ON α -g \tilde{l} - CLOSED SOFT SETS

R.B. Esmaeel¹, A.I. Nasir², and Bayda Atiya Kalaf³

^{1, 2, 3} Department of Mathematics, Ibn Al-Haitham, College of Education

University of Baghdad, IRAQ

hbama75@yahoo.com

ABSTRACT: In this research we will use the notions of soft sets and soft ideals to introduce a new concepts called α -g \tilde{l} -closed soft sets where we studied the most important properties of this concepts. The disconnection was studied by using these sets.

Keywords and phrases: α -g \tilde{I} - closed soft, α -g \tilde{I} - closed soft disconnection, α -closed soft disconnection, Soft ideals

1. INTRODUCTION:

Soft sets have been studied by Molodtsov [4]. If \mathcal{X} is any set, B is a set of parameters and $\beta \subseteq B$. A pair (R, β) symbolizes him by R_{\u03b2} is said a soft set on \mathcal{X} , such that R is a function; R: B \rightarrow P (\mathcal{X}). The collection of each soft sets on \mathcal{X} symbolizes him by $SS(\mathcal{X})_{B}$.

The union of soft sets [3], [5] (R, β) and (Q, z) on \boldsymbol{X}

denoted by $(Q, B) \widetilde{\sqcup} (R, B) =$

- R(q) if $q \in \beta z_{q}$
- Q(a) if $a \in z \beta$,

 $\mathbb{R}(\mathfrak{q}) \cup \mathbb{Q}(\mathfrak{q})$ if $\mathfrak{q} \in \mathcal{B} \cap \mathfrak{z}_{\mathfrak{c}}$

Shabir and Naz [6] introduce soft topological spaces. $T \subseteq SS(\mathcal{X})_B$ is said to be a soft topology on \mathcal{X} if :

i. $\tilde{X}, \tilde{\emptyset} \in \mathbb{T}$, such that $\tilde{\emptyset}(q) = \emptyset$ and $\tilde{X}(q) = \mathcal{X} \forall q \in \mathbb{B}$.

ii. The intersection of two soft sets in T is an in T also.

iii. The union of number of soft sets in T is an in T also.

Every set in T is called open soft sets, the closed soft set in \mathcal{X} is a complement of open soft set. The closure and interior of soft set is symbolizes by *cl* and *int* resp.,

If $\tilde{I} \subseteq SS(\mathcal{X})_{B}$ then \tilde{I} is said to be a soft ideal on \mathcal{X} with the parameters B then, [1],[2]:

i. If (Q,B), (R, B) $\in \tilde{I}$ then, (Q, B) $\tilde{\sqcup}$ (R, B) $\in \tilde{I}$,

ii. If $(\mathbf{R}, \mathbf{B}) \in \tilde{I}$, and $(\mathbf{Q}, \mathbf{B}) \subseteq (\mathbf{R}, \mathbf{B})$ then, $(\mathbf{Q}, \mathbf{B}) \in \tilde{I}$.

Any soft set (R, B) is called α -soft set if (R, B) \subseteq *int*(*cl*(*int*(R, B))),the collection of each α -soft set symbolizes by T_{α} [2],[5].

2. α-gĨ- closed soft set

Definition 2.1: Let $(\mathcal{X}, \mathcal{T}, \mathcal{B}, \tilde{I})$ be a soft ideal topological space. A soft subset $(\mathcal{R}, \mathcal{B})$ of a space $(\mathcal{X}, \mathcal{T}, \mathcal{B}, \tilde{I})$ is said to be α -g- closed soft set via ideal symbolizes by α -g \tilde{I} -closed soft set if cl_{α} (\mathcal{R}, \mathcal{B})- (\mathcal{Q}, \mathcal{B}) $\in \tilde{I}$ whenever (\mathcal{R}, \mathcal{B})- (\mathcal{Q}, \mathcal{B}) $\in \tilde{I}$ and (\mathcal{Q}, \mathcal{B}) is an α -open soft set. The collection of α -g \tilde{I} -closed soft sets is symbolizes by α -g \tilde{I} - $CS(\mathcal{X})_{\mathcal{B}}$.

The complement of α -g \tilde{I} - closed soft sets is called α -g \tilde{I} open soft sets and the collection of α -g \tilde{I} - open soft sets is symbolizes by α -g \tilde{I} - $OS(\boldsymbol{X})$ _B.

Remark 2.2: Let $(\mathcal{X}, T, B, \tilde{I})$ be a soft topological space. Then,

i. Each closed soft is α -g \tilde{I} - closed soft set.

ii. Each α -closed soft is α -g \tilde{I} - closed soft set.

Example 2.3: Suppose that $(\boldsymbol{X}, \boldsymbol{T}, \boldsymbol{B}, \tilde{I})$ is a soft

topological space ; $\mathbf{X} = \{\hat{a}, \hat{e}, \hat{o}\}, \mathbf{B} = \{\mu_1, \mu_2, \mu_3\}, \tilde{I} = \{\tilde{\emptyset}, F: \mathbf{B} \rightarrow \mathbf{P}(\mathbf{X}) \text{ such that } \mathbf{F}(\mu) = \{\hat{o}\} \text{ for each } \mu \in \mathbf{B} \} \text{ and } \mathbf{T} = \{\tilde{X}, \tilde{\theta}, F_1: \mathbf{B} \rightarrow \mathbf{P}(\mathbf{X}) \text{ such that } \mathbf{F}_1(\mu) = \{\hat{a}\} \text{ for each } \mu \in \mathbf{B}, F_2: \mathbf{B} \}$

 $\rightarrow P(\mathbf{X})$ such that $F_2(\mu) = \{\hat{e}, \hat{o}\}$ for each $\mu \in \mathbb{B}\}$. Then;

A soft set (F, B); F: $B \to P(X)$ such that F (μ) = {ê} for every $\mu \in B$, is α -g \tilde{I} - closed soft not (closed and α -closed) soft set.

Proposition 2.4: The union of any two α -g \tilde{I} - closed soft sets is α -g \tilde{I} - closed soft set also.

Proof: Let (F₁,B) and (F₂,B) are two α -g \tilde{l} - closed soft sets and (U,B) be an α -open soft set such that ((F₁,B) \square (F₂,B)) – (U,B) $\in \tilde{l}$, this implies that:

 $((F_1, B) - (U,B)) \cong ((F_1, B) \cong (F_2, B)) - (U, B) \in \tilde{I} \text{ and } ((F_2, B) - (U,B)) \cong ((F_1, B) \cong (F_2, B)) - (U,B) \in \tilde{I}, \text{ then } cl_a$

 $(F_1,B) - (U,B) \in \tilde{I}$ and $cl_\alpha (F_2, B) - (U,B) \in \tilde{I}$, so $cl_\alpha (F_1, B) - (U,B) \cong cl_\alpha (F_2, B) - (U,B) \in \tilde{I}$. Hence $cl\alpha ((F_1, B) \cong (F_2, B)) - (U, B) \in \tilde{I}$, therefore $(F_1, B) \cong (F_2, B)$ is α -g \tilde{I} - closed soft set.

Corollary 2.5: The intersection of any two α -g \tilde{I} - open soft sets is α -g \tilde{I} - open soft set also.

Remark 2.6: The union of any family of α -g \tilde{I} - closed soft sets needs not to be α -g \tilde{I} - closed soft set.

Example 2.7: Let $(\mathcal{X}, T, B, \tilde{I})$ be a soft topological space; $\mathcal{X}=B= \&$ (the set of natural numbers), $\tilde{I}= \{\widetilde{\emptyset}, F_i: B \rightarrow P(X)$ such that $F_i(e)= W_i$ for each $e \in B$ such that $W_i \subseteq E^+$ (the set of even natural numbers)} and $T = \{\widetilde{X}, \widetilde{\emptyset}, F_i: B \rightarrow P(\mathcal{X})\}$

such that $F_i(e) = U_i$ for each $e \in B$, such that $(\mathcal{X}-U_i)$ is finite set for all $i \in \aleph$ } = T_{α} . Then;

{(Q_i, B): Q_i: B \rightarrow P(\mathcal{X}) such that Q_i (e) = {2i} for all e \in B and i \in **N**} is a family of α -g \tilde{I} - closed soft sets, but $\widetilde{\sqcup}(Q_i, B)$ = (Q, B) such that Q: B \rightarrow P(X), Q (e)= E⁺ for each e \in E not α -g \tilde{I} - closed soft set since, there exists α -open soft set (U, B); U: B \rightarrow P(\mathcal{X}), U (e)= X-{1} for each e \in B such that (Q, B)- (U, B) $\in \tilde{I}$ but, $cl_{\alpha}(Q, B)$ - (U, B)= \tilde{X} - (U, B) = (V, B) $\notin \tilde{I}$, where V: B \rightarrow P(\mathcal{X}) such that V (e) = {1} for all e \in B.

Proposition 2.8: Any soft set (A, B) of a soft ideal topological space $(\mathcal{X}, T, B, \tilde{I})$ is α -g \tilde{I} -open soft (R, B) - int_{α} $(A, B) \in \tilde{I}$ whenever (R, B) - $(A, B) \in \tilde{I}$ and (R, E) is α -closed soft set.

Proof:) Let (A, B) be any α -g \tilde{I} -open soft and (R, B) - (A, B) $\in \tilde{I}$ where (R, B) is an α -closed soft set.

 $((\mathsf{R}, \mathsf{B}) - (\mathsf{A}, \mathsf{B}))^{c} = (\mathsf{A}, \mathsf{B})^{c} - (\mathsf{R}, \mathsf{B})^{c} = (\mathsf{A}^{c}, \mathsf{B}) - (\mathsf{R}^{c}, \mathsf{B})$ $\in \tilde{I}, \text{ and since } (\mathsf{A}^{c}, \mathsf{B}) \text{ is } \alpha \text{-g}\tilde{I} \text{- closed soft set, then } cl_{\alpha} (\mathsf{A}^{c}, \mathsf{B})$ $= (\mathsf{R}^{c}, \mathsf{B}) = (\mathsf{int}_{\alpha} (\mathsf{A}^{c}, \mathsf{B})^{c})^{c} - (\mathsf{R}^{c}, \mathsf{B}) = (\mathsf{int}_{\alpha} (\mathsf{A}, \mathsf{B}))^{c} - (\mathsf{R}^{c}, \mathsf{B}) = (\mathsf{int}_{\alpha} (\mathsf{A}, \mathsf{B}))^{c} - (\mathsf{R}^{c}, \mathsf{B}) = (\mathsf{R}, \mathsf{B}) - \mathsf{int}_{\alpha} (\mathsf{A}, \mathsf{B}) \in \tilde{I}.$

) Let (R, B) - int_a $(A, B) \in \tilde{I}$ whenever (R, B) - $(A, B) \in \tilde{I}$ and (R, B) is an α -closed soft set.

 $(\mathsf{R}, \mathsf{B}) - \operatorname{int}_{\alpha}(\mathsf{A}, \mathsf{B}) = (\operatorname{int}_{\alpha}(\mathsf{A}, \mathsf{B}))^{c} - (\mathsf{R}, \mathsf{B})^{c} = cl_{\alpha}(\mathsf{A}^{c}, \mathsf{B}) - (\mathsf{R}^{c}, \mathsf{B}) \in \tilde{I}$, whenever

 $(R, B) - (A, B) = ((A, B))^{c} - (R, B)^{c} = (A^{c}, B) - (R^{c}, B) \in \tilde{I}$ and (R^{c}, B) is an α -open soft set. So (A^{c}, B) is α -g \tilde{I} - closed soft set. Hence $(A, B) \alpha$ -g \tilde{I} - open soft set.

Remark 2.9: If for every α -closed soft set (\mathbb{R} , \mathbb{B}) $\in \tilde{I}$, then α -g \tilde{I} - $CS(\mathcal{X})_{\mathbb{B}}$ = $SS(\mathcal{X})_{\mathbb{B}}$.

Proposition 2.10: If $(\mathcal{X}, T, B, \tilde{I})$ is a soft topological space and $x_0 \in X$; $T = {\tilde{X}, \tilde{\emptyset}, U: B \to P(\mathcal{X}) \text{ such that } U(\mu) = {x_0} }$ for each $\mu \in B$ }, then :

- i. If $\tilde{I}=\{\widetilde{\emptyset}, V_i: B \to P(X) \text{ such that } V_i(\mu) = W_i \text{ for each } \mu \in B, x_0 \notin W_i \text{ and } i \in \Lambda\}$. Then α -g \tilde{I} $CS(\mathcal{X})_B = SS(\mathcal{X})_B$.
- ii. If *Ĩ*= {Ø̃}, then α-g*Ĩ* CS(𝔅) _B = {V_i: B → P(𝔅) such that V_i (μ) = W_i for each μ ∈ B, x₀ ∉ W_i and i∈ ∧}. *Proof*:
- i. Let (A, B) be a soft set. Now, either $x_0 \in A(\mu)$ for some $\mu \in B$ or $x_0 \notin A(\mu)$ for all $\mu \in B$, if $x_0 \in A(\mu)$ for some $\mu \in B$ and $(A, B) (U,B) \in \tilde{I}$ such that $(U, B) \in \tau = \tau_a$ then, $cl_a(A, B) (U,B) = \tilde{X} (U, B) \in \tilde{I}$. If $x_0 \notin A(\mu)$ for all $\mu \in B$ then, $cl_a(A, B) (U,B) = (A, B) (U,B) \in \tilde{I}$.
- ii. For any soft set (A, B), if $x_0 \in A(\mu)$ for some $\mu \in B$ and (A, B) – (U,B)= $\widetilde{\emptyset}$ such that (U, B) $\in \tau_a$, this implies (A, B) \cong (U,B), then $cl_a(A, B) - (U,B) = \widetilde{X} - (U, B)$ $\notin \widetilde{I}$. If $x_0 \notin A(\mu)$ for all $\mu \in B$ then, $cl_a(A, B) - (U, B) =$ (A, B) – (U,B) = $\widetilde{\emptyset} \in \widetilde{I}$.

3. Soft Disconnection Sets.

Definition 3.1: If $(\mathcal{X}, T, B, \tilde{I})$ is a soft topological spaces and (P, B), (R, B) are two non-null α -closed soft sets then, $(P, B) \stackrel{\frown}{\sqcup} (R, B)$ is called α -closed soft disconnection sets in $(\mathcal{X}, T, B, \tilde{I})$ if and only if $(P, B) \stackrel{\frown}{\sqcup} (R, B) = \tilde{X}$ and $(P, B) \stackrel{\frown}{\sqcap}$ $(R, B) = \tilde{\emptyset}$.

Definition 3.2: Let $(\mathcal{X}, T, B, \tilde{I})$ be a soft topological spaces and (P, B), (R, B) are two non-null α -g \tilde{I} -closed soft sets then, (P, B) $\widetilde{\sqcup}$ (R, B) is called α -g \tilde{I} -closed soft disconnection sets in $(\mathcal{X}, T, B, \tilde{I})$ if and only if (P, B) $\widetilde{\sqcup}$ (R,

 $\mathbf{B} = \tilde{X} \text{ and } (\mathbf{P}, \mathbf{B}) \ \widetilde{\sqcap} \ (\mathbf{R}, \mathbf{B}) = \widetilde{\emptyset}.$

Definition 3.3: The soft topological space $(\mathcal{X}, T, B, \tilde{I})$ is said to be (resp., α -g \tilde{I} -closed, α -closed) soft disconnection if and only if there is (P, B), (R, B) are two (resp., α -g \tilde{I} -closed, α -closed) disconnection sets.

Remark 3.4: Every α -closed soft disconnection sets is α -g \tilde{I} -closed soft disconnection sets.

Example 3.5: Suppose that $(\mathbf{X}, T, B, \tilde{I})$ is a soft

topological space, where $\boldsymbol{\mathcal{X}} = \{\hat{a}, \hat{e}, \hat{o}\}, \mathbf{B} = \{\mu_1, \mu_2, \mu_3\}, \tilde{I} = SS(\boldsymbol{\mathcal{X}})_{\mathrm{B}} \text{ and } \boldsymbol{T} = \{\tilde{X}, \tilde{\boldsymbol{\mathcal{Q}}}\} = \boldsymbol{T}_{\alpha} \text{ . Then;}$

The soft sets (P, B), (R, B) where, {P: $\mathbb{B} \to \mathbb{P}(\mathcal{X})$ such that P (μ) = { \hat{a} } for every $\mu \in \mathbb{B}$ } and {R: $\mathbb{B} \to \mathbb{P}(\mathcal{X})$ such that R (μ) = { \hat{e} , \hat{o} } for every $\mu \in \mathbb{B}$ } are two α -g \tilde{I} -closed soft disconnection sets in (\mathcal{X} , T, B, \tilde{I}) not α -closed soft set. **Definition 3.6:** If (\mathcal{X} , T, B, \tilde{I}) is a soft topological spaces, (Q, B) $\cong SS(\mathcal{X})_{B}$ and (P, B), (R, B) are two non-null (resp., α -g \tilde{I} -closed, α -closed) soft sets then, (P, B) $\widetilde{\sqcup}$ (R, E) is

said to be (resp., α -g \tilde{I} -closed , α -closed) soft disconnection sets in (Q, B) if and only if satisfy the following:

- 1) (Q, B) $\widetilde{\sqcap}$ (P, B) $\neq \widetilde{\emptyset}$.
- 1) (Q, B) $\widetilde{\sqcap}$ (R, B) $\neq \widetilde{\emptyset}$.

2) $((Q, B) \ \widetilde{\sqcap} (P, B)) \ \widetilde{\sqcap} ((Q, B) \ \widetilde{\sqcap} (R, B)) = \widetilde{\emptyset}.$

3) $((Q, B) \stackrel{\sim}{\sqcap} (P, B)) \stackrel{\sim}{\sqcup} ((Q, B) \stackrel{\sim}{\sqcap} (R, B)) = (Q, B).$

It's clear that every α -closed soft disconnection sets in (Q, B) is α -g \tilde{I} -closed soft disconnection sets not conversely, by example 3.4 if we consider that Q (μ) = { \hat{a} , \hat{e} } for every $\mu \in B$.

Definition 3.7: A soft topological space $(\mathcal{X}, \mathcal{T}, \mathcal{B}, \tilde{I})$ is called (resp., α -g \tilde{I} -closed, α -closed) soft totally disconnection if and only if for every two elements $x, \eta \in \mathcal{X}$ there is (P, B), (R, B) are two (resp., α -g \tilde{I} -closed, α -closed) disconnection sets such that $x \in (P, B)$ and $\eta \in (R, B)$.

Proposition 3.8:

- i. Each α -closed soft totally disconnection is an α -closed soft disconnection space.
- ii. Each α -g \tilde{I} -closed soft totally disconnection is an α -g \tilde{I} -closed soft disconnection space.
- iii. Each α -closed soft totally disconnection is an α $g\tilde{I}$ closed soft totally disconnection space.

Proof: i. and ii.

For any (resp., α -closed, α -g \tilde{I} -closed) soft totally disconnection space there is (P, B), (R, B) are two (resp., α closed, α -g \tilde{I} -closed) disconnection sets both contain an element for each different elements in \mathcal{X} . So it's (resp., α closed, α -g \tilde{I} -closed) soft disconnection space.

iii. The proof is clear by using remark 2.2.

Example 3.9:

Suppose that $(\mathcal{X}, \mathbb{T}, \mathbb{B}, \tilde{I})$ is a soft topological space; $\mathcal{X} = \{\hat{a}, \hat{e}, \hat{o}\}, \mathbb{B} = \{\mu_1, \mu_2, \mu_3\}, \tilde{I} = \{\tilde{\emptyset}\} \text{ and } \mathbb{T} = \{\tilde{X}, \tilde{\emptyset}, \mathbb{F}_1: \mathbb{B} \to \mathbb{P}(\mathcal{X}) \text{ such that } \mathbb{F}_1(\mu) = \{\hat{a}\} \text{ for each } \mu \in \mathbb{B}, \mathbb{F}_2: \mathbb{B} \to \mathbb{P}(\mathcal{X}) \text{ such that } \mathbb{F}_2(\mu) = \{\hat{e}, \hat{o}\} \text{ for each } \mu \in \mathbb{B}\} = \mathbb{T}_{\alpha}$. It's clear that $(\mathcal{X}, \mathbb{T}, \mathbb{B}, \tilde{I}) \alpha$ - closed soft disconnection space and α -g \tilde{I} - $CS(\mathcal{X})_{\mathbb{B}} = SS(\mathbb{X})_{\mathbb{B}}$. So, $(\mathcal{X}, \mathbb{T}, \mathbb{B}, \tilde{I})$ is α -g \tilde{I} - closed soft totally disconnection space not α -closed soft totally disconnection space not α -closed soft totally disconnection space $(\mathbb{P}, \mathbb{B}), (\mathbb{R}, \mathbb{B})$ such that $\hat{e} \in (\mathbb{P}, \mathbb{B})$ and $\hat{o} \in (\mathbb{R}, \mathbb{B})$.

REFERENCES:

- [1] R.B. Esmaeel and A.I. Nasir, Some properties of -⁷Isemi open soft sets with respect to soft ideals, International Journal of Pure and Applied Mathematics, 4, 545-561(2016).
- [2] A.Kandil, O. A. E. Tantawy, S. A. El-Sheikh and A. M. Abd El-latif, Soft ideal theory, Soft local function and generated soft topological spaces. To appear in the journal Applied Mathematics and Information Sciences.
- [3] P. K. Maji,R. Biswas and A. R. Roy, Soft set theory, Computers andMathematics with Applications, 45, 555-562 (2003).
 - [4] D. A. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37, 19-31 (1999).

- [5] A.A. Nasef, A. E. Radwan, F. A. Ibrahem and R. B. Esmaeel, Soft α -compactness via soft ideals, Ready to be published in Journal of Advances in Mathematics, in June-2016.
- [6] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61, 1786-1799 (2011).
- [7] I. Zorlutuna, M. Akdag, W.K. Min and S. Atmaca, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3, 171-185 (2012).