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ABSTRACT :In this paper, an eco-epidemiological prey — predator model is proposed for study . The model
includes Sl infectious disease in prey which is transmitted by external source and the contact between the
susceptible and infected species involving the harvesting on the infected prey, and SIS disease in predator species

which is spread by contact between susceptible

individuals and

infected individuals. The epidemics cannot

transmitted from prey to predator by predation or conversely. Two types of functional response for describing the
predation as well as linear incidence for describing the transition of disease are used, the model is proposed

and analyzed. Based on the assumption above, all

possible equilibrium points are analyzed quantitatively by

mathematical: methods. The locally and globally dynamics of the model are presented, also the effect of the disease
and harvest on the dynamics of the system is discussed using numerical simulation.
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1 INTRODUCTION

Mathematicians and biologists, including medical
scientists, have achieved many successes through out
history in their work together. In the life sciences,
advanced mathematical results were used. Examples are
given by the development of stochastic processes and
statistical methods to solve a variety of population
problems in demography, epidemics and genetics, ecology,
and most joint work between biologists, physicists,
chemists and engineers involves synthesis and analysis of
mathematical structures. Pythagoras, Aristotle, Fibonacci,
Cardano, Bernoulli, Euler, Fourier, Laplace, Gauss, von
Helmholtz, Riemann, Einstein, Thompson, Turing, Wiener,
von Neumann, Thom, and Keller are names associated with
both significant applications of mathematics to life science
problems and significant developments in mathematics
motivated by the life sciences [1].

Prey-predator models are of great interest to
researchers in mathematics and ecology because they
deal with environmental problems such as community’s
morbidity and how to control it, optimal harvest policy
to sustain a community, and other [2].

Mathematical models predation are amongst the
oldest in ecology. The Italian mathematician Volterra is
said to have developed his ideas about predation from
watching the rise and fall of Adriatic fishing fleets.
When fishing was good, the number of fishermen
increased, drawn by the success of others. After a time,
the fish declined, perhaps due to over-harvest, and then
the number of fishermen also declined. After some time,
the cycle repeated [3].

The dynamic relationship between predators and their
prey has long been and will continue to be one of the
dominant themes in both ecology and mathematical
ecology due to its universal existence and importance.

On other hand, the term epidemiology deals with the
study of the spread of diseases in species. It is well

known that when the infected individual still infective
and the susceptible individual still susceptible for all the
time, the disease is called S| disease. However, when the
infection does not leads to immunity, so that infective
becomes susceptible again after recovery, the disease is
called SIS disease. Finally, when infective has permanent
immunity after recover, the disease is called SIR disease.
Further, after the pioneering work of Kermack
Mckendrick [4] which is based on classical susceptible,
infected, recovered model, the field of epidemiology has
come into sight and recovered a lot of attention from the
researches [5,6].

Moreover, whereas many diseases are transmitted in
the species not only through contact, but also directly
from environment, Majeed and Shawka [7] studied prey -
predator model involving Sl and SIS infectious disease
in prey population and the disease transmitted within
the same species by contact and external source. In
addition to Khalaf and et.al [8], considered and studied
prey -predator model involving SIS infectious disease in
prey population this disease passed from a prey to
predator through attacking of predator to prey and the
disease transmitted within the same species by contact
and external source, while Naji and Mustafa [9] ,
proposed and analyzed a prey -predator model involving
Sl infectious disease in prey and the disease transmitted
within the same species by contact.

Bairagi et.al [10] studied prey -predator model with
harvest and disease , and they assumed hat the harvest
can remove a parasite .

A functional response in ecology is the intake rate
of a consumer as a function of food density (the
amount of food available in a given ecotype). It is
associated with the numerical response, which is the
reproduction rate of a consumer as a function of food
density. Following  Holling, functional responses are
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generally classified into three types, which are called
Holling's type I, Il, and 111 [11].

Ali [12]. studied prey -predator model involving Sl
infectious disease in prey and predator population with
harvesting and the disease transmitted within the same
species by contact .

In this article, an eco-epidemiological mathematical
system consisting of prey -predator model involving SI
disease in prey with harvesting in infectious prey

2 Mathematical Model:

In this section, an eco -epidemiological model is
proposed for study. The model consists of a prey, whose
total population density at time T is denoted by N(T),
interacting with predator whose total population at time
T is denoted by P(T). It is assumed that both the prey
and the predator populations are infected by different
infectious diseases. Now, the following assumptions are
adopted in formulating the basic eco-epidemiology
model:
1-There is an SI —type of epidemic disease in prey and
SIS- type of epidemic disease the  predator
population’s, SI  epidemic disease divides the prey
population into two classes namely S;(T) that represents
the density of susceptible prey at time T and I,(T)
which represents the density of infected prey at timeT.
Therefore at any time T, we have N(T) = S$;(T) + I,(T).
on other hand SIS epidemic disease also divides the
predator population into two classes namely S,(T) that
represents the density of susceptible predator at time T
and I, (T) which represents the density of infected predator
at time T. Therefore at any time T, we have P(T) =
S, (T) + L, (T).
2-1t is assumed that only susceptible prey S;is capable
of reproducing in logistically with carrying capacity k>0
and intrinsic growth rate constant r > 0, the infected
prey I, is removed before having the possibility of
reproducing. However, the infected prey population I, still
contribute with S; to population growth toward the
carrying capacity.
3-The disease is transmitted within the same species by
contact with an infected individual at infection rates
y1 >0 and y,>0 for the prey and predator
respectively. In addition , there is an external source of
disease causes incidence with the disease within the
specific population at an external infection rate a;
4-The disease disappear and infected individuals become
susceptible again in the predator atrecover rate a,
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population and SIS disease in predator population is
proposed. Moreover, in this system, the susceptible
predator consumes the susceptible prey according to
Holling type Il response function and consumes the
infected prey according to linear type of functional
response , while the infected predator attack the infected
prey only linearly as well as linear incidence rate for
describing the transition of diseases are used .

5-The susceptible predator consumes the susceptible and
infected prey according to Holling type-ll and Lotka -
Volterra of functional response with maximum attack
rate a; >0 and half saturation rate b >0 for
susceptible prey ,and maximum attack rate a, > 0 for
infected prey , while the infected predator consume the
infected prey only according to Lotka-Volterra of
functional response with maximum attack rate a; >0 .
However the constants e;; i=1,2,3 represent the
conversion rates.

6-In the absence of the prey the susceptible and
infected predator decay exponentially with natural death
rate d, > 0.

7-The disease may causes death with a constant death rate
for the prey while  d; > 0 represent the natural death for
prey.

8-Finally, the infected prey is harvest with constant rate
h >0.

According to the above assumptions, the proposed
mathematical model can be represented
mathematically by the following set of first order non-
linear differential equations, while the block diagram of
this model can be illustrated in figure (2.1).

— =715 < - ) = V1Sl —di Sy — a1 Sy
aT

15,15,
dl,
ar Y1Sih + a8y — Bl — ax 11 S; — ashl, — dq Iy

—hl (2.1)

as, a,5,5,
d_T = elm + 62a21152 - yz 1252 - d252 + azlz
ar = esaz1 I, — (dy + ay ) + v, 1S,
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Fig. (2.1): Block diagram for prey -predator model given by system (2.1)

Note that the above proposed model has seventeen
parameters which makes the mathematical analysis of
the system difficult. So in order to reduce the
number of parameters and determine which parameter
represents the control parameter, the following
dimensionless variables are used:

t=rT,x=5—k1 ,y=I—1 ,Z=S—2,W=Ii.

Then system (2.1) can be written in the following
dimensionless form:

dx

UyZ
E=X(1—x—y—u1y—(uz+u3)—u5+x)

= f1(x,y'Z,W)

y
It = y(ulx —UgZ —U;W — (U3 +ug + ug)) (2.2)

+u2x = fZ(x'y'Z'W)
dz (ulox
=2z

T U Y — UppW — u13) + UpW

dt Us +x
:f3(x,)’:Z:W)
dw
w W(uls y+upz— (U + u14))
= f4(x,y,z,w),
where :
y1k a, d, a, b
U =—— Uy =—,Uz = yUg = :US—E'
ak ask B h
u6: ) 7 = r ,ug— ,ug—_,
€14 e, ax k Y2k
Uio = YU = y U2 = ——
d, a, esask
Uz = —H U4 = yUgs =

Represent the dimensionless parameter of system
(2.2). It is observed that the number of parameters
have been reduced from seventeen in the system
(2.1) to fifteen in the system (2.2).

Since the density of any species cannot be negative,
therefore we will solve system (2.2) with the
following initial condition x(0) =0,y(0) =0, z(0) =
0 and w(0) = 0.

It is easy to verify that all the interaction functions
fi, >, fs and f, on the right hand side of system (2.2)
are continuous and have continuous partial derivatives
on R% with respect to dependent variables x,y, zand
w. Accordingly they are Lipschitzian functions and
hence system (2.2) has a unique solution for each
non-negative initial condition. Further the boundedness
of the system is shown in the following theorem.
Theorem (2.1): All the solutions of system (2.2)
which initiate in R are uniformly bounded.

Proof.

Let (x(t), y(t),z(t),w(t)) be any solution of the
system (2.2) with non -negative initial
condition (x(0),y(0),z(0),w(0)). According to the
first equation of system (2.2) we have:

% < x(1-—x).
Clearly according to the theory of differential

inequality, we get:

lim;_,,sup x(t) < 1. Define the function
M (t) =x(@) +y() +z(@t) +w(t).
Therefore,
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% <2x—x%2— (1 +u)x — (ug—us)zy —

(u; —ugs)wy — (uz +ug + ug)y —us3z  —(ug3 +
W)W — (ug—uq0)xz

Ug+x
Now, since the conversion rate constant from prey
population to predator population can’t be exceeding
the maximum predation rate constant of predator
population to prey population, hence from the
biological point of view, always 1w, <u,, U1<ug
and u;s < u, ,hence it is obtained that:

am
d—tl <2-DM,, where

D=min { (1 + u3), (uz + ug + ug) , Uy3, Uy3 +
Ugy }-
Now, by using the comparison theorem [13]
above differential inequality, we get that:
2 2 _
My(t) <2+ (MI(O) —5) e Dt

Thus 0 < M,(¢) < % ast »o. Hence all the
solutions of system (2.2) are uniformly

Bounded and the proof is complete m

on the

Existence of equilibrium points

In the following, the conditions for the existence

of all possible equilibrium points of the system (2.2)

are discussed. System (2.2) results in the following

seven equilibrium points.

1) The vanishing equilibrium point E, = (0,0,0,0)
always exist.

2) The disease -predator free
E, =(%,0,0,0), where
2=1—(u,+uz). (2.2a)

Note that equation (2.2a) is a positive, provided that:

equilibrium  point

(u, +uz)<1. (2.2b)
3) The predator - free equilibrium point E, =
(x,y,0,0) exists if and only if there is a

positive  solution to the following set of
equations:

1—-x—(Q4+u)y—(u,+u3)=0 (2.3a)

U xy +upx — (Uus +ug+ug )y =0 (2.3b)

From equation (2.3a) we have,

x=1-(A4+u)y— (u, +u3). (2.3¢)

Now, by substituting equation
(2.3b) we get:

Ayt +A,y+A;=0

where :

A= —(1 4+ uy)uy.

A= uy (1 = 2uy) —up — (1 + uy)ug — (ug + uo).

Ag=(1- (uz +us)) uy .

Note that by using Descartes rule of
equation (2.3d) has aunique positive root namely
y provided that A;>0 which is holds by
condition (2.2b).

Substituting the value of yin (2.3¢) vyield that x(¥)
= x which is positive if the following condition hold:
A+u)y + (u, +uz)<1 (2.3e)

(2.3c) in equation:

(2.3d)

sign
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4) The disease - free equil ibrium point
E; =(%,0,20) exists if and only if there is a
positive solution to the following set of equations:

UgZ _
1—x—(uy, +uz) — u5+x—0 (2.4a)
u X
u;ix - u13 = 0 (2.4’b)
From equation (2.4b) we have,
X =St (2.4¢)
U0~ U13
Note that x is positive provided that the following
condition holds:
Ui > Uqs (2.4d)

Now, by substituting equation (2.4c) in equation
(2.4a) we get:
Ug+x

Z = ” A—%— u, —ug) (2.4e)
4
Note

that z is a positive if in addition to
condition (2.4d), the following condition holds
X+ u,+uz) <1 (241

5) The infected -predator free equilibrium point
E, = (X,y,Z,0) exists if and only if there is a

positive  solution to the following set of
equations:
1—x— 1 +u)y— (uy +us) — —=£=0 (2.5q)
Us+x

U XY + UpXx — Ugzy — (U3 + Ug + Ug )Y = 0 (2.5b)

U10 X

+uy—u;3=0 (2.5¢0)

Us+x
From equation (2.5b) and (2.5¢) we have,

Uz (Us+x)—ugox

y= (2.5d)
ugg (us+x)
By substituting (2.5d) in (2.5b) we get ,
z= —ui((u3 +ug + Uy —uyx)
6
_ Upluig (us+x)x (2.56)

ug3(us+x)-ug0x

Now, put equation (2.5d) and (2.5e) in(2.5a) we get,

B;x® + B,x*+B;x +B, =0, (2.51)
where:

By = uguyq (U1o — Us3),

Bz =

UsUsoyy (Uz +Uz) + UglyoUsz — UgUyg (Ug(Ugs —
ug0) ) + ug(1 +uy I[(Ruyottsz — (ug3” + ug0?)] +
Uty [Uro — gz Qus + D]+ wyy (UsUeUso — UpUsUyy)
By = —2usug uyz [(uz +uzduyy +uizs (1+
Uy ) ]+ ug ugg (s —uge)(us +ug +
Ug) = Up Upq — Us Ugg (U Uy + Up Uy Ugz) —
2uguguizfu, —ue 2+ w )l
By = uy wyy (uz + ug + o) + us ug Uyo —
Us Ugo Uga(1+ uy ) —us Ug Uy (U + Us) -
Note that by using Descartes rule of sign
equation (2.5f) has a unique positive root, namely x
provided that one of the following conditions hold:
B, >0,B,>0, B, <0,
B;,>0,B;<0, B,<0,
B; <0, B, <0, B,>0,
B;<0,B;>0, B,>0.

(2.59)
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Substituting the value of X in (2.5d) and (2.5¢e)
yield that z(x) =Zandy(kX) =¥

which are positive if the following conditions hold:
Uz 1 (s DR u; X > (us +ug +ug) (2.5h)

ugz (us +¥)-uqo ¥

Uz (ug +Xx) > uy X (2.50)

Therefore, the infected predator free equilibrium

point: £, = (x,y,z,0) of system (2.2) exists

uniquely in the Int.R3 of xyz— space under

conditions (2.59)-(2.5i)

6) The infected prey free equilibrium point Es =
(%,0,Z,w) exists if and only if there is a positive
solution to the following set of equations:

_ _ Uz -

1—x— (uy, +u3) _—e 0 (2.6a)

e — U WZ — U3 Z+ U, w=0 (2.6b)

Uy Z— (U3 +Ugy) =0 (2.60)

From equation (2.6c) we have,

= Qastis) (2.6d)
U2

Now, by substituting equation (2.6d) in equation
(2.6a) we get:
Y12+ y,x +y3 =0, (2.6e)
where:
V1= Uiz,
Ya=up 1—us —u; —usz),
Y3 = UsUyy — UsUpp (Up + Uz ) — Uy (U3
+ U ).
Note that by wusing Descartes rule of sign
equation (2.6e) has a unique positive root
namely % if y3>0.
Now y; >0, if in addition to the condition (2.2b),
the following condition holds:
Usiy; (1= (uz +uz)) >uy (W3 + Uiy ) (2.6f)
Substituting % and Z in (2.6b) yield that

=\ o~ u1of _ ~
W) =w = (1‘-13 (us+x) 1z,
which is positive if the following condition holds :
1< —4er (2.69)

u 13(us+%)

7) The positive (coexistence) equilibrium point
E,=(x",y",z",w") exists if and only if there
is a positive solution to the following set of
equations:

1—-x—(A+u)y— (u2+u3)— —O (2.7a)

Uy xy + upyx — ugzy — (uz + ug + u9)y u,wy =0,

Uy Z

(2.7b)
z
% + U ZY — U WZ — Ug3Z + Ugaw = 0,
(2.7¢0)
UgpZ + U5y — (Ugz +ugs) = 0. (2.7d)
From equation (2.7d) we have,
1
z= iy ((u13 +ugs) — u15}’)- (2.7e)
Also, from equation (2.7c¢) we have,
_ (Ui0X z
w = (u5+x Us3tu1y) —(ulzz_u14)- 2.71)
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Now, by substituting equation (2.7e) in (2.7f) yield
the following equation;
W= (umx _ u13+u11y) (u13+u14)—u1SY_ (2.79)

Us+x U1z (U13—U1sy )

Then by substituting equation (2.7e) in (2.7a) and
(2.7g) in (2.7b) yield the following two isoclines:
910, y) =1—x— 1 +u)y— (u; +uz) -

ug((ugs + u14)—u15y): (2.7h)

ugz(Uus+x)

926, y) = wxy + upx — (uz t ug + ug)y —uu—fz((u13 +

Uio

Ugy) — u15J’)y - (u5+x + u13—u11y)
(H7J’(u13+u14)—u1SY)> -0

Uz (U13~U15Y)

(2.70)

Now from equation (2.7h) we notice that, when
y — 0, then — x; , where x; represents a positive root
of the following second order polynomial equation:
N, x*+ Nyx+ N;= 0, (2.7))
where:
Ny = uy,,
Ny, = upp(uy, +us +us — 1),
Ny =uy (u; +us + ugs) —us ugp(u; +ug — 1) .
Straightforward computation shows that
equation (2.7j) has a unique positive root namely
xif N3 <O0.
Therefore, (2.7j) has unique positive root if the
following condition holds:
uy (Up +us + Upy) + UsUyp <Us Ugp (U +Usz)
(2.71)

Further, from equation (2.7i) we notice that, when
y = 0,then x =0,

Now, from equation (2 7h) we have:

%:-(2—?)/("’;{1) So—< 0 if one of the

following of conditions hold
(5)>0.(5) >0 0r (53) <0.(52) <o

(2.7k)
Further, from (2.7i) we notice that:

x _ _ (392) ; (992) g0 X 0 i
o= (ay)/(ax).So,dy> 0 if one set of the

following sets of conditions hold:
(5)>0.(52) <0 or (Tr) <0.(3E) >0

2.7
Then the two isoclines (2.7h) and (2.7i) intersect at a
unique positive point (x*,y*) if we substituting the
value of x* and y* in (2.7¢) and (2.7g) yield that
z(y*) =z* and w(x*,y*) =w" which are positive if
and only if the following conditions hold:

Uz Uz (X UzztUig | Ui3
(o) <y <min(5) 5

U1 U1 \ust Uss Uss
(2.7m)

u u x*

o (LX), (2.7n)

Uq1 Ug1 \Us+x

These are present the conditions of existence of E4 =
(x*,y",2",w").
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3 Local stability analysis.
In this section, we analyzed the local stability
of the model (2.2) around each equilibrium point and
discussed through computing the Jacobian matrix
J(x,y,z ,w) and their eigenvalues. The Jacobian
matrix J(x,y,z,w) of the system (2.2) at each of
them can be written:
Of h 0h O
0x dy Jdz ow
oh O O O
0x dy dy ow
] = , (3.1
oh O O O
0x dy Jdz ow
o Ofi O Of
| 0x dy Jz  owl

where f;; 1,2,3,4 are given in system (2.2) and,

Oy om (At u)y — (up +us) — —2
ox x )yt T s Uus +x
UyZX d d UyX
74 ,i_(l'i'ul)x,i:_ 4 )
(us+x)? "oy 0z us +x

af; af2

w ~ Vrax Yt
a—yz=u1x—u62—u7w—(u3+u8+u9),
Oy, 9,

0z Sy 7y

% _ UgoUsZ afs

ox  (us+x? oy

%_ UyoX n _ _

9z _us T x U11Y — UppW — Ug3,

fs fs ~ 0fs
%—um_uuz ox 'E_uﬁw'
fy

9z Uw,

an

T = Wasy T Uiz — (CERAZNE
3.1 Stability of equilibrium point
EO = (0’0!0’0)

At E, the Jacobian matrix becomes:

Jo=J(Ep) = [ay],,, - (3.1a)

where,

a;n =1—(uz +uz),ay; = a3 = a4, =0,

A1 = Uy, 0y = —(Uz + Ug + Uog), Az3 = Az = 0,
az; = az; = 0,d33 = —Uy3,a34 = Uy,

(41 = Qg = Qg3 = 0,044 = —(Uy3 + Ugy).

Then the characteristic equation of J(E,) is given by:

(1= (uz+uz) =) (—(uz +ug +ug) — A1)(—uy3
—A)(—(u3 tu)—4) =0.

The eigenvalues are Ay, =1 — (uy +u3), gy =

_(u3 + ug + u9): AOZ = _u13 and

Aow = —(Uy3 + Uyy).

Thus, the equilibrium point E, ,is locally

asymptotically stable in the. R} provided that,
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Uyt ug > 1. (3.1b)
Otherwise, E, is unstable.

3.2 Stability of equilibrium point

El = (56\,0,0,0)

At E; the Jacobian matrix becomes:

Ji=J(E) = [bij]4x4 ) (3.2)

where,

bis = =2, b1y = —(1+ U2, byy = — 4%
11 = X, D12 = U1)Xx,0q3 = u5+9?'
biy = 0,by; = Uy ,byy =X — (uz + us‘i‘u9)'

bys = byy = 0,byy = byy = 0, by = —2 4,
23 — Y24 — Yy V31 — 32_'33_u5+£ 13
b3y = Uy bay = bay = by3 =0,

bys = —(Uy3 + Uyy).

Then the characteristic equation of J(E;) is given by:

A2 +Bl+C < — —ﬂ)
[A*+BA+C] us + % Uiz
(—(uz+u) =) =0,

where: B = (1 —u)X+ (uz +ug+uy) .

C=(us+ug+ug+ u (uy — %) +u,)x .

So, either

[2+BA+C]=0, (3.2a)

which gives two eigenvalues of J(E;) with negative
real part provided that

the following conditions: hold:

u <1 (3.2b)
X <u, (3.20)
Or
0% s = A) (= (UasHiugs) —1) =0
(u5+a? U3 ) (— (Uyztugs) )=0,
(3.2d)
which gives the other two eigenvalues of J(E;) by:
UqoX
1z = Us + % — U3
< 0 under the condition
% < U3, (3.2¢)

Aiw = —(wg3 +ugy) < 0.
So, the equilibrium point E; is local asymptotically
stable inthe.R% . However, it is unstable otherwise.

3.3 Stability of equilibrium point
E, =(x,5,0,0)

At E, the Jacobain matrix becomes:
J2=(E) = [ny], - (33)

where,
? (1 +u)x e ¥
n11=—xn12=— +u1xn1 = - —
’ 13 Us +
_ X
Mg = 0,np = WY +Up Ny = —U,
Ny3 = —UeY ,Npq = 0,n31 = N3 =0,
Ugo X n _
N3z = — - T U1V — U3
Us + X ’

Nggp = Ugy Nyq = Nyp = Nyu3 =0,
Nys = Usy — (Ugg + Ugs).
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Then the characteristic equation of J(E,) is given by:
[Azi"‘ QA+ Q2 1Cusy — (ugz tugn) —4)
(4 w5 s =2) =0,

where:
Q, = (1+ ”y%)f and,

X
0, =% u, St U@y + w,)]

So, either

[A2+Q.1+Q;]1=0,

which gives two eigenvalues of J(E,) with negative
real part.

Or
Uqg X

(usy — Cugz +ugy) —4) ( u—”+u113_’_u13

5
- /1) =0, (3.3a)
which gives the other two eigenvalues of J(E,) by:

Az, = (usy — (uy3 +uqq)) <0, provided that

(ugz +uUsg) > wysy (3.3b)
Apw = (u1°’f+ Uy ¥ —uy3) <0, provided that
~ Ug+X
(Z:i; + un}_/) < Uz (3.3¢0)

Then E, is locally asymptotically stable in the R%.

However, it is unstable otherwise.

3.4 Stability of equilibrium point

E; = (x,0,20)
At E; the Jacobian matrix becomes:
](E3) = [kij]4_x4 ) (34)
where:

. UyZ .
k11 =X (—1 + m),klz = _(1 + ul)X,

UyX

kis = _m vkia = 0,ky1 = Uy,

kyp = uix —uez — (uz +ug +uq) ,kp3 =0,

Koi = 0 Kaw = UsUyoZ
24 — ) 31_(u5+x)2’

k33 =0, ks = uqy __u122', ksyy =0, kyp =0,

kaz = 0,k4s = U2 — (Ugz + Ugg).

Then the characteristic equation of J(E;)is given by:
[A3+ V122+V2A.+V3] (k44_).) = 0,

ks =uqq2,

(3.4a)
where:
Vi = —(ky1 + kz2)
Vo = kg kay — kizkay — kyzks,
V3 = kizksy kop — kizkaiks;
So, either
(k4q —A) = 0,which gives (3.4b)
A3 = kyuq < 0, provided that
U2 < (Uqg + Uqy). (3.4¢)
Or
B+ VA2 +V,A+V;] =0. (3.4d)
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Using Routh Hurwitz criterion implies
equation (3.4d) has roots with negative real partif
and only if V; >0, V; > 0and
ViV, — V3 > 0.
Now V; > 0, provided that:

b (3.4€)

(us+x)?
U X < ugZ + (ug + ug + Ug)

(3.4f)

V5 >0due to condition (3.4f).
Further, it is easy to check that:
ViVy = Vs = kyy(—kaa(kag + kao)+hizkay

+ kisks1) + kay (kiz koz + kisksz),
Now, the first terms is positive by conditions
(3.4e)and (3.4f) while the second term is
positive if in addition to (3.4f) , the following
condition holds:

56(1 + ul)(uGZ + (U,3 + us + ug) - ulx) >
unz () (3.49)

Ug+X
So, all the eigenvalues of J(E;) have negative real
part under the above given conditions and hence E;
is locally asymptotically stable. However, it is unstable
otherwise.

3.5 Stability of equilibrium point

E4_ = (?,7,7, 0)
At E, the Jacobian matrix becomes:
JE) = ey, ,, (3.5)
where:
%+ k2 (1+u,)%
11 = —X ,Clp = — U)X,
11 (us +f)2 12 1
Ue 0 7+
C - - =, C =y, ¢ =u Uy,
13 s _t =,C14 21 1y 2
x - -
C2 = —Uy 5'023 = —UgY ,C24 = —U7Y,
UsUyoZ _ 0
C31 =————=, C39p = Uy1Z,C33 =0,
31 (us +f)2 32 11 33

C34 = Upg — u122_'_c41 = 0,¢42 =0,¢43 =0,

Caq = U1pZ + UysY — (Ugz + Usy)

Then the characteristic equation of J(E,) is given by:
[ABB4+ L A2+ LA+ L3](cue —1) =0,(3.50)

where:

Ly = —(c11 +¢22) -

Ly = €11€22 = €12€21 — €13C31 — €23C32 .

Ls = €33 €32€11 — €32€21C13 + €13( €31C22 — €12C23)

So, either

(644 - /1) =0 (3.5b)
Aaw = Casa < 0, provided that

UppZ + Ussy < (Ugz + Ugs), (3.5¢)
or

/13 + L1 /12 + L2/1 + L3 =0. (3.5d)

Using Routh Hurwitz criterion implies equation (3.5d)
has roots with negative real part

if and only if L, >0, Ly >0and

L,L, —L; > 0.
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Now L; > 0, provided that:
D 1, (3.5¢)
while L; > 0, under condition (3.5e) .Further, it is
easy to check that:
LiL, — L3 = Li(€11€22 — €21€12)

+¢31(€11613 + €23€12) + €32(C22623 + C21€13)-
Now, the first and second terms are positive by
condition (3.5e), while the third term is positive if
the following condition holds:

U y+uy UplUg
(<), (3:5)

So, all the eigenvalues of J(E,) have negative real
part under the given conditions and hence

E, is locally asymptotically stable. However, it is
unstable otherwise.

3.6 Stability of equilibrium point
Es=(X0,Z, W)
At Eg the Jacobian matrix becomes:

J(Es) = [dij]4x4. (3.6)
where:
5 ULXZ 5
dll - X+ (u +f)2 'dIZ = _(1 + ul)xl
5
ULX
diz = Tt R diy =0,dy; = uy,
5
d22 = uli - u6Z - u7W - (u3 + u8 + ug),
UsUqg Z
dy3 =0,dy, =0,d3 =WSST:;O)2
. w
d3; = U2 ,d33 = _u14g'

d3g = U —UgpZ, dyy = 0,
dyp = UsW, dyz = UpW, dyy = 0.
Then the characteristic equation of J(Es) is given by:
[2*+ QA+ QA2+ Q541+ Q,] =0,
(3.6a)
where:
Q1 = —(dy1 +dp; + ds3),
Q2 = dq1dy; +d33 (dyg +dy3)
_ —(dy2dz +dizdss + diadss),
Q3 = d34d43(d11+d22) - d33(d11d22 - d12d21)
_ _d13(d21d32 - d31d22)!
Q4= d3a[da3(di2dy — dy1dy;) — dizdaidas).
Now by wusing Routh Hurwitz criterion all
eigenvalues, which represent the roots
of eg. (3.6a), have negative real parts if and only if
Q,>0,0;>0, Q, >0and
AlzgngZ —Q3)03 — Q12Q4 >0 .
Now @Q, > 0, provided that the following conditions
hold:

Uy z

Gt 27 (3.6b)
U X <ugZ+u,w+ (ug +ug +uy).  (3.6¢)
And, Q; >0, if in addition to conditions (3.6b) and
(3.6¢) , the following condition
holds :
U< UppZ.

the

(3.6d)
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Also, Q, > 0, if in addition to conditions (3.6b —
3.6d), the following condition holds:

Y23 < ulz(uz(l + ul) + (1 - u42 )(u6Z +

(us+%)?
U, W+ uz + ug + ug — U Xd

Further, it is easy to check that:

A= U, — U, , where:

Uy = (dig + dp2)(dy1dy; + d3gdys + d33)
[—d34d43(diy + dyp) + ds3(di1dy; — dipdyy) +
di3(dy1dsy — dsqdyp] + (dig + dyp + d33)[(dr2da +
di3dsy + d3adss) {dzadas(diy + dyp)ds3(diidy, —
dipdy1 — dyz(dards, — d3idy;)}],

Uy = (dyg +dyp + d33)2d34

[das3(di2d21 — di1d3;) — dyzdaidys]
—(dz1d3; — d31d35)[d13d34d43(d1q + dy)
—dy3d33(dy1dy; — dipdyq) + dipdyidisdss
—d?3(dy1dsy — dsqdy;)]+dipdy1dss|dsadys(diy + dyy)
— d33(dy1dyp — di2dy0)].
Hence A,;> 0 if in addition to conditions (3.6b)-(3.6d)
, the following conditions hold:

us+x

. ~ ~ UgX ~ ~
U (Up2Z — U)W < X (1 - (usii)z) (U + u,w+
=2
Uz + Ug + Ug — Uy X) +uf4‘;/—2 (3.6f)

U, > U,. (3.69)

So, all the eigenvalues of J(Es) have negative real
part under the given conditions and

hence Es is locally asymptotically stable. However, it
is unstable otherwise.

3.7 Stability of equilibrium point

E6 — (x*'y*’z*'w*)

At E, the Jacobian matrix becomes:

J(Ee) = [Tij]4x4_ ) (3.7)
where:
* ok
T ——x*+& r, = —(1+uy)x”
1= 12 = 1
(us +x%)2 ’ '

Uyx”* .
3 = Tt x Ty = 0,1 = U + gy,

5

x* * *
22 = U }7’7”23 = TUgY T4 = TURY
UslyoZ” . w*

31 = —(us ¥ x7)? yT32 = U112 ,T33 = —u14;,

T3g = Upq — UppZ", Ty = 0,74 = UssW,
Taz = U W', Ty = 0.
Then the characteristic equation of J(Ey) is given by:
M+Bi23+B; A2+ B;A+B; =0, (3.7a)
where:
B =—(N; +N, +N3),
B; =N, + Ng+ Ng+N; + Ng+ Ng + Ny + Ny,
B; = =N;(N3; + Ng) — N3Ng + Ny, — Ny N7 +
N3 (N4, — Ng)_ NZ(N11 + Njo) + Nys,
B; = N;(N3Ng+ Ny5) + NyN;Nyy + Nyy + Nyg
And,
Ny =1y, Np =19 N3 =133, Ny =N;N, ,
N5 = N,N3, Ng = N;N3,
N7 = —Ty3r35 , Ng = =Typlp4 , Ng = —T31115. Nyp =
—T31T13, Nij = —Ty3l34
N1z =—(I34T32l24 + I32I13121),
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N3 = —(r31723T12 + 42l34123).

Nis =NyjoNg +Ng Ny;

Nis5 =r3p024l3 + T4pl'34023

Ni6= — (3112124 43 + I34T21 13042) -

Now by using Routh Hurwitz criterion all the
eigenvalues, which represent the roots of eq. (3.7a),
have negative real parts if and only if B >0,
B; >0, B; > 0and
A,= (BiB; — B3)B; — B{*B; >0 .

Clearly By > 0, provided that:

Wz (3.7b)

(us+x*)2

Now inBj, the first term is positive if in addition
to conditions (3.7b), the following conditions hold :
(U1 > u122"), (3.7¢)

(U7U15Y") > Usa(Urg — Ugp2Z7). (3.7d)

The second to fourth terms of Bj are positive under
conditions (3.7b) and (3.7¢), while the

fifth term of B3 is positive if the following condition
holds :

1+ u)uy +ugy”)

S u,x* (1 Uyz* ) 3.7
yo U (us +x)2)° (37€)

while the last two terms of Bj are positive if in
addition to condition (3.7¢) the following condition
holds :

1+uy < W (us+x*)? (U14—U122") <X

- e B7f)
15 sU10X"Y U2

Now B; > 0, if in addition to conditions

(3.7b) and (3.7c¢), the following condition holds:

U2 (1+uq) (U14—U122") (U5 +x")

uguys(Uz+usy®) UsUyUL0X Y™
UglUss

U1z [(14ug)(uz+u1y*)x*+ NyNo | (us+x*)2

<

(3.79)

Further, it is easy to check that :
A,= p; — p,, Where :

p1 = (Nz + N, +N3)[(N4, + N5 + Ng + N; + Ng
+Ng + N1o){Ny + N3(Ng — (N, — Ny))

+N;(Nyy — Nyg) = Nyz} — (Ny + N +
N3){Ny(N2Ny; + Nis) + NoNyq}3] — (Ng + Nyg) [Ny (Ng +

Nyi1) + 2NiN3 (N, — No)]
p2 = —(Ny + Np + N3)[N; Ny (Ny + N5 + Ng + N; +
Ng + Ny + Nyg) + N3Ny (Ng — (N4 — Ny))
—N11(Ni; — NyN; — Np(Nyq — Nyo) + Ny3)
+N;Ni1(Ng + Nig) — (Np + N, + N3){Ng
(NyN3 + Nyg) + Nig}] + (N, — Ng) [N (Ny1 — Nyp) +
2N,(N3Ng + NyN; — No(Ny — No) — Ny3)] +
N$(1+ Ng) — NyNy[ 2(Ny, — N3Ng + Ny3) — NN, +
2N;(Ng + N11)[N3Ng — Nip + Np(Nyg — Nig) — Nyz +
NiN;] + Nip[N;; — 2N3Ng + 2N;3] — 2N3;NgNy3,

and, hence A,> 0 if in addition to conditions (3.7a)-
(3.79) the following condition holds:

p1 > P2 (3.7h)
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So, all the eigenvalues of J(E) have negative real
part under the given conditions

and hence Egis locally asymptotically stable.
However, it is unstable otherwise.

4 Global stability analysis:

In this section the global stability analysis for
the  equilibrium points,  which are locally
asymptotically stable of system (2.2) is studied
analytically by use the suitable of Lyapunov functions
as shown in the following theorems.

Theorem (4.1):

Assume that the vanishing equilibrium point E, =
(0,0,0,0) of system (2.2) is locally asymptotically
stable in the R%}.Then E, is globally asymptotically
stable provided that the following condition holds:

us; > 1. (41a)

Proof: Consider the following function:

Fo(o,v,zzw) =x+y+z+w.

It is easy to see that Fy(x,y,z,w)e C*(R%,R),
and Fy(E;) =0,and Fy(x,y,z,w) > 0;
V(x,y,z,w) # E, . Now by differentiating F, with
respect to time t and going some algebraic handling,

given that:
dF,
ar x(1—uz) —x(x+ y) —zy(ug — ugq)
— (g — Uy0) == — wy(uy; —wss) — Uy3(z + w)

Ug+x
— (uz + ug + ug)y
Now, according to the biological facts mentioned in
theorem (2.1) , always u;q < uy, uU1<ug and uyg <
u,, We obtain that:

% <x(1—uz) —uiz(z+w) — (ug +ug + uy)y.
Thus, ddit" is negative definite and hence F, is
Lyapunov function under the condition (4.1a) , and
the proof is complete m

Theorem (4.2):

Assume that the disease — predator free equilibrium
point E; = (X,0,0,0) of system (2.2)is locally
asymptotically stable in the R}.Then E; is globally
asymptotically stable on the sub region ®; € R%
provided that the following conditions hold:
0,>0,, (4.2a)
where:

0,=(x—%)? +u(w+2z)+xy.

.= [L+w)y + 22]2+ux.
5
Proof: Consider the following function
X
Fi(x,y,z,w) = (x—f—fln§)+y +z+w

It is easy to see that F,(x,y,z w)e C1(R%,R),

and F;(E;) =0,and F;(x,y,z,w) > 0;

V(x,y,z,w) # E; . Now by differentiating F; with
respect to time t and going some algebraic handling,
given that:

dF,

E=—(x— )2 —xy + (1 +u)Ry
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—zy(ug —ug) — wy(u; —uys)

—(uy — ulO)

z
+x_u13(W+Z)
—(uz + ug +u9)y+u2x +

UyX z

+x

Now, according to the biological facts mentioned in
theorem (2.1), always, u;q < Uy, u;1<ugand u;s <

u,, we obtain that:
dF,

< —(x= D —upw+2) +H[A+u)y +
5
z)]x+u2x
dFl
Then, <-0,+6,.

Thus dd—t<0 under the condition (4.2a). hence E; is a

globally asymptotically stable on the sub region
®; € R} and then the proof is complete m

Theorem (4.3):

Assume that the predator free equilibrium point
E, = (x,y,0,0) of system (2.2)is locally
asymptotically stable in the R}.Then E, is globally
asymptotically stable on the sub region &, € R%
provided that the following conditions hold:

u, Uy X
(T - 1) <2 2 (4.3a)

y yy
8,>a,, (4.3b)
where:

2

0=[@-0- [Zo-7] +usG+w,
0, = UaX 2 V(ugz + u;w) .

Us+x
Proof: Consider the following function:
F,(x,y,z,w) = (x —f—fln%) + (y—)‘f— ylng) +
zZ+w
It is easy to see that
F,(x,y,z,w)e CY(R%,R) and F,(E,) =0, and
F,(x,y,z,w) >0, V(x,y,2z,w) # E, . Now by
differentiating F, with respect to time t and going
some algebraic handling, given that:
2= (- + (’;—2— )G&-D0-3)-Z -
)% - (ug — ugp) B +Z:fj —(ug u11)y2_
(w7 — ws)yw + ¥ (uez + u;w) — ug3(z + w).
Now, according to condition (4.3a) and the biological
facts mentioned in theorem (2.1) , always u;, < uy,
u1<ug and w5 <u,, We obtain that:

o[-0 - ZO- D] sty + 22

Us +x
+ y(usz +u,w)=-6, + 6,

Thus ‘ZZ < 0under the condition (4.3b).Hence E, is a

globally asymptotically stable on the

sub region ®, € R} and then the proof is complete m
Theorem (4.4):

Assume that the disease free equilibrium point

E; =(x,0,20) of system (2.2)is locally
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asymptotically stable in R%*.Then E; is globally
asymptotically stable on the sub region ®; S R%
provided that the following conditions hold:

Usuio
m <2, (4.4—(1)
6, > 6,, (4.4b)
where:

b =[@-0-@-2)] +,

62 = (1 +up)ky + =2 (X2 + £2) + UpX + ugpziw +
5
(z — 2)2
Proof: Consider the following function

X

Fi(x,y,z,w) = (x—x—xln )+y

VA

+(Z—Z'—z‘ln—,)+w

VA
It is easy tosee that F;(x,y,z w)e C1(R%, R),and
F;(E3) =0,and F;(x,y,z,w) >0;VY(x,y,z,w) # E5 .
Now by differentiating F; with respect to time t and
doing some algebraic handling, given that:

dF3 _ _ 2 UsUqg o .
[(x x) (us+x) (us+x) (x X) (Z Z) +

(z — 2)? ]—xy+(1+u1)xy—

UgXZ UgXZ

UXZ UyXZz

+x  ug+x

ugtx  ugtk (ug —uq1)yz — (u7 = Ug)yw —

(uz +ug + ug)y + uyx — 2 (uny + Uqq g) — U 3w+
ulzz.W + (Z - Z)z
Now, according to condition (4.4a) and the biological
facts mentioned in theorem (2.1), uy;<ug
and u;s < u,, we obtain that:
L[ =) — (2= D —xy + (L +wy)iy +
% (Xz + %2) + Upx + Upzw + (z — 2)?
5

_91 + 92

Thus < 0 under the condition (4.4b), and hence

E;is aglobally asymptotically stable on
the sub region &; € R% and then the proof is
complete m

Theorem (4.5):

Assume that the infected prey free equilibrium point
E,=(x,y,Z,0) of system (2.2)is locally
asymptotically stable. Then Es is globally
asymptotically stable in the sub region w, S R}
provided that the following condition holds:

6, >6,, (4.5a)

where:

91 = [(x—x)——(y )/)] +upw .

—(y ¥ +us(yzZ +yz) + (W5 + up2)w +

(w) (xz +x2).

Proof: Consider the following function:

E,(x,y,z,w) = (x—azc—azcln%) + y—-y-—-
;ﬂn%) +(z-Z-2In7) +w
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It is easy to see that F,(x,y,z,w) e C'(R%,R),
and F,(E,) = 0.,and F,(x,y,z,w) > 0; V(x,y,z,w) #
E, . Now by differentiating F, with respect to time t
and going some algebraic handling, given that:

dF,
T =D (=B L= 702 — (uy— wio)
Xz
(u5+x) —(uy — )E - (ue — u11)zy —
_ _UgoxZ U0 Z X UYL Z X Uy xZ
(u7 u15)y (us+x) (ug+x) (us+x) (ug+x)

us(yz + yz) — (ug —u1)¥Z + up(x + %) —
U, (x;' + = ) + uyw —u (¥Z + yz) + upzw —

zw
Upp— — UsW + Z(Y_J/) + u;yw.
Now, according to the biological facts mentioned in
theorem (2.1) uyq < uy, U1<Ug
and u;5 <u,, we obtain that:
dF,

e [a-D-20-9] —wsw+ Lo-
y) +us(yz+yz) + (uy + u,2)w + (4u—5) (kz +
XZ) o

= _9_1 + 9_2
Thus * < 0 under the conditions

(4.5q) w1th the biological fact (u;q <u,), and.
Hence E; isaglobally asymptotically stable on the

sub region @, S R% and then the proof is complete m

Theorem (4.6) :

Assume that the positive equilibrium point E5 =
(%,0,Z,w) of system (2.2)is locally asymptotically
stable. Then E5 is globally asymptotically

stable on the sub region o S R} provided that the
following condition holds:

Uig U4W

p <2 e (4.6a)
91 > 92 (4.6b)
where:

2
0, = [\[ul‘;w(z—i)—(w—ﬁ/)] + (x— %)%+
xy + (uz + ug + ug)y
6,=(1+u)xy + —+—> (u“ 410)
(w—w)2.
Proof: Consider the: following function:
Fs(x,y,z,w) = (x—f—fln;—f)+ v+ (z—2-
Zln )+ (w—W—win>)
It is easy to see that Fs(x,v,z,w)e C*(R%,R),and
Fs(Es) = 0,and Fs(x,y,z,w) > 0;V(x,y,2z,w) # Esg

Now by differentiating Fs with respect totime t and
going some algebraic handling, given that:

(xZ+ Xz) + up,x +

dF. . -
d_: =—(x- x)z - xy + (1 +u)xy —(uy — u10)
Xz ( xZ ) (
(us+x) Ua (us +x) (u5+JE) Y10 (us +x)
xZ
et d) ) — (ug —uy1)yz — (ug +ug + ug)y +

U X ~ (Ug — Uyo) —y(uyZ + uysw) —
U4Ww _ 2
— (z—2)*+

%(z — DWW —w) — (w—w)?+ (w— )2
Now, according to condition (4.6a) and the biological
facts mentioned in theorem (2.1) always, u;q < U4,

u1<ug and uy5 < u,,we obtain that:
2

afs _ _ | [waaw oy — iy —(x — %)2 —

s o [J (z—2) - w—-w)| —(x— %
— (us +ug +ug)y + (1 +uxy +

M(xz+xz)+uzx+(w W)?

2_91+ 92.

(usg +x)

Then %<Ounder the condition:(4.6b) with the

biological fact (u;o <u,) ,and Hence E:is a
globally asymptotically stable on the sub region

ws € RY and then the proof is complete m
Theorem (4.7):

Assume that the positive equilibrium point Eg =
(x*,y*,z*,w*)of  system (22) is locally
asymptotically  stable. Then Eg is  globally
asymptotically stable on the sub region ®g S R
provided that the following conditions hold:

< UzX .

Z-1<2 /yy (4.7a)
e (4.70)
01 > 6, (4.7¢c)

where:

2
0r = [@-x)- fEo-y)| + | [

2
z) —(w— W*)] :
6;= uis (g — wro)xz" +usx"z) + (ug — W) (2" +

Y’z + (U —u)'w +yw) + (w—wH
Proof: Consider the following function:
Fe(x,y,z,w) = (x—x* —x* ln%) + -y -
* y * * z

y*In ;)+ (z—z'—2z'In =)

+(w—w"— w*ln%)
It is easy to see that F.(x,y,z w)eCl(R%,R),and
F¢(Eg) = 0,and Fe(x,y,z,w) > 0;V(x,y,z,wW) # Eg
Now by differentiating Fg with respect to time tand
doing some algebraic handling, given that:

o= -x+(2-1) G -2 -y -
-y - (- u )(M) (g —
w1)yz — (U — w)y'z" — (U; — wys)yw

Ugxz* Uz x* _ uyz*x*
(us+x*) = (us+x)  (us+x*)
+(ug — w1 )z +y'2) + (u; —us)(y'w +

* _ *2_u10x2*_u14W %2
yw) 4 (W —wh)? = BB (7 )

+% (z=zYw—w") — (w—wHH%
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Now, according to conditions (4.7a),(4.7b) and the In this section, we confirmed our obtained results
biological facts mentioned in theorem (2.1) in the previous sections numerically by using Runge
U < Uy, U <Ug and uys < u,,we obtain that: Kutta method along with predictor corrector method.
dF, . o T W Note that, we use turbo C++ in programming and
E<—[(x—x)— vy (y—y)] —[ P (z - matlab in plotting and then discuss our obtained
2 results. The system (2.2) is studied numerically for

z)—(w —w*)] u—lhc)((u4 — Uqp)xZ” +u4x*z) + one set of parameters and different initial points. The
_ Yy _ . . objectives of this study are: first investigate the effect
g:f_ ;3)13(_3]2 Ty + w mu) O yw) + of varying the value of each parameter on the

dynamical behavior: of system (2.2) and second
confirm our obtained analytical results. It is observed
that, for the following set of hypothetical parameters

=—0; +65.
Then %<Ounder the condition(4.7a)and the

biological acts u;q < u,, uy;<ug, and. Hence Ej is that satisfies stability conditions of the positive
a globally asymptotically stable on the sub equilibrium  point system (2.2) has globally
region wg € RY and then the proof is complete m asymptotically stable positive equilibrium point as

shown in Fig.(5.1).
5 Numerical simulation:

u, =0.5,u, =0.2,u3 =03,uy, = 04,us = 04,u, = 0.6,u;, = 0.5, ug = 0.2,

ug = 05, ulo = 02, u11 = 01, u12 = 03, u13 = 001 ,u14_ = 0002 ,u15 = 001 (51)

@) (b)
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Fig.(5.1) Time series of the solution of system (2.2) that started from four different initial points (0.2,0.4,0.3,0.7) ,
(0.7,0.9,0.6,1), (0.9,1,0.8,1.5) and (1.3,1.7,1.5,1.9) for the data given in (5.1). (a) trajectories of xas a function of
time, (b) trajectories of yas afunction of time, (c) trajectories of zas afunction of time, (d) trajectories w as a function

of time.

Clearly, Fig.(5.1)shows that system (2.2) has a globally Now, in order to discuss importance of the
asymptotically stable as the solution of system (2.2) parameters values of system (2.2) on the dynamical
approaches asymptotically to the positive equilibrium  behavior of the system, the system is solved
point E; = (0.354,0.083,0.037,0.375 ) starting from four  numerically for the data given in eq.(5.1) with varying
different initial points .
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one or more than one parameter at each time and the
obtained results

are given below.

The effect of varying the infection rate u, in the range
0.1 <u; < 2and keeping the rest of parameters as data
given in (5.1) it is observed that the solution of system

1.5
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(2.2) approaches asymptotically to positive equilibrium
point E¢, as shown in Fig.(5.2), for typical value u;=0.7

infected prey y
susceptible predatot z
infected predator w

susceptible prey x

Population

o — =

5000 6000

Time

o 1000 2000 3000 4000

7000

8000 9000 10000

Fig.(5.2) :Time series of the solution of system (2.2) for the data given in eq.(5.1) with u;=0.7 , which approaches to
E¢=(0.335,0.084,0.037,0.364) in the interior of R,*

Now, varying the external source rate of prey u, and
keeping the rest of parameters values as data given in
(5.1), it is observed that for 0.1< u, <0.651 the solution
of (2.2) approaches to the positive equilibrium point Eg ,
as shown in Fig.(5.3) (a) , for typical value u, = 0.4,
while increasing this parameter for 0.651<u,<2 ,it is

@
ES 2 2
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Infected prey Y
Susceptible predator Z

I
o.9 r
L Infected predator W

o.8 |

0.7 |

0.6

Papulation
o]

5

o.a

0.3

o.z2

o -

.

o

4000 6000
Time

o 2000 8000 10000

observed that system (2.2) approach asymptotically to
equilibrium point Ey=(0,0,0,0), as shown in Fig (5.3) (b)
for typical value u, =0.9.

~

b)
1
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Infected prey Y
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Infected predator W
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o6 |
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o be A
o 2000 4000
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Time
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Fig. (5.3) (a): Time series of the solution of system (2.2) for the data given by eq. (5.1) with u,=0.4,

which approaches to Eg=(0.167,0.070,0.376,0.226) in the interior of R%, and (b) time series of solution of

system (2.2) for the data given by (5.1) with u,=0.9 , which approaches to E;=(0,0,0,0) in the interior of
4

R,

Now, varying the parameter u; which represent
the death rate of susceptible prey , and keeping the
rest of parameters values as data given in eq.(5.1), it
is observed that for 0.1<uz; < 0.8 , the solution of
system (2.2) still approaches asymptotically to a

positive equilibrium point Eg, as shown in Fig.(5.4) (a)
, for typical value

u3 = 0.6,while increasing this parameter for 0.8<u; <1,
the solution of system (2.2) approaches to E,, as
shown in Fig.(5.4) (b) ,for typical value u; =0.85.
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()
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Infected prey Y 1
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2000 4000 6000 8000 10000

Fig (5.4) (@):Time series of the solution of system (2.2) for the data given by eq.(5.1) with u3=0.6 , which approaches to
E¢=(0.137,0.021,0.039,0.174), and (b) time series of solution of system (2.2) for the data given by eq.(5.1) with u3=0.85,
which approaches to Ey=(0,0,0,0).

Moreover , if we change the two parameters u, and us
in the same time and keeping the rest of parameters
values as data in eq.(5.1) ,it is observed that for
0.001<u,<0.1,and 0.813<u3<1 the solution of system

(2.2) approaches to the infected prey free equilibrium
point Es, as shown in Fig(5.5), for typical values
u,=0.002 and u;=0.814

Susceptible prey X
Infected prey Y I
Susceptible predator Z

Infected predator W

Population

1000 2000

3000 4000 5000 6000

7000 8000 9000 10000

Fig. (5.5) Time series of the solution of system (2.2) for the data given by eq.(5.1), with u,=0.002 and

u3=0.814 , which approaches

Now, varying the parameter u, which represent the
predation rate of susceptible prey, and keeping the rest
of parameters values as data given in eq.(5.1), it is
observed that for

02 <u,< 2 the solution of  system (2.2) still
approaches to a positive equilibrium point Eg.

The effect of varying the half saturation rate of
susceptible predator us and keeping the rest of
parameters values as data given in eq.(5.1), it is
observed that for 0.1 <ug<1.5 the solution of system
(2.2) approaches to a positive equilibrium point Eg.

The varying the parameter wu, which represent the
predation rate susceptible predator of infected prey , and
keeping the rest of parameters values as data given in
eq.(5.1), it is observed that for 0.1 <ug <2 the solution
of system (2.2) still approaches to a positive equilibrium
point Eg .

Now  the varying of the parameter wu, which
represent the predation rate of infected predator on
infected prey , and keeping the rest of parameters

July-August

to Es=(0.157,0,0.039,0.185).

values as data given in eq.(5.1), it is observed that for
0.01 <u,< 2 the solution of system (2.2) still approaches
to a positive equilibrium point Eg.

Moreover the varying of the parameter ug which
represent the death rate of the infected prey due to the
disease , and keeping the rest of parameters values as
data given in eq.(5.1), it is observed that for 0.01
<ug<l the solution of system (2.2) still approaches to a
positive equilibrium point Eg.

Now the varying of the parameter u, which represent
the harvesting rate of infected prey, and keeping the
rest of parameters values as data given in eq.(5.1), it
is observed that for 0.1 <uy<l the solution of system
(2.2) approaches to a positive equilibrium point Eg. The
varying of the parameter wu;, which represent the
conversion of food rate from susceptible prey to
susceptible predator , and keeping the rest of parameters
values as data given in eq.(5.1), it is observed that for
0.1<u,0<0.4 the solution of system (2.2) still approaches
to a positive equilibrium point Eg . Moreover the
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varying the parameter u,;which represent the conversion
of food rate from infected prey to infected predator ,
and keeping the rest of parameters values as data given
in eq.(5.1), it is observed that for 0.1<u,,<0.6 the
solution of system (2.2) still approaches to a positive
equilibrium point Eg.

An investigation
parameter u;, which

to the effect of
represent the

varying the
infection rate of
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0.01<u,,<1.5 the solution of system (2.2) approaches to
a positive equilibrium point Eg . However the change of
the parameters u, ,u; and u,, at the same time ,and
keeping the rest of

parameters values as data given in eq.(5.1), it is
observed that for 0<wu,<0.002 ,0.79< uz <1, and 0<uy,
<0.01 the solution of system (2.2) approaches to disease
free equilibrium point Ej. , as shown in Fig (5.6), for

5
Susceptible prey X
Infected prey Y
Susceptible predator 2
Infected predator W il

Population

1.5
Time

predator , and keeping the rest of parameters values as
data given in eq.(5.1), it is observed that for

Fig (5.6) : Time series of the solution of system (2.2) for the data given by eq.(5.1) with u,

and u,,=0.01 which approaches to E;=(0.020,0,0.196,0)

An investigation to the effect of wvarying the
parameter u,5 which represent the death rate of predator
in the absence of prey , and keeping the rest of
parameters values as data given in eq.(5.1), it is
observed that for 0.01<u;3< 0.09 the solution of system
(2.2) approaches to a positive equilibrium point Eg while
increasing this parameter further 0.09<u,3<0.11 cause
extinction in the infected predator and the system will:
approach to the infected predator free equilibrium point
Es, as shown in Fig.(5.7) () , for typical value u,3=0.1,
while increasing this parameter further 0.11<u,3<1
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typical value u,=0.001, u;=0.8,and u,, =0.01.

=0.001 , u3=0.8

cause extinction in the predator and the system will
approach to the predator free equilibrium point E,, as
shown in Fig.(5.7) (b), for typical value u,5=0.6.

Moreover change the parameters u,,u;and u,;at the
same time, and keeping the rest of parameters values as
data given in eq.(5.1), it is observed that for O<wu, <
0.008 , 0.079< u5 <1, and 0<wuy5 <0.09 the solution of
system (2.2) still approaches to an equilibrium point E;. ,
as shown: in Fig.(5.7) (c), for typical values u,3=0.08 ,
u,=0.007 and u3=0.792.
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Fig. (5.7) (a): Time series of the solution of system (2.2) for the data given by eq.(5.1) with u43=0.1, which
approaches to Es=(0.307,0.065,0.167,0), and (b) time series of solution of system: (2.2) for the data given by
eq.(5.1) with u,3=0.6, which approaches to E,=(0.365,0.089,0,0). and (c) time series of solution of system (2.2)
for the data given by eq.(5.1) with u,=0.007 , u3=0.792 and u,3=0.08 which approaches to E;=(0.207,0,0,0).

Now, varying the recovery rate of predator u,, and approach to disease free equilibrium point Ej, for
keeping the rest of parameters values as data given typical value u,,=0.2 as shown in Fig.(5.8)(b).

in eq.(5.1), it is observed that for 0.002<wu,,<0.14 Finally , varying the parameter u,s which represent the
the solution of (2.2) approaches to the equilibrium conversion rate of food from infected prey to
point Eg, shown in Fig.(5.8)(a) for typical value infected predator and keeping the rest of parameters
u4,=0.01 as while increasing this parameter further values as data given in (5.1), it is observed that for
0.14<wu,,<1.5 the solution of system (2.2)will 0.01<u,5<0.5 the solution of system (2.2) still

approaches to a positive equilibrium point Eg.
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Fig. (5.8) (a): Time series of the solution of system (2.2) for the data given by eq.(5.1) with u,,=0.01, which
approaches to E¢=(0.0371,0.063,0.064,0.638). Fig.(5.8) (b): Time series of the solution of system (2.2) for the
data given byeq.(5.1) with u,,=0.2, which approaches to E;=(0.020,0,0.498,0).

o

CONCLUSIONS AND DISCUSSIONS: predation or conversely. Two types of functional
In this paper, an eco - epidemiological prey - predator  response for describing the predation as well as linear
model is proposed for study. The model includes SI incidence for describing the transition are used; the

infectious disease in prey which is transmitted by  model is proposed and analyzed, and system (2.2) has
external source and the contact between the susceptible  been solved numerically for different initial points and
and infected species involving the harvesting on the  one hypothetical set of parameters given by eq.(5.1)
infected prey only, and SIS disease in predator species  and the following observation are obtained.

which is spread by contact between susceptible  1-For the set of hypothetical parameters values given
individuals and infected individuals. The epidemics by eq.(5.1), system (2.2) approaches asymptotically to
cannot transmitted between prey to predator by
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globally asymptotically stable
Ee¢= (0.354,0.083,0.037,0.375 ).

2-For the set of hypothetical parameters values given
eq.(5.1), system (2.2) do not have a periodic dynamics.
3-Varying of the parameters
u;, i =1,45,6,7,8910,11,15 which  represent the
infection rate, the predation rate on susceptible prey, the
half saturation rate of susceptible predator the
predation rate of susceptible predator on infected prey
,the predation rate of infected predator on infected prey
, the death rate of the infected prey due to disease ,the
harvesting rate on infected prey , the conversion of
food rate from susceptible prey to susceptible predator,
the conversion of food rate from infected prey to
susceptible predator and the conversion rate of food
from infected prey to infected predator respectively, at
each time and keeping other parameters fixed as data
given in eqg. (5.1) do not have any effect on the
dynamical behavior of system (2.2) and the solution of
system (2.2) still approaches to a positive equilibrium
point Eg=(x*y*,z*,w*).

4-Varying the external source rate parameter of prey
u, and u; which represent the death rate of susceptible
prey, in the range for 0.1<u, <0.651 and 0.1<u3<0.8
and keeping other parameters fixed as data given in
eq.(5.1) the solution of system (2.2) still approaches to a
positive equilibrium point Eg=(x*y*,z*,w*). However if
0.651<u,<2 and 0.8<us<1, the solution of system (2.2)
approaches to vanishing equilibrium point E,=(0,0,0,0),
thus u,=0.651 and u;=0.8 are bifurcation points.

5-For increasing the death rate of prey u; and
decreases external source rate of prey: u, at the same
time in the range 0.001<u,<0.1, and 0.813<u3<1, and
keeping other parameters fixed as data given in eq.(5.1)
the solution of system (2.2) still approaches to the
infected prey free equilibrium point Es=(%, 0, Z, W).
6-By varying the infection rate of predator u;, , and external
source rate of prey u, and the death rate of prey uz at the
same time in the range 0< u, < 0.002, 0.79< us<1, and 0<
U;»<0.01 and keeping other parameters fixed as data
given in eq.(5.1) the solution of system (2.2) approaches
to disease free equilibrium point E;=(x,0, z, 0).

7-The varying of the parameter u,; which represent the
natural death rate of predator, and keeping the rest of
parameters values as data given in eq.(5.1), it is
observed that for 0.01<wu,3<0.09 the solution of system
(2.2) approaches to a positive equilibrium point
Ee=(x*,y*,z*,w*) while increasing this parameter further
0.09<u,3<0.11 cause extinction in the infected predator
and the system will approach to the infected predator
free equilibrium point E, = (X,¥,z,0) while increasing
this parameter further 0.11<wu,3<1 cause extinction in
the predator and the system will approach to the
predator free equilibrium point E,=(x,y,0,0) ,
thus u,3=0.09, u,3=0.11 are bifurcation points.

8-The varying external source rate of prey u, and the
death rate of susceptible prey u; and natural death rate of

point
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predator u,; at the same time in the range for 0<u,<
0.008 ,0.079< uz<l , and 0<wu,3< 0.09 the solution of
system (2.2) approaches to an equilibrium point E;
=(%,0,0,0).

9-Finally, the varying of the recover rate of predator u,
and keeping the rest of parameters values as data given
in eq.(5.1), it is observed that for 0.002< u,, <0.14 the
solution of (2.2) approaches to the equilibrium point
Ee=(x*,y*,z*,w*) while increasing this parameter further
0.14<u,,<1.5 the solution of system (2.2) will approach
to disease free equilibrium point  Es;=(x,0,20) , thus
u,4=0.14 is bifurcation point.
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