results the exact solution. 

3. SERIES SOLUTION OF THE SHOCK WAVE 

EQUATION 

Example 3.1 Consider Eq.(1) for propagation of an isentropic 

perfect gas with infinitely small waves, i.e., with  

 
 0
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1
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2

F V

c V
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 

.  

where 
0c ,  are constants and   is the specific heat. Banta 

[1] derives semi-analytic solution for this model in the form 
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 (3) 

To illustrate the technique discussed in Sections 2 and 

starting with    0,V x t f x , the unknown coefficients 

of series solution Eq.(2) were obtained with aid of symbolic 

computation software, Mathematica.  First few coefficients 

are listed to be: 
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The series solution coincides that’s one derived in Eq.(3). 

Example 3.2 The propagation of low-amplitude plane sound 

waves is governed by Eq.(1) with flux 

 
2

0 0

1 1

2
F V V

c c

 
  . (4) 

The series solution can be obtained if  0

1
1

2
c V  , 

as shown in [1]. Converting to a moving coordinate system, 

through replacing the space x  by 

0

t
x

c
 , we get 

 
2

0
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2
F V V

c

 
  . 

Proceeding as in Example 1, unknown coefficients of series 

solution Eq.(2) were obtained recursively by the GRPSM. 

The first few coefficients are  
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Continuing this process, we get the series solution obtained in 

[1]. 

4. NUMERICAL ILLUSTRATION 

For the study case under consideration Eq.(1), numerical 

implementation of our  generalization is presented with flux 

given in Eq.(4). Let 0 2c  , 
3

2
   and the initial condition 

is assumed to be 

 
2 /2,0 xV x e  ,.ϰεR 

Up to 100 terms of the series solution Eq.(2) were 

calculated, with aid of Mathematica. Below, we list the first 

few terms 
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Best obtained approximation is with 37 terms, i.e., 

   
37

0

, .k

appr k

k

V x t x t


  (5) 

Figure 1.a shows the surface plot of the approximated 

solution Eq.(5). The corresponding absolute error defined at 

any point as 

 Abs t app x appE DV D F V  , (6) 

is shown in Figure 1.b. 

 

   

Fig.1. Behavior of: (a) approximate solution AppV using 21 iterations of GRPSM, (b) corresponding absolute error AbsE for 

8 8x   , 0 2t  . 

 

Table 1. The absolute errors for solving Shock wave equation Eq.(4) using 37-terms of GRPSM 

x  t  AbsE  x  AbsE  

-3 

0 3.46945×10-18 

1 

2.77556×10-17 

0.4 3.46945×10-18 2.77556×10-17 

0.8 0. 8.32667×10-17 

1.2 3.747×10-16 4.59681×10-8 

1.6 1.69196×10-11 1.99576×10-7 

2 6.48935×10-8 7.12756×10-4 

-1 

0 2.77556×10-17 

2 

2.77556×10-17 

0.4 2.77556×10-17 1.38778×10-17 

0.8 2.77556×10-17 4.16334×10-17 

1.2 1.34584×10-11 1.45319×10-11 

1.6 6.61778×10-7 5.591×10-7 

2 2.85427×10-3 1.97536×10-3 

0 

0 0. 

3 

3.46945×10-18 

0.4 5.20417×10-18 0. 

0.8 6.93889×10-18 3.46945×10-18 

1.2 6.93889×10-18 3.60822×10-16 

1.6 3.69149×10-15 1.3355×10-11 

2 1.58138×10-11 4.63813×10-8 
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To demonstrate the accuracy of GRPSM numerically, 

absolute errors for some values of  x  and t , rounding to 3 

significant digits, are listed in Table.  

 

5. DISCUSSION AND CONCLUSION 

The residual power series method is reformulated to tackle 

one-dimensional scalar conservation laws. Models, with 

applications to the finite amplitude sound waveform, were 

considered to illustrate the efficiency, simplicity and 

convenience of the generalized residual power series method. 

A semi-analytic solution in closed form is obtained. 

Numerical results reveal that the generalized scheme is more 

accurate than other existing methods. It may be concluded 

that the GRPSM is very powerful and efficient technique in 

finding analytic solutions for wide classes of problems and 

can be also easy to be extended to other non-linear evaluation 

equations, with the aid of Mathematica. 
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