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ABSTRACT:  This study has proposed to discuss the mathematical model of phytoplankton and herbivorous phytoplankton 

with a functional response of the fourth type of Holling. The local stability of the mathematical system has also been discussed. 

Furthermore, the global dynamics of the system were analyzed with the help of the Lyapunov function. At the end, theoretical 

results enhanced using numerical simulations.   
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1. INTRODUCTION. 

Economic prosperity and environmental balance are always 

incompatible with interests. The provision of food is one of 

the necessities of life and amenities provided by humans and 

adversely affect the ecological structure of nature. This, 

often, does not lead to the extinction of a kind of life. If we 

plan properly, we can prevent this extinction. Such planning 

must be either by force or by offense. For example, if 

individuals in an area are engaged in a particular activity, this 

causes severe damage to the ecosystem of that area. If 

activity is indispensable, the governing body of the region 

should plan an organizational study that will keep the 

ecosystem a little harmless. These activities harvest, which 

has a strong impact on the dynamic development of the 

population of that area affected by it. The phenomenon of 

harvesting is one of the major and interesting problems from 

an ecological and economic point of view. The exploitation 

of biological resources and the harvesting of habitats are 

usually practiced in the management of fisheries, forestry and 

wildlife. The management of multi-species fisheries needed 

to maintain ecological balance is hampered by the over-

exploitation of many traditional fish stocks and the growing 

interest in harvesting new types of food from the sea. Some 

researchers have studied and analyzed the problem of 

predator-prey interactions under the fixed rate of harvesting 

or fixed quotas of harvest of either species or both at a time. 

For example, Brauer and Soudak [5-8].   

2. Mathematical model formulation 
    Consider the simple prey-predator system with Holling 

type IV functional response which can be written as:  
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   Here x(t) and y(t) represent the densities of prey and 

predator at time t  respectively. While the parameters 0a   

is the intrinsic growth rate of the prey population; 0b  is 

the strength of the specific intracellular competition between 

the prey ; we can explain the parameter 0β  that it is a 

semi-saturation constant in the absence of any inhibitory 

effect; the parameters 0γ   is a direct measure of the 

predator immunity from the prey; the  predator consumer 

consume their food according to Holling type IV of 

functional response, where 0α   is the predation rate on the 

predator; 0e  is the conversion rate of predation into 

higher level species; here 0E
 
is harvesting effort and 

0q0   is the catch ability coefficient. The catch-rate 

function Eq0  is based on the catch-per-unit-effort (CPUE). 

Finally 0h   represent the natural death rate for the 

predator. The initial condition for system (1) may be taken as 

any point in the region  0y0,x:y)(x,R 2  .  

Obviously, the interaction functions in the right hand side of 

system (1) are continuously differentiable functions on R 2
 , 

hence they are Lipschitizian. Therefore the solution of system 

(1) exists and is unique. Further, all the solutions of system 

(1) with non-negative initial condition are uniformly bounded 

as shown in the following theorem. 

Theorem (1): All the solutions of system (1) which initiate in

R 2


 are uniformly bounded.  

Proof. Let ))(),((( tytx be any solution of the system (1) 

with non-negative initial condition )y,(x 00 . According to 

the first equation of system (1) we have  
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Then by solving this differential inequality we obtain that  
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Define the function: yxy)W(x,
e
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So the time derivative of W(t)  along the solution of the 

system (1) 
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Again by solving the above linear differential inequality we 

get  
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Consequently, for t  we have  
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Hence all solution of system (1) enter the region          

0}εanyforεy(t)x(t):Ry(t){((x(t),Ω
h
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e
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■

                          

                                 

2. Existence of fixed points 
     The system (1) have at most three non-negative 

equilibrium points, two of them namely (0,0)F0  , 

,0)(F
b
a

x   always exist. While the existence of other 

equilibrium points is shown in the following: 

       The positive equilibrium point )y,(xFxy

 exists in 

the interior of the first quadrant if and only if there is a 

positive solution to the following set of algebraic nonlinear 

equations:  
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From (2.2a) we have 
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Clearly, 0y if the following condition holds 

       
 bxa  

While 
x , represents the positive root to the following 

equation 

     01

2

2 AxAxAf(x)                                        (3)  

Where 

    EqhA 02  ,   EqheαγA 01  , 

 EqhγβA 00   

So by using Descartes rule of signs, Eq. (3) has either no 

positive root and hence there is no equilibrium point or two 

positive roots depending on the following condition holds: 

      Eqheα 0  

3. The stability analysis 

      In this section the stability (locally as well as globally) 

analysis of the above mentioned fixed points of system (1) 

are investigated analytically.  

     The   vibrational matrix of system (1) at the equilibrium 

point (0,0)F0   can be written as  
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Therefore, the equilibrium point 0F  is a saddle point. 

The variational matrix of system (1) at the equilibrium point 

,0)(F
b
a

x   can be written as        
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Hence, the eigenvalues of xJ  are: 
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Therefore, xF  is locally asymptotically stable if and only if  
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While xF  is saddle point provided that  
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         Finally, the variational matrix of system (1) at the 

positive equilibrium point )y,(xFxy

  in the R2Int.   

can be written as: 
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Note that according to the stability theorem for the two 

dimensional dynamical system,  ),(  yxFxy is 

locally asymptotically stable provided that 

0aT)(JTrace 11xy   ,  0aaDJ 2112xy    

Now since 
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Therefore the positive equilibrium point )y,(xFxy

 of 

system (1) is locally asymptotically stable in R2Int.   under 

the following necessary and sufficient conditions 
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b 2
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Now we will study the continuity of the system (1). It is 

common knowledge that the system remains only if each type 

continues. Mathematically, if the system (1) continues if the 

system is not resolved with the initial positive state of the 

Omega boundary sets at the border levels of its own domain. 

However, biology means that all forms are survivors. In the 

following theory the condition of constancy of the system (1) 

is established using the Gard and Hallam technique [12]. 

Theorem (2). The system (1) uniformly persists provided 

that condition (4b) holds. 

Proof. Consider the following function, 21 pp
yxy)σ(x, 

where 1,2i,pi   undetermined positive constants.  
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Obviously, y)σ(x, is 
1C positive function defined on R 2

 , 

and 0y)σ(x,  , if 0x or 0y . Now since  
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Note that, since (0,0)F0  and ,0)(F
b
a

x  are the only 

possible omega limit sets of the solution of system (1) on the 

boundary of RInt. 2
 , in addition  
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Clearly 0)( 0  E for all sufficiently large positive value 

of 1p with respect to 2p , while 0)(  xE , for all values 

of 
2p under condition (4b).Hence   represents persistence 

function and system (1) is uniformly persistent.            ■ 

Since system (1) may have either two fixed points or no 

equilibrium points in the 2. RInt  of the xyF . The global 

stability of the equilibrium point 
xF  in 2

R  is investigated 

as shown in the following 

4. Global stability of the system 

In this section the global stability of the equilibrium points 

xF in 2
R  is investigated as shown in the following 

theorem. 

Theorem (3). Assume that the equilibrium point 
xF  is 

locally asymptotically stable in the 
2
R , and let the 

following conditions: 
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Hold, then xF  is globally asymptotically stable in the 2
R . 

Proof. Consider the following positive definite function: 

Where
b

a
x 1 . Clearly ,: 2

1 RRU 
 and is a 

1C  

positive definite function, where 1,2)i(,ci   are positive 

constants to be determined. Now, since the derivative of 1U  

along the trajectory of system (2.1) can be written as: 
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Since, we have 
b
ax   then by choosing the positive 

constants as 11 c  and 
e

c 1
2    gives: 
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Therefore, 
01 

dt

dU under conditions (7) hence 1U is 

strictly Lyapunov function. Therefore, xF is globally 

asymptotically stable in the 2
R .         ■ 

5. Numerical analysis 

In this section the global dynamics of system (1) is studied 

numerically. System (1) is solved numerically for different 

sets of parameters and for different sets of initial conditions, 

and then the attracting sets and their trajectory as function of 

time are drown as shown below. Now, for the following set 

of hypothetical parameters 

0.02E0.1,=q

 0.01,=h 0.35,=e 2,= 0.75,= 1,= 0.2,=b 0.25,=a       

0 


    (8) 

The attracting sets along with their time series of system (1) 

are drown in Fig (1). Note that from now onward, in the 

trajectory as function of time figures, we will use the 

following representation: blue color represents the trajectory 

of phytoplankton, green color represents the trajectory of 

zooplankton. 

Clearly, as shown in Fig. (1), system (1) has a globally stable 

positive equilibrium point 0.48) 0.08,(Fxy    in the 

2
R.Int

persists. However, for the parameters values given by Eq. (8) 

with the intrinsic growth rate 0.5   a  , system (1) approaches 

to the periodic dynamics in
2
R.Int , see the following figure.  
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Fig. (1): (a) the solution of system (1) approaches asymptotically to the positive fixed point starting from different initial values for 

the data given by Eq. (8). (b) Trajectory as function of time in (a) starting at (0.85, 0.75). (c) Trajectory as function of time in (a) 

starting at (0.75, 0.65) (d) Trajectory as function of time in (a) starting at (0.65, 0.55). 

 

 

 

           

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

P
o
p
u
la

ti
o
n
s

(b)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

P
o
p
u
la

ti
o
n
s

(c)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(d)

Time

P
o
p
u
la

ti
o
n
s

0 1 2 3 4 5
0

2

4

6

8

10

12
(a)

Prey

P
re

d
a
to

r

 Initial point

(0.65,0.55)

Initial point

(0.85,0.75)
Initial point

(0.75,0.65)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.5

1

1.5

2

2.5

P
o
p
u
la

ti
o
n
s

Time

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(a)

Prey

P
re

d
a
to

r

  Initial point

  (0.65,0.55)

  Initial point

  (0.75,0.65)

   Initial point

   (0.85,0.75)



Sci.Int.(Lahore),30 (5),745-749, 2018  ISSN 1013-5316;CODEN: SINTE 8 749 

September-October 

       
Fig. (2): (a) globally asymptotically stable limit cycle of system (1) starting from different initial values for the data given by Eq. (8) 

with   0.5   a  . (b) Trajectory as function of time in (a) starting at (0.85, 0.75). (c)  Trajectory as function of time in (a) starting at 

(0.75, 0.65) (d) Trajectory as function of time in (a) starting at (0.65, 0.55). 

 

6. DISCUSSION AND CONCLUSION 

In this paper, a mathematical model consisting of a Holling 

type IV phytoplankton- zooplankton model with intra 

specific competition has been studied analytically as well 

as numerically. The condition for the system (1) to be 

uniformly bounded and persistence have been derived. The 

local as well as global stability of the proposed system has 

been studied. The effect of intrinsic growth rate of the 

phytoplankton species on the dynamical behavior of 

system (1) is studied numerically and the trajectories of the 

system are drowned. According to these formats the 

following conclusions are obtained:  

1. For the set of hypothetical parameters values given in 

Eq. (8), system (1) approaches asymptotically to a 

globally asymptotically stable point 

2. |")y,x(Fxy


.|
 

3. As the intrinsic growth rate of the phytoplankton 

decreasing then the system (1)   approaches to an 

asymptotically stable positive equilibrium point, 

otherwise the system has periodic dynamics. So this 

parameter has a stabilizing effect on the system. 
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