A COMPLEX OF CHARACTERISTIC ZERO IN THE CASE OF THE PARTITION $(8,7,3)$

Haytham Razooki Hassan ${ }^{1}$, Niran Sabah Jasim ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, Al-Mustansiriyah University
haythamhassaan@yahoo.com
${ }^{2}$ Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad sabahniran@gmail.com

ABSTRACT:: This paper survey the complex of characteristic zero in the case of the partition $(8,7,3)$ by employ the notion of mapping Cone and the concepts divided power of the place polarization, diagrams and Capelli identities

Key Words: Divided power algebra, resolution of Weyl module, place polarization, mapping Cone.

1. INTRODUCTION:

Let \mathcal{R} be abelian ring with, \mathcal{F} be a free \mathcal{R}-module and $\mathcal{D}_{i} \mathcal{F}$ be the divided power algebra of degree i. Consider the maps

$$
\begin{aligned}
& \partial_{21}^{(f)}: \mathcal{D}_{\mathfrak{p}+\mathfrak{f}} \mathcal{F} \otimes \mathcal{D}_{q-\mathfrak{f}} \mathcal{F} \otimes \mathcal{D}_{r} \mathcal{F} \longrightarrow \mathcal{D}_{\mathfrak{p}} \mathcal{F} \otimes \mathcal{D}_{q} \mathcal{F} \otimes \\
& \mathcal{D}_{r} \mathcal{F},
\end{aligned}
$$

this map is a place polarization from place one $\left(\mathcal{D}_{\mathfrak{p}+\mathfrak{f}} \mathcal{F}\right)$ to place two $\left(\mathcal{D}_{q-f} \mathcal{F}\right)$ and
$\partial_{32}^{(f)}: \mathcal{D}_{\mathfrak{p}} \mathcal{F} \otimes \mathcal{D}_{q+\mathfrak{f}} \mathcal{F} \otimes \mathcal{D}_{r-f} \mathcal{F} \longrightarrow \mathcal{D}_{\mathfrak{p}} \mathcal{F} \otimes \mathcal{D}_{q} \mathcal{F} \otimes$ $\mathcal{D}_{r} \mathcal{F}$,
this map is a place polarization from place two ($\left.\mathcal{D}_{q+\ell} \mathcal{F}\right)$
The complex of characteristic zero in the case of partitions $(2,2,2),(3,3,3)$ and $(4,4,3)$ are survey by authors in [1], [2] and [3] while the authors in [4], [5], [6] and [7] exhibit the complex of characteristic zero as a diagram in the case of partitions $(3,3,2),(6,6,3),(6,5,3)$ and $(7,6,3)$ by stratify the notion of mapping Cone as in [8].

The authors in [9] exhibit the terms and the exactness of the Weyl resolution in the case of partition $(8,7)$.

In this work we discussion the complex of characteristic zero as a diagram in the case of partition $(8,7,3)$ by employing the notion of mapping Cone in the last section after we illustrate the terms of characteristic zero complex in the same partition in the later section. The map $\partial_{i j}^{(f)}$ which mean the divided power of the place polarization $\partial_{i j}$ where j must be less than i with its Capelli identities [10], throughout this paper we only used the pursue identities
$\partial_{21}^{(u)} \circ \partial_{32}^{(\mathcal{V})}=\sum_{e \geq 0}(-1)^{e} \partial_{32}^{(\mathcal{V}-e)} \circ \partial_{21}^{(u-e)} \circ \partial_{31}^{(e)}$
$\partial_{32}^{(\mathcal{V})} \circ \partial_{21}^{(u)}=\sum_{e \geq 0} \partial_{21}^{(u-e)} \circ \partial_{32}^{(\mathcal{V}-e)} \circ \partial_{31}^{(e)}$
$\partial_{21}^{(1)} \circ \partial_{31}^{(1)}=\partial_{31}^{(1)} \circ \partial_{21}^{(1)}$
$\partial_{32}^{(1)} \circ \partial_{31}^{(1)}=\partial_{31}^{(1)} \circ \partial_{32}^{(1)}$
$\partial_{32} \circ \partial_{31}=\partial_{31} \circ \partial_{32}$ (1.4)
Where $\partial_{i j}$ is the place polarization from place j to place i.

2. The Terms of Characteristic Zero Complex in The Case of Partition $(8,7,3)$

The positions of the terms of the complex are determined by the length of the permutation to which they correspond in [1] and [11].

In the case of the partition $(8,7,3)$ we reign the pursue matrix:

$$
\left[\begin{array}{ccc}
\mathcal{D}_{8} \mathcal{F} & \mathcal{D}_{6} \mathcal{F} & \mathcal{D}_{1} \mathcal{F} \\
\mathcal{D}_{9} \mathcal{F} & \mathcal{D}_{7} \mathcal{F} & \mathcal{D}_{2} \mathcal{F} \\
\mathcal{D}_{10} \mathcal{F} & \mathcal{D}_{8} \mathcal{F} & \mathcal{D}_{3} \mathcal{F}
\end{array}\right]
$$

Then the characteristic zero complexes have the correspondence between its terms as pursues:

$\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \leftrightarrow$ identity
$\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \leftrightarrow(12)$
$\mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \leftrightarrow(23)$
$\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \leftrightarrow(123)$
$\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$

Thus the characteristic zero resolution in the case of the partition $(8,7,3)$ has the formulation:-

3. The Diagram for The Complex of Characteristic Zero in The Case of Partition $(8,7,3)$

See the pursue diagram:

If we acquaint
$d_{1}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$ as
$d_{1}(v)=\partial_{32}(v) \quad ;$ where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{1}$
$h_{1}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$ as
$h_{1}(v)=\partial_{21}(v) \quad ;$ where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{7} \otimes \mathcal{D}_{1}$
And
$h_{2}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$ as
$h_{2}(v)=\partial_{21}^{(2)}(v) \quad ;$ where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{2}$
Now, we reign to acquaint the map
$\mathcal{g}_{1}: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$
Which fabricate the diagram Q commutative, i.e.

$$
g_{1} \circ h_{1}=h_{2} \circ d_{1}
$$

Implies that
$g_{1} \circ \partial_{21}=\partial_{21}^{(2)} \circ \partial_{32}$
By employing Capelli identity (1.1) we gain:
$\partial_{21}^{(2)} \circ \partial_{32}=\partial_{32} \circ \partial_{21}^{(2)}-\partial_{31} \circ \partial_{21}$

$$
=\left(\frac{1}{2} \partial_{32} \circ \partial_{21}-\partial_{31}\right) \circ \partial_{21}
$$

Thus, $g_{1}=\frac{1}{2} \partial_{32} \circ \partial_{21}-\partial_{31}$
If we acquaint the map
$\mathcal{g}_{2}: \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ as

$$
g_{2}(v)=\partial_{32}(v) \quad ; \text { where } v \in \mathcal{D}_{8} \otimes \mathcal{D}_{8} \otimes \mathcal{D}_{2}
$$

And
$h_{3}: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ as $h_{3}(v)=\partial_{21}(v) \quad ;$ where $v \in \mathcal{D}_{10} \otimes \mathcal{D}_{6} \otimes \mathcal{D}_{2}$

We require acquainting d_{2} to fabricate the diagram \mathcal{T} commute:
$d_{2}: \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$ such that
$h_{3} \circ d_{2}=g_{2} \circ h_{2} \quad$ i.e. $\quad \partial_{21} \circ d_{2}=\partial_{32} \circ \partial_{21}^{(2)}$
By employing Capelli identity (1.2) we gain:
And
$\partial_{32} \circ \partial_{21}^{(2)}=\partial_{21}^{(2)} \circ \partial_{32}+\partial_{21} \circ \partial_{31}$
$=\partial_{21} \circ\left(\frac{1}{2} \partial_{21} \circ \partial_{32}+\partial_{31}\right)$
Thus, $d_{2}=\frac{1}{2} \partial_{21} \circ \partial_{32}+\partial_{31}$
Now consider the pursue diagram:
$\mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{d_{1}} \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \xrightarrow{d_{2}} \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$

$\mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \xrightarrow{g_{1}} \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \xrightarrow{g_{2}} \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}$

Acquaint $\quad w: \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F} \longrightarrow \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes$ $\mathcal{D}_{3} \mathcal{F}$ by

$$
w(v)=\partial_{32}^{(2)}(v) \quad ; \text { where } v \in \mathcal{D}_{9} \otimes \mathcal{D}_{8} \otimes \mathcal{D}_{1}
$$

Proposition (3.1):

The diagram \mathcal{H} is commutative.
Proof:
To prove the diagram \mathcal{H} is commutative, we require proving

$$
\begin{aligned}
& \quad d_{2} \circ d_{1}=w \circ h_{1} \\
& d_{2} \circ d_{1}=\left(\frac{1}{2} \partial_{21} \circ \partial_{32}+\partial_{31}\right) \circ \partial_{32} \\
& =\partial_{21} \circ \partial_{32}^{(2)}+\partial_{31} \circ \partial_{32} \\
& =\partial_{32}^{(2)} \circ \partial_{21}-\partial_{32} \circ \partial_{31}+\partial_{31} \circ \partial_{32} \\
& =\partial_{32}^{(2)} \circ \partial_{21} \\
& =w \circ h_{1}
\end{aligned}
$$

Proposition (3.2):

The diagram \mathcal{N} is commutative.

Proof:

$g_{2} \circ g_{1}=\partial_{32} \circ\left(\frac{1}{2} \partial_{32} \circ \partial_{21}-\partial_{31}\right)$
$=\partial_{32}^{(2)} \circ \partial_{21}-\partial_{32} \circ \partial_{31}$
$=\partial_{21} \circ \partial_{32}^{(2)}+\partial_{32} \circ \partial_{31}-\partial_{32} \circ \partial_{31}$
$=\partial_{21} \circ \partial_{32}^{(2)}$
$=h_{3} \circ w$
Eventually, we acquaint the maps σ_{1}, σ_{2} and σ_{3} where:

- $\sigma_{3}(x)=\left(d_{1}(x), h_{1}(x)\right) ; \forall x \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$
- $\sigma_{2}\left(\left(x_{1}, x_{2}\right)\right)=\left(d_{2}\left(x_{1}\right)-w\left(x_{2}\right), g_{1}\left(x_{2}\right)-h_{2}\left(x_{1}\right)\right)$; $\forall x \in \mathcal{D}_{10} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F} \oplus \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{1} \mathcal{F}$
- $\sigma_{1}\left(\left(x_{1}, x_{2}\right)\right)=\left(h_{3}\left(x_{1}\right)+g_{2}\left(x_{2}\right)\right)$;
$\forall x \in \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \oplus \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}$
Where

and

$$
\sigma_{1}: \begin{aligned}
& \mathcal{D}_{9} \mathcal{F} \otimes \mathcal{D}_{6} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F} \\
& \\
& \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{2} \mathcal{F}
\end{aligned} \longrightarrow \mathcal{D}_{8} \mathcal{F} \otimes \mathcal{D}_{7} \mathcal{F} \otimes \mathcal{D}_{3} \mathcal{F}
$$

Proposition (3.3):

Is complex.

Proof:

From the acquaint, it is known that ∂_{21} and ∂_{32} are injective [12], then we get σ_{3} is injective by Capelli identities (1.1-1.4).

Now
$\left(\sigma_{2} \circ \sigma_{3}\right)(x)=\sigma_{2}\left(d_{1}(x), h_{1}(x)\right)$
$=\sigma_{2}\left(\partial_{32}(x), \partial_{21}(x)\right)$
$=\left(d_{2}\left(\partial_{32}(x)\right)-w\left(\partial_{21}(x)\right), g_{1}\left(\partial_{21}(x)\right)-h_{2}\left(\partial_{32}(x)\right)\right)$
$d_{2}\left(\partial_{32}(x)\right)-w\left(\partial_{21}(x)\right)$
$=\left(\frac{1}{2} \partial_{21} \circ \partial_{32}+\partial_{31}\right) \circ \partial_{32}(x)-\partial_{32}^{(2)} \circ \partial_{21}(x)$
$=\left(\partial_{21} \circ \partial_{32}^{(2)}+\partial_{31} \circ \partial_{32}-\partial_{32}^{(2)} \circ \partial_{21}\right)(x)$
$=\left(\partial_{32}^{(2)} \circ \partial_{21}-\partial_{32} \circ \partial_{31}+\partial_{31} \circ \partial_{32}-\partial_{32}^{(2)} \circ \partial_{21}\right)(x)$
$=0$

$$
\begin{aligned}
& g_{1}\left(\partial_{21}(x)\right)-h_{2}\left(\partial_{32}(x)\right) \\
& =\left(\frac{1}{2} \partial_{32} \circ \partial_{21}-\partial_{31}\right) \circ \partial_{21}(x)-\partial_{21}^{(2)} \circ \partial_{32}(x) \\
& =\left(\partial_{32} \circ \partial_{21}^{(2)}-\partial_{31} \circ \partial_{21}-\partial_{21}^{(2)} \circ \partial_{32}\right)(x) \\
& =\left(\partial_{21}^{(2)} \circ \partial_{32}+\partial_{21} \circ \partial_{31}-\partial_{31} \circ \partial_{21}-\partial_{21}^{(2)} \circ \partial_{32}\right)(x) \\
& =0
\end{aligned}
$$

We reign $\left(\sigma_{2} \circ \sigma_{3}\right)(x)=0$
And

$$
\begin{aligned}
& \left(\sigma_{1} \circ \sigma_{2}\right)\left(x_{1}, x_{2}\right)=\sigma_{1}\left(d_{2}\left(x_{1}\right)-w\left(x_{2}\right), g_{1}\left(x_{2}\right)-h_{2}\left(x_{1}\right)\right) \\
= & \sigma_{1}\left(\left(\frac{1}{2} \partial_{21} \circ \partial_{32}+\partial_{31}\right)\left(x_{1}\right)-\partial_{32}^{(2)}\left(x_{2}\right),\left(\frac{1}{2} \partial_{32} \circ \partial_{21}-\right.\right. \\
& \left.\left.\partial_{31}\right)\left(x_{2}\right)-\partial_{21}^{(2)}\left(x_{1}\right)\right) \\
= & \left.\partial_{21} \circ\left(\frac{1}{2} \partial_{21} \circ \partial_{32}+\partial_{31}\right)\left(x_{1}\right)-\partial_{32}^{(2)}\left(x_{2}\right)\right)+\partial_{32} \circ \\
& \left(\left(\frac{1}{2} \partial_{32} \circ \partial_{21}-\partial_{31}\right)\left(x_{2}\right)-\partial_{21}^{(2)}\left(x_{1}\right)\right) \\
= & \left(\partial_{21}^{(2)} \circ \partial_{32}+\partial_{21} \circ \partial_{31}-\partial_{32} \circ \partial_{21}^{(2)}\right)\left(x_{1}\right)+ \\
& \left(\partial_{32}^{(2)} \circ \partial_{21}-\partial_{32} \circ \partial_{31}-\partial_{21} \circ \partial_{32}^{(2)}\right)\left(x_{2}\right) \\
= & \left(\partial_{32} \circ \partial_{21}^{(2)}-\partial_{21} \circ \partial_{31}+\partial_{21} \circ \partial_{31}-\partial_{32} \circ \partial_{21}^{(2)}\right)\left(x_{1}\right)+ \\
& \left(\partial_{32}^{(2)} \circ \partial_{21}+\partial_{32} \circ \partial_{31}-\partial_{32} \circ \partial_{31}-\partial_{21} \circ \partial_{32}^{(2)}\right)\left(x_{2}\right) \\
= & 0
\end{aligned}
$$

July-August

REFERENCES:

1. David A.B., A characteristic-free realizations of the Giambelli and Jacoby-Trudi determinatal identities, proc. of K.I.T. workshop on Algebra and Topology, Springer-Verlag, 1986.
2. Haytham R.H., Application of the characteristic-free resolution of Weyl Module to the Lascoux resolution in the case ($3,3,3$), Ph. D. thesis, Universita di Roma "Tor Vergata", 2006.
3. Haytham R.H., The Reduction of Resolution of Weyl Module From Characteristic-Free Resolution in Case (4,4,3), Ibn Al-Haitham Journal for Pure and Applied Science; Vol.25(3), pp.341-355, 2012.
4. Haytham R.H. and Alaa O.A., Complex of Lascoux in Partition (3,3,2), Ibn Al-Haitham Journal for Pure and Applied Science, Vol. 28 (1), pp. 171-178, 2015.
5. Haytham R.H. and Mays M.M., Complex of Lascoux in Partition $(6,6,3)$, International Journal of Engineering Research And Management (IJERM), Vol.2, pp.15-17, 2015.
6. Haytham R.H. and Noor T.A., Complex of Lascoux in Partition ($6,5,3$), International Journal of Engineering Research And Management (IJERM), Vol.03, pp.197199, 2016.
7. Haytham R.H. and Najah M.M., Complex of Lascoux in the Case of Partition $(7,6,3)$, Aust J Basic Appl Sci., Vol. 10 (18), pp.89-93, December 2016.
8. Rotman J.J., Introduction to homological algebra, Academic Press, INC, 1979.
9. Haytham R.H. and Niran S.J., Application of Weyl Module in the Case of Two Rows, J.Phys.:Conf.Ser., 1003 (2018) 012051, IOP Publishing, IHSCICONF 2017.
10. David A.B. and Rota G.C., Approaches to Resolution of Weyl Modules, Adv. in applied Math., Vol.27, pp.82-191, 2001.
11. Akin K., David A.B. and Weyman J., Schur Functors and Complexes, Adv. Math., Vol.44, pp.207-278, 1982.
12. Giandomenico Boffi and David A. Buchsbaum, Threading Homology Through Algebra:Selected Patterns, Clarendon Press, Oxford, 2006.
