ON μ-SUPPLEMENTED AND COFINITELY μ-SUPPLEMENTED MODULES

Enas Mustafa Kamil¹, Wasan Khalid²

Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq. mustafaenas @gmail.com

 2 Department of mathematics , College of Science , University of Baghdad , Baghdad , Iraq. wasankhalid65@gmail.com

ABSTRACT. Let R be a ring and M a right R-module. We extend the definition of supplemented module by replacing "small submodule" with " μ -small submodule" as we introduced in [1]. We show that any finite sum of μ -supplemented module is μ -supplemented μ , on the other hand we define and study the notion of amply , weakly , and cofinitely μ -supplemented modules . A module M is called \oplus - μ -supplemented module if every submodule of M has a μ -supplement which is a direct summand. The purpose of this work is to generalize supplemented modules and introduce various properties of these modules.

Keywords. μ-supplemented, amply μ-supplemented, weakly μ-supplemented, cofinitely μ-supplemented and ⊕ - μ-supplemented.

1. INTRODUCTIOn.

Throughout this paper ,R is an associative ring with unity and all modules are unital right R- modules. A Submodule A of a module M is called small in M, written A << M, if whenever M = A + B for any submodule B of M, we have M = B. See [2]. In [1], μ-small submodules we defined the notion of as follows. A submodule A of M is called μ small submodule , written $\left.A\!<\!<_{\mu}M\right.$ if $\left.whenever\right.M=A\!+\!B$ with $\frac{M}{B}$ is cosingular, we have M = B. In this paper, a μ-supplemented module as we define generalization of supplemented module as follows. submodule A of M is called a μ -supplement of B in M if M = A+B and $A \cap B <<_u A$, if every submodule of M μ-supplement then M is called supplemented module.

In section 2, we give some properties of $\mu\text{-supplements}$, we prove that any factor module of $\mu\text{-supplemented}$ module is $\mu\text{-supplemented}$ and any finite sum of $\mu\text{-supplemented}$ modules is $\mu\text{-supplemented}$.

In section 3, we introduced the notion of amply, , and cofinitely μ-supplemented as a generalizations of amply ,weakly, and cofinitely supplemented modules. Recall that called amply supplemented if for any submodules A and B of M with M = A+B, A contains a supplement of B in M, see [3]. We call a module M is amply μ supplemented if for any submodules A and B of M with M = A + B, A contains a μ -supplement of B in M. A module M is called weakly supplemented if for every submodule A of M , there is a submodule B of M such that M = A+B and $A \cap B \ll M$, see [3]. We call a module M is weakly μ-supplemented if every submodule A of M, there is a submodule B of M such that M = A+B and $A \cap B <<_{u} M$. Recall that a module M is called cofinitely supplemented if every cofinite submodule of M has a supplement submodule, [4]. We define the notion of cofinitely u-supplemented as follows, a module M is called cofinitely μ supplemented if every cofinite submodule of M has a μ-supplement.

In section 4, we introduced the concept of \oplus - μ -supplemented module as a generalization of \oplus -supplemented [5] as follows . The module M is called \oplus - μ -supplemented if every submodule of M has a μ -supplement which is a direct summand of M. Clearly \oplus

- μ -supplemented modules are μ -supplemented and \oplus -supplemented are \oplus - μ -supplemented.

The aim of this work is to introduce $\mu\text{-}$ supplemented modules as a generalizations of supplemented modules , and some of it's generalizations , we state the main properties of $\mu\text{-}$ supplemented modules and introduced the main properties of $\mu\text{-}$ supplemented modules and supplying examples and remarks for these concepts. In this note, we answer the following natural question. Is any factor module of \oplus - $\mu\text{-}$ supplemented module is \oplus - $\mu\text{-}$ supplemented? In addition , we investigate direct summand of these modules.

2. μ-supplemented modules.

Definition 2.1. Let M be an R-module and let A , B be submodules of M, B is called $\mu\text{-}$ supplement of A in M , if M = A+B and A \bigcap B $<<_{\mu}$ B. If every submodule of M has a $\mu\text{-}$ supplement , then M is called $\mu\text{-}$ supplemented module .

Recall that a module M is called μ -hollow if every proper submodule of M is μ -small in M , see [1]. **Examples and Remarks2.1.**

- (1) Clearly that every $\mu\text{-hollow}$ module is $\mu\text{-supplemented}.$ For example Z_4 as Z-module. The converse is not true in general , for example , Z_6 as Z-module.
- (2) Let A and B be submodules of an R- module M , if A is a $\mu\text{-supplement}$ of B , then B need not be a $\mu\text{-supplement}$ of A. For example , Z_4 as Z-module , Z_4 is a $\mu\text{-}$ supplement of $\{\Bar{0}\Bar{,}\Bar{2}\Bar{}\}$ but $\{\Bar{0}\Bar{,}\Bar{2}\Bar{}\}$ is not a $\mu\text{-}$ supplement of Z_4 .
- (3) $M=A\oplus B$, then A is μ -supplement of B and B is μ -supplement of A, for example in Z_6 as Z- module $\{\overline{0},\overline{3}\}$ is μ -supplement of $\{\overline{0},\overline{2},\overline{4}\}$ and $\{\overline{0},\overline{2},\overline{4}\}$ is μ -
- supplement of $\{0,3\}$. (4) μ -supplement submodule need not be exists . For example , in Z as Z- module 2Z has no μ -supplement.
- (5) It is clear that every supplemented module is a μ -supplemented. The converse is not true in general as

the following example shows, Let $Q = \prod_{i=1}^{\infty} Fi$, where F_i

= Z_2 . Let R be the subring of Q generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_Q . Since R_R is μ -hollow module, hence it is μ -supplemented but not supplemented , see[1] and [6].

Proposition2.1. Let A be a μ -hollow submodule of the module M. Then A is a μ -supplement of each proper submodule B of M such that M=A+B.

Proof. Let B be a proper submodule of M such that M=A+B. Note $A \bigcap B \neq A$ if $A \bigcap B = A$, then $A \leq B$ implies that M=B which is a contradiction. Since A is $\mu\text{-hollow}$, then $A \bigcap B <<_{\mu} A$. Thus A is a $\mu\text{-supplement}$ of B in M.

The following theorem gives a characterization of μ -supplement submodule.

Theorem2.1. Let A and B be submodules of an R-module M, then the following statements are equivalent.

(1) B is a μ -supplement of A in M.

(2) M = A+B and for every proper submodule X of B with $\frac{B}{Y}$ is cosingular, then $M \neq A+X$.

Proof. (1) \Longrightarrow (2) Assume that B is a μ -supplement of A in M and M = A+X, where X is a proper submodule of B such that $\frac{B}{X}$ is cosingular, then B = B \cap M = B \cap (A+X) = X+(A \cap B), by modular law. Since B is a μ -supplement of A in M and $\frac{B}{X}$ is cosingular, then A \cap B << μ B, hence B = X, which is a contradiction, because X is proper submodule of B. Thus M \neq A+X.

(2) \Longrightarrow (1) Suppose that M=A+B, to prove that B is a μ -supplement of A in M, it is enough to show that A \bigcap B<< $_{\mu}$ B, let U be a submodule of B such that B = $(A \bigcap B)+U$, $\frac{M}{U}$ is cosingular. If U is a proper submodule of B, then by our assumption M \neq A+U. But $M=A+B=A+(A \bigcap B)+U=A+U$, which is a contradiction. Thus B is a μ -supplement of A in M.

The following propositions gives some properties of μ -supplements.

Proposition 2.2. Let A and B be submodules of an R-module M such that B is μ - supplement of A in M. Then (1) If M = X + B, for some submodule X of A, then B is μ -supplement of X in M.

(2) If $C <<_{\mu} M$, then B is a μ -supplement of A+C.

(3) For any submodule Y of A, $\frac{(B+Y)}{Y}$ is a μ -supplement of $\frac{A}{V}$ in $\frac{M}{V}$.

Proof. (1) Assume that M=X+B, for some submodule X of A and B is a μ -supplement of A in M. Since $X \cap B \leq A \cap B <<_{\mu} B$, this implies that $X \cap B <<_{\mu} B$, by [1, Prop. 2.14]. But M=X+B, therefore, B is a μ -supplement of X.

(2) Let B be μ -supplement of A in M and C<< μ M. Clearly M = A+C+B. We show that (A+C) \cap B<< μ B, let B =[(A+C) \cap B]+X , for some submodule X of B , $\frac{B}{X}$ is cosingular. Then M = (A+C) + B = (A+C)+[(A+C) \cap B]+X = C+ A+X. Since $\frac{M}{A+X} = \frac{(A+X)+B}{(A+X)} \cong \frac{B}{B \cap (A+X)} = \frac{B}{(A \cap B)+X}$, by the second isomorphisim theorem , $\frac{B}{(A \cap B)+X}$ is cosingular by [1, Coro. 2.6], then $\frac{M}{A+X}$ is cosingular. But C<< μ M, therefore M = A+X. But B is a μ -supplement of A and $\frac{B}{X}$ is cosingular , therefore B = B \cap (A+X) = X+(A \cap B) = X. Thus, B is a μ -supplement of A+C.

(3) Let Y be a submodule of A , then $\frac{M}{Y} = \frac{(A+B)}{Y} = \frac{A}{Y} + \frac{(B+Y)}{Y}$. Also $\frac{A}{Y} \cap \frac{(B+Y)}{Y} = \frac{A \cap (B+Y)}{Y} = \frac{(A \cap B) + Y}{Y}$, by modular law. Now to show that $\frac{(A \cap B) + Y}{Y} <<_{\mu} \frac{(B+Y)}{Y}$. Let $\phi : B \to \frac{(B+Y)}{Y}$ be a map defined by $\phi(x) = x + Y$, for each $x \in B$. Clearly that ϕ is an epimorphisim. Since $A \cap B <<_{\mu} B$, then $\phi(A \cap B) = \frac{(A \cap B) + Y}{Y} <<_{\mu} \frac{(B+Y)}{Y}$, by [1, Prop. 2.14]. Thus $\frac{(B+Y)}{Y}$ is a μ -supplement of $\frac{A}{Y}$ in $\frac{M}{Y}$.

Proposition2.3. Let M be an R-module and let A, B and C be submodules of M. Then.

(1) Assume that $M = M_1 \oplus M_2$. If A is a μ -supplement of A' in M_1 and B is a μ -supplement of B' in M_2 , then $A \oplus B$ is a μ -supplement of A' \oplus B' in M.

(2) If A is a μ -supplement of B in M and B is a μ -supplement of C in M , then B is a μ -supplement of A in M.

Proof. (1) By assumption, we have $M_1 = A + A'$ and $A \cap A' <<_{\mu} A$. Moreover, $M_2 = B + B'$ and $B \cap B' <<_{\mu} B$, then $M = (A \oplus B) + (A' \oplus B')$. By [1, Prop. 2.14], $(A \cap A') \oplus (B \cap B') <<_{\mu} A \oplus B$. One can easily show that $(A \oplus B) \cap (A' \oplus B') = (A \cap A') \oplus (B \cap B') <_{\mu} A \oplus B$, it follows that $A \oplus B$ is a μ -supplement of $A' \oplus B'$ in M. (2) Let M = A + B = B + C, $A \cap B <<_{\mu} A$ and $B \cap C <<_{\mu} B$. We prove that $A \cap B <<_{\mu} B$. Let U be a submodule of B such that $B = (A \cap B) + U$, $\frac{B}{U}$ is cosingular, $M = B + C = (A \cap B) + U + C$. Since $A \cap B <<_{\mu} A$, then $A \cap B <<_{\mu} M$. Note that $\frac{M}{U+C} = \frac{B+C+U}{U+C} \cong \frac{B}{B \cap (U+C)} = \frac{B}{U+(B \cap C)}$ is cosingular. Since $A \cap B <<_{\mu} M$, then M = U + C. Now, $B = B \cap M = B \cap (U+C) = U + (B \cap C)$. But $B \cap C <<_{\mu} B$ and $\frac{B}{U}$ is cosingular, therefore B = U. Thus B is a μ -supplement of A in M.

To show that the sum of μ -supplemented modules is μ -supplemented, we need the following lemma.

Lemma2.1. Let M_1 and M_2 be submodules of M such that M_1 is μ -supplemented and M_1 + M_2 has a μ -supplement in M. Then M_2 has a μ -supplement in M.

Proof. By assumption, there exits a submodule A of M such that $M_1+M_2+A=M$ and $(M_1+M_2)\cap A<<_{\mu}A$. Moreover , since M_1 is $\mu\text{-supplemented},\,(M_2+A)\cap M_1$ has a $\mu\text{-supplement}$ in M_1 , there exists $B\leq M_1$ such that $M_1=[(M_2+A)\cap M_1]+B$ and $(M_2+A)\cap B<<_{\mu}B$. Then we have $M=M_1+M_2+A=[(M_2+A)\cap M_1]+B+M_2+A=M_2+(B+A)$. One can easily show that $M_2\cap (B+A)\leq [(M_2+B)\cap A]+[(M_2+A)\cap B]\leq [(M_2+M_1)\cap A]+[(M_2+A)\cap B]<<_{\mu}A+B$, by [1,Prop. 2.14] , it follows that $M_2\cap (B+A)<<_{\mu}(B+A)$. Hence, B+A is a $\mu\text{-supplement}$ of M_2 in M. Thus M_2 has a $\mu\text{-supplement}$ in M.

Proposition2.4. Let M_1 and M_2 be μ -supplemented modules. If $M=M_1+M_2$, then M is a μ -supplemented module.

Proof. Let A be a submodule of M. Since $M_1+M_2+A=M$ trivially has a μ -supplement 0 in M, M_2+A has a μ -supplement in M , by Lemma (2.6). Now, since M_2+A has a μ -supplement and M_2 is μ -supplemented , then A has a μ -supplement in M by Lemma (2.6) again. So M is a μ -supplemented module.

By induction , one can easily show that Any finite sum of μ -supplemented modules is μ -supplemented.

Proposition 2.5. Epimorphic image of μ -supplemented module is μ -supplemented.

Proof. Let $f: M \rightarrow M'$ be an epimorphisim and let M be a μ -supplemented. To show that M' is a μ -supplemented, let A be a submodule of M', $f^{-1}(A)$ is a submodule of M. But M is a μ -supplemented, therefore $f^{-1}(A)$ has a μ -supplement say B in M, hence $M = B + f^{-1}(A)$ and $f^{-1}(A) \cap B <<_{\mu} B$. Claim that f(B) is μ -supplement of A. Since $M = B + f^{-1}(A)$ and $f^{-1}(A) \cap B <<_{\mu} B$, then M' = f(B) + A, and $A \cap f(B) <<_{\mu} f(B)$, so f(B) is μ -supplement of A. Thus M' is a μ -supplemented.

Corollary2.1. Every factor module of a μ -supplemented module is μ -supplemented .

Proof. Let M be a μ -supplemented module and let A be a submodule of M, let π : $M \to \frac{M}{A}$ be the natural epimorphisim. Since M is μ -supplemented, then $\frac{M}{A}$ is a μ -supplemented.

Remark. The converse of previous corollary is not true in general as the following example shows. Consider Z as Z- module , $6Z \le Z$. Since $\frac{Z}{6Z} \cong Z_6$ is μ -supplemented but Z is not μ -supplemented module.

3. Amply , weakely and cofinitely $\boldsymbol{\mu}$ supplemented modules.

Definition 3.1. Let M be an R- module. M is called amply μ -supplemented if for any submodules A and B of M with M=A+B, there exists a μ -supplement X of A contained in B.

Examples and Remarks3.1.

- (1) Z_6 as Z-module is amply μ -supplemented.
- (2) Z as Z- module is not amply μ -supplemented.
- (3) Clearly that every amply supplemented module is amply $\mu\text{-supplemented}.$ The converse is not true in general , see [1,Example 3.17]. The converse hold when the module is cosingular.
- (4) Every amply μ -supplemented is μ -supplemented.

Proposition3.1. Homomorphic image of amply μ-supplemented is amply μ-supplemented.

Proof. Let M be amply μ -supplemented and let $f: M \to M'$ be a homomorphisim , let A , B be submodules of M' such that M' = A + B , then $M = f^{-1}(A) + f^{-1}(B)$. Since M is amply μ -supplemented , there exists μ -supplement X of $f^{-1}(A)$ in M which is contained in $f^{-1}(B)$, $M = f^{-1}(A) + X$ and $f^{-1}(A) \cap X <<_{\mu} X$. Therefore , M' = A + f(X) and $A \cap f(X) = f(f^{-1}(A) \cap X) <<_{\mu} f(X)$, by [1, Prop. 2.14]. Thus M' is amply μ -supplemented.

Corollary3.1. Let M be an amply μ -supplemented module and let A be a submodule of M, then $\frac{M}{4}$ is amply μ -supplemented.

Note. The converse of previous corollary is not true in general. For example , consider Z as Z- module $\frac{Z}{6Z}\cong Z_6$ is amply μ -supplemented but Z is not amply μ -supplemented.

A module M is said to be π -projective module, if for every two submodules A and B of M with M=A+B, there exists $f\in \operatorname{End}(M)$ such that $\operatorname{Im} f\leq A$ and $\operatorname{Im} (I-f)\leq B$. See[3].

Proposition3.2. Let M be an R- module. If M is π -projective μ -supplemented , then M is amply μ -supplemented module.

Proof. Let M be a π -projective μ -supplemented and let A , B submodules of M such that M = A+B. Since M is π -projective , then there exists $f \in End(M)$ such that Im $f \leq A$ and Im $(I-f) \leq B$, A has a μ -supplement in M say C, then M = A+C and $A \cap C <<_{\mu} C$. It can be seen that $M = f(M)+(I-f)(M) \leq A+(I-f)(A+C) \leq A+(I-f)(C)$ and $A \cap (I-f)(C) \leq (I-f)(A \cap C) <<_{\mu} (I-f)(C)$, therefore (I-f)(C) is μ -supplement of A which is contained in B. Thus M is amply μ -supplemented.

Corollary3.2. Let M be an R- module. If M is projective μ -supplemented , then M is amply μ -supplemented module.

Proposition 3.3. Let M be an R- module. If every submodule of M is μ -supplemented. Then M is an amply μ -supplemented.

Proof. Let A and B be submodules of M with M=A+B. By our assumption A is a μ -supplemented , $A \cap B$ has a μ -supplement say C in A, hence $(A \cap B)+C=A$ and $(A \cap B) \cap C=B \cap C<<_{\mu} C$. Since $A=(A \cap B)+C \leq B+C$, hence M=B+C. Then C is a μ -supplement of B which is contained in A. Thus M is amply μ -supplemented.

Immediately , one can easily prove the following corollary.

Corollary3.3. Let R be any ring , then the following statements are equivalent.

- (1) Every R- module is an amply μ-supplemented.
- (2) Every R- module is μ -supplemented.

Definition 3.2. Let M be an R- module. M is called weakly μ -supplemented module, if for each submodule A of M, there exists a submodule B of M such that M = A + B and $A \cap B <<_{\mu} M$.

Examples and Remarks3.2.

- (1) Z_4 as Z- module is weakly μ -supplemented.
- (2) Clearly that every $\mu\text{-supplemented}$ module is weakly $\mu\text{-supplemented}$, the converse is not true in general. For example Q as Z- module .

Let M be an R- module and let A be a submodule of M, recall that A is called a μ -coclosed submodule of M denoted by $(A \le_{\mu cc} M)$ if whenever $\frac{A}{x}$ is cosingular and $\frac{A}{x} <<_{\mu} \frac{M}{x}$ for some submodule X of A, we have X = A. See [1].

Proposition3.4. Let A be a submodule of an R-module M. Consider the following statements.

- (1) A is μ -supplement submodule of M.
- (2) A is μ-coclosed in M.
- (3) For every submodule X of A , if X<< $_{\mu}$ M , then X<< $_{\mu}$ A. Then (1) \Longrightarrow (2) \Longrightarrow (3)

If M is weakly μ -supplemented, then (3) \Longrightarrow (1)

Proof. (1) \Longrightarrow (2) Let A be a μ -supplement of B in M, then M = A+B and A \cap B<< μ A. To prove that A is μ -coclosed, assume that $\frac{A}{X}$ is cosingular and $\frac{A}{X} <<_{\mu} \frac{M}{X}$, for some submodule X of A. Since M = A+B, $\frac{M}{X} = \frac{A}{X} + \frac{B+X}{X}$. We have $\frac{M}{B+X} = \frac{A+B+X}{B+X} \cong \frac{A}{A \cap (B+X)} = \frac{A}{X+(A \cap B)}$, which is cosingular by corollary [1]. But $\frac{A}{X} <<_{\mu} \frac{M}{X}$, therefore $\frac{M}{X} = \frac{B+X}{X}$ which implies that M = B+X. Note that A = A \cap M = A \cap (B+X) = X+(A \cap B), but A \cap B<<\ μ And $\frac{A}{X}$ is cosingular, therefore A = X. Thus A is a μ -coclosed

 $(2) \Longrightarrow (3)$ See [1, Prop. 3.3]

(3) \Longrightarrow (1) Since M is weakly μ -supplemented, there exists a submodule B of M such that M =A+B and A \cap B<< μ M. By (3) A \cap B<< μ A. Thus A is μ -supplement submodule of M.

Definition 3.3. An R- module M is called cofinitely μ -supplemented (briefly cof- μ -supplemented) if each cofinite submodule of M has a μ -supplement in M.

Examples and Remarks3.3.

- (1) Z_6 as Z- module is cof- μ -supplemented.
- (2) Z as Z- module is not cof- μ -supplemented , since 2Z is a cofinite submodule of Z which has no μ -supplement.
- (3) It is clear that every μ -supplemented is cof- μ -supplemented. But the converse is not true in general as the following example shows , Q as Z- module is cof- μ -supplemented , since the only cofinite submodule of Q is Q which has a μ -supplement , but we know that Q is not μ -supplemented Z- module.

The following proposition gives a condition under which the $\mu\text{-supplemented}$ and $cof\text{-}\mu\text{-supplemented}$ are equivalent

Proposition3.5. Let M be a finitely generated R-module. Then M is μ -supplemented if and only if M is cof- μ -supplemented.

Proof. To show that M is μ -supplemented, let A be a submodule of M. Since M is finitely generated, then $\frac{M}{A}$ is finitely generated, hence A is cofinite submodule of M. But M is cof- μ -supplemented, therefore A has μ -supplement in M. Thus M is μ -supplemented. The converse is clear.

Next , we give some properties of cof- $\mu\text{-}$ supplemented modules.

To show that arbitrary sum of cof- μ -supplemented is cof- μ -supplemented , we need the following standard lemma.

Lemma3.1. Let A,B be submodules of a module M such that A is cof- μ -supplemented, B is cofinite in M and A+B has a μ -supplement C in M. Then A \cap (B + C) has a μ -supplement X in A. Moreover, C + X is μ -supplement of B in M.

Proof. Let C a μ -supplement of A + B in M. Thus M = C + A + B and C \cap (A + B)<< μ C. Now $\frac{A}{A \cap (B+C)} \cong \frac{A+B+C}{B+C}$

$$=\frac{M}{B+C}\cong \frac{\frac{M}{B}}{\frac{B+C}{P}}$$
, which is finitely generated, hence A \cap (C +

B) is cofinite in A. But A is cof- μ -supplemented, there exists a submodule X of A such that X is a μ -supplement of $A \cap (C+B)$ in A. Thus $A=X+[A \cap (C+B)]$ and $X \cap A \cap (C+B)=X \cap (C+B)<_{\mu} X$, so X is a μ -supplement of (B+C) in A. Now , to show that C+X is a μ -supplement of B in M, we have $M=C+A+B=C+X+[A \cap (C+B)]+B=C+X+B$, and one can easily show that $B \cap (C+X) \leq [C \cap (B+X)]+[X \cap (C+B)]<_{\mu} C+X$. Therefore ,C+X is a μ -supplement of B in M.

Proposition3.6. An arbitrary sum of cof-μ-supplemented modules is cof-μ-supplemented.

Proof. Suppose that $\{M_i\}_{i\in I}$ is a family of cof- μ -supplemented modules, and let $M=\sum_{i\in I}Mi$. Let A be a

cofinite submodule of M, so $M = A + M_{i1} + \cdots + M_{in}$ for some $n \in N$, $ik \in I$. Since A is cofinite in M and M has a zero μ -supplement, then by previous lemma, $(M_{i1} + \dots$

 $+M_{in}) \cap (0+A)$ has a μ -supplement say X in A, Moreover, X is a μ -supplement of A in M. Thus M is cof- μ -supplemented module.

Proposition3.7. Homomorphic image of a cof-μ-supplemented is cof-μ-supplemented.

Proof. Let $f: M \to M'$ be a homomorphisim and M be a cof- μ -supplemented. To show that f(M) is cof- μ -supplemented, let A be a cofinite submodule of f(M), hence $f^{-1}(A)$ is cofinite submodule of M. But M is cof- μ -supplemented, therefore $f^{-1}(A)$ has a μ -supplement say B in M, then $M = f^{-1}(A) + B$ and $f^{-1}(A) \cap B <<_{\mu} B$. Hence f(M) = A + f(B) and $A \cap f(B) <<_{\mu} f(B)$, that is A is μ -supplement of A. Thus A is a cof-A-supplemented.

Corollary3.4. Let M be a cof- μ -supplemented, let A be a submodule of M, then $\frac{M}{4}$ is cof- μ -supplemented.

Proof. Let M be a cof- μ -supplemented and let π : M $\rightarrow \frac{M}{A}$ be the natural epimorphisim, by previous proposition $\frac{M}{A}$ is cof- μ -supplemented.

The converse is not true in general , for example , consider Z as Z- module $\frac{Z}{6Z}\cong Z_6$ is cof- μ -supplemented but Z is not cof- μ -supplemented.

Corollary3.5. Let M be a cof- μ -supplemented then any direct summand of M is cof- μ -suplemented.

Proof. Let M be a cof- μ -supplemented , D be a direct summand of M and let $P: M \rightarrow D$ be the projection epimorphisim. By proposition (3.17) D is cof- μ -supplemented.

4. ⊕ -μ-supplemented modules

Definition 4.1. A module M is called \bigoplus - μ -supplemented module if every submodule of M has a μ -supplement which is a direct summand of M.

Examples and Remarks4.1.

- (1) Every semisimple is \bigoplus - μ -supplemented. For example , Z_6 as Z- module is \bigoplus - μ -supplemented.
- (2) Z as Z- module is not \oplus - μ -supplemented.
- (3) Clearly that every \bigoplus - μ -supplemented is μ -supplemented and every \bigoplus -supplemented is \bigoplus - μ -supplemented.

But the converse is not true in general. See example (2.2-5)

Now , consider Z_4 as Z- module clearly that Z_4 is μ -supplemented but not \oplus - μ -supplemented.

An R- module M is said to have property (D3), if M_1 and M_2 are direct summands of M with $M = M_1+M_2$, then $M_1 \cap M_2$ is also a direct summand of M [5].

Proposition4.1. Let M be a \bigoplus - μ -supplemented module with (D3). Then every direct summand of M is a \bigoplus - μ -supplemented module.

Proof. Let M be a \bigoplus - μ -supplemented with (D3) and let A be a direct summand of M. To show that A is a \bigoplus - μ -supplemented, let X be a submodule of A. Then there exists a direct summand Y of M such that Y is μ -supplement of X, then M=X+Y and $X \cap Y <<_{\mu} Y$. Since $X \leq A$, M=A+Y. Since A and Y are direct summands of M and M=A+Y, $A \cap Y$ is a direct summand of M and hence it is a direct summand of A, because M satisfy D3. By modularity, we have A=A

Let M be an R- module and let A be a submodule of M, A is called fully invariant submodule of M if $f(A) \le A$, for each $f \in End(M)$. Let M be an R- module . Recall that M is called a duo module if every submodule of M is fully invariant. See [7].

Proposition 4.2. Let M be a \bigoplus - μ -supplemented module and A be a fully invariant submodule of M. If A is a direct summand of M, then A is a \bigoplus - μ -supplemented module.

Proof. Let A be a direct summand of M and X be a submodule of A. Since M is a \oplus - μ -supplemented, there exist a direct summand Y of M, such that M=X+Y, $X\cap Y<<_{\mu}Y$ and $M=Y\oplus Y'$, $Y'\leq M$. we have $A=A\cap M=A\cap (Y\oplus Y')=(A\cap Y)\oplus (A\cap Y')$, because A is a fully invariant submodule of M. If we show that $A\cap Y$ is μ -supplement of X in A, then the proof is complete. Since M=X+Y, we have $A=A\cap M=A\cap (X+Y)=X+(A\cap Y)$. Now, $X\cap Y<<_{\mu}M$. Due to $A\cap Y$ is a direct summand of M, we obtain $X\cap Y<<_{\mu}A\cap Y$ by [1, Prop.2.15]. Hence $A\cap Y$ is a μ -supplement of X in A which is a direct summand of A. So it implies that A is a \oplus - μ -supplemented module.

The following theorem shows that the direct sum of \oplus - μ -supplemented modules is \oplus - μ -supplemented.

Theorem4.1. Let M_1 and M_2 be $a \oplus -\mu$ -supplemented modules. If $M = M_1 \oplus M_2$, then M is a \oplus - μ -supplemented module.

Proof. Let A be any submodule of M. Then $M = M_1 +$ $M_2 + A$ and so M_1+M_2+A has a \oplus - μ -supplement 0 in M. Since M_1 is a \oplus - μ -supplemented module, M_1 \cap (M₂+A) has a μ -supplement X in M₁, then we have $M_1 = [M_1 \cap (M_2 + A)] + X \text{ and } M_1 \cap (M_2 + A) \cap X = (M_2 + A)$ $\bigcap X \ll_{\mu} X$ such that X is direct summand of M_1 . Claim that X is a μ -supplement of M_2 +A in M. Since M_1 = $[M_1 \cap (M_2 + A)] + X$, then $M = M_1 + M_2 = [M_1 \cap$ $(M_2+A)]+X+A+M_2 = X+A+M_2 \text{ and } X \cap (M_2+A) = M_1 \cap$ $(M_2+A) \cap X <<_{\mu} X$, hence X is a μ -supplement of M_2+A in M. Now, since $M_2 \cap (A+X) \leq M_2$ and M_2 is \bigoplus - $\mu\text{-supplemented}$, then $M_2 \,{\frown}\, (A{+}X)$ has a $\mu\text{-supplement}\ Y$ in M_2 and Y is a direct summand of M_2 , then we have, $M_2 = Y \oplus Y'$, $Y' \leq M_2$, $M_2 = M_2 \cap (A+X)+Y$ and $M_2 \cap$ $(A+X) \cap Y = (A+X) \cap Y \ll_{\mu} Y$. Since $M = M_2 + A + X = M_2 + M$ $Y+M_2 \cap (A+X)+(A+X) = Y+A+X$ and $X \cap (Y+A) \leq X$ $\bigcap \left[Y + [M_2 \bigcap (A + X)] + A\right] \leq X \bigcap (M_2 + A) <<_{\mu} X \text{ and } M_2$ $\bigcap (A+X) \cap Y = Y \cap (A+X) <<_{\mu}Y. \text{ One can easily show that } A \cap (X+Y) \leq X \cap (Y+A) + Y \cap (A+X)$ $<<_{\mu}$ X+Y. So , X+Y is μ -supplement of A in M. Thus M is \oplus - μ -supplemented.

Corollary4.1. Any finite direct sum of \oplus - μ -supplemented modules is \oplus - μ -supplemented module. **Proof.** By induction.

Let M_1 and M_2 be R- modules. Recall that M_1 is M_2 -projective if for every submodule A of M_2 and

any homomorphisim $f: M_1 \to \frac{M_2}{A}$, there is a

homomorphisim $g: M_1 \longrightarrow M_2$ such that $\pi \circ g = f$, where π :

$$M_2 \rightarrow \frac{M_2}{A}$$
 is the natural epimorphisim, see [8].

 M_1 and M_2 are said to be relatively projective if M_1 is M_2 - projective and M_2 is M_1 - projective.

Theorem4.2. Let M_i $(1 \le i \le n)$ be any finite collection of relatively projective modules. The module $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$ is a \oplus - μ -supplemented module if and only if M_i is a \oplus - μ -supplemented module for each $1 \le i \le n$.

Proof. The necessity part is proved in Theorem 4.5 . Conversely , it is sufficient to prove that M_1 is \bigoplus - μ -supplemented. Let A be any submodule of M_1 .

Then there exist a direct summand B of M such that M = $A+B=B \oplus B'$ and $A \cap B <<_{\mathfrak{u}} B$. Note that M=A+B

= M_1 + B. By [8,Lemma 4.47], there exists a submodule B_1 of B such that $M=M_1 \oplus B_1$. Now , $B=B \cap M=B$ $\cap (M_1 \oplus B_1) = B_1 \oplus (B \cap M_1)$, then $(B \cap M_1)$ is a direct summand of M and hence it is a direct summand of M_1 . Now , we have $M_1=M_1 \cap M=M_1 \cap (A+B)=A+(B \cap M_1)$ and $A \cap B \cap M_1=A \cap B <<_{\mu} B$, $A \cap B \cap M_1$ is a direct summand of M. Therefore , $B \cap M_1$ is a direct summand of M. Therefore , $M \cap M_1$ is a p-supplement of M in M which is a direct summand. Thus M is M-M-supplemented.

Proposition4.3. Let M be a nonzero \bigoplus - μ -supplemented module and let A be a fully invariant submodule of M. Then the factor module $\frac{M}{A}$ is a \bigoplus - μ -supplemented.

Proof. To show that $\frac{M}{A}$ is \bigoplus - μ -supplemented, let $\frac{B}{A}$ be any submodule of $\frac{M}{A}$. Since M is \bigoplus - μ -supplemented module, there exist a direct summand C and of M such that M = C + B, $B \cap C <<_{\mu} C$ and $M = C \oplus C'$, $C' \leq M$. By proposition (2.5) $\frac{C+A}{A}$ is μ -supplement of $\frac{B}{A}$ in $\frac{M}{A}$. Since A is a fully invariant submodule of M, then $\frac{C+A}{A}$ is a direct summand of $\frac{M}{A}$. Thus $\frac{M}{A}$ is \bigoplus - μ -supplemented.

Corollary4.2. Let M be a \bigoplus - μ -supplemented duo module. Then every factor module of M is a \bigoplus - μ -supplemented module.

Theorem4.3. Let M be a module such that $M = M_1 \oplus M_2$ is a direct sum of submodules M_1 and M_2 . Then M_2 is a

 \bigoplus - μ -supplemented module if and only if there exists a direct summand B of M such that $B \leq M_2$, M = A + B and $A \cap B <<_{\mu} B$, for every submodule $\frac{A}{M1}$ of $\frac{M}{M1}$

Proof. (\Longrightarrow) Let $\frac{A}{M1}$ be any submodule of $\frac{M}{M1}$. Since $A \cap M_2 \leq M_2$ and M_2 is \bigoplus - μ -supplemented, then $A \cap M_2$ has μ -supplement say B in M_2 , where $B \bigoplus B' = M_2$, $M_2 = (A \cap M_2) + B$ and $A \cap M_2 \cap B = A \cap B <<_{\mu} B$. Clearly, B is a direct summand of M and $M = M_1 + M_2 = M_1 + (A \cap M_2) + B \leq M_1 + A + B$, but $M_1 \leq A$, then M = A + B. So we get the result. (\Longleftrightarrow)

Let A be a submodule of M_2 , consider the submodule $\frac{A \bigoplus M1}{M1}$ of $\frac{M}{M1}$. By our assumption there exists a direct summand B of M such that $B \leq M_2$, $M = (A+M_1)+B$ and $(A+M_1) \cap B <<_{\mu} B$. Since $M_2 = M_2 \cap M = M_2 \cap [(A+M_1)+B] = B+[(A+M_1) \cap M_2] = B+A+(M_1 \cap M_2) = B+A$, by modular law and since $A \cap B \leq (A+M_1) \cap B <<_{\mu} B$, then B is μ -supplement of A in M_2 . Thus M_2 is a \bigoplus - μ -supplemented.

Proposition4.4. Let M be a \bigoplus - μ -supplemented module. Then $M=M_1\bigoplus M_2$, such that $Z^*(M_1)<<_{\mu}M_1$ and $Z^*(M_2)=M_2.$

Proof. Since $Z^*(M)$ is a submodule of M and M is \bigoplus - μ -supplemented module , then there exists M_1 such that $M=M_1 \oplus M_2$, for some submodule M_2 of M , $M=Z^*(M)+M_1$ and $Z^*(M) \cap M_1 <<_{\mu} M_1$, hence $Z^*(M_1) <<_{\mu} M_1$. Since $Z^*(M) Z^*(M_1) \oplus Z^*(M_2)$, then $M=Z^*(M_1) \oplus Z^*(M_2) + M_1 = Z^*(M_2) \oplus M_1$. But $Z^*(M_2) \leq M_2$, therefore $Z^*(M_2) = M_2$. Thus , we get the result.

Theorem4.4. For a module M with the following statements are equivalent.

- (1) Every direct summand of M is \oplus - μ -supplemented
- (2) M is a \oplus - μ -supplemented.
- (3) $M=M_1 \oplus M_2$, where M_1 is \oplus - μ -supplemented with $Z^*(M_1) <<_{\mu} M_1$ and M_2 is \oplus - μ -supplemented with $Z^*(M_2)=M_2$.

Proof. $(1) \Longrightarrow (2)$ Clear by the definition.

- $(2) \Longrightarrow (1)$ Proposition (4.3)
- (2) \Longrightarrow (3) Assume that M is a \oplus - μ -supplemented with (D3) ,then $M=M_1\oplus M_2$, where $Z^*(M_1)<<_{\mu}M_1$ and $Z^*(M_2)=M_2$, by proposition (4.11) and M_1 , M_2 are \oplus - μ -supplemented , by proposition (4.3).
- $(3) \Longrightarrow (2)$ Theorem (4.5).

REFERENCES.

- [1] W. Khalid, E. M. Kamil, On a generalization of small submodules, Sci. Int. (Lahore), 30 (3) (2018), 359-365.
- [2] T. Inoue, Sum of hollow modules, Osaka J. Math. 20 (1983), 331-336.
- [3] R. Wisbauer, Foundations of modules and Ring Theory, Gordon and Breach, Philadelphia, (1991).
- [4] R. Alizade, G. Bilhan, and P. F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29 (6) (2001), 2389 2405.
- [5] A. Haramanci, D. Keskin, and P. F. Smith, On ⊕ supplemented modules, Acta Math. Hungar., 83(1-2) (1999), 161-169.
- [6] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Alg. Coll., 7 (3) (2000), 305-318
- [7] M. S. Abass, On fully stable modules, Ph.D. Thesis, University of Baghdad. (1991).
- [8] S. H. Mohamed, and B. J. Muller, Continuous and discreate Modules, London Math. Soc. LNS 147 Cambridge University Press, Cambridge, (1990).