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ABSTRACT: In this article the structures and dynamics of prey- predator model are proposed and studied. The refuge in prey
with stage - structured in prey aswell as predators are considered. Lotka-Voltera type of functional response has been
proposed. The conditions, which guarantee the existence of equilibrium points, have been investigated. Uniqueness and
boundedness of the solution of the system are proven .The local and global dynamical behaviors are discussed and
analyzed. Finally, numerical simulations are carried out notonly to confirm the theoretical results obtained, but also to
show the effects of variation of each parameter on our proposed model.
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INTRODUCTION:-

The predator —prey, competitive and cooperative models
have obtained much attention from several researchers
[Bazykin 1998, may 2001, kot 2001].In most of these
interactions between homogenous populations .However,
homogenous populations are rare within our restricted
living environment , Mathematical study of predator-prey
has been observed in new studies, the predator- prey model
with age stages are also convenient .The researchers from
both ecology and mathematical modeling are working in this
area [1].

Most of the species during their life span go through
several stages of life .Largely of the modeling approaches
drop such kind of facts .Human beings of several age
level are; consider into one single reproducting group
.Such kinds of modeling approach are capable to produce
simple equilibrium dynamics and some times fail to
satisfy the oscillatory behaviors that are observed in
nature .In order to obtain these types of oscillatory
behaviors several modeling approaches are considered for
set up  stage -structure  models of  ecological
systems .Among several approaches of stage - structure
medels the simple one consists with the division of
society into two groups (juvenile) and (adult) , with
assumption that only adult individual have ability to
produce .

Yang and Zhong [2] have proposed and studied system of
two  stage -structured  deterministic and  stochastic
predator —prey systems where immature prey is predated
with Beddington — DeAngel functional response, while
mature prey is predated with Holling type -1l functional
response.

In fact, the influence of refuge (protection), stage-structure and
the multiplicity of functional responses in the prey—predator
ecological system are the most important topics of benefit. In
recent years, stage-structure models have been studies widely
by a lot of researchers [3-5 ].The prey —predator models with
prey refuge have been investigated by Kar [6]. Ma et al
[7] studied the effects of prey protection on a prey—
predator model with a class of function responses .Chen
et al. [8] studied a predator —-prey model with Holling
type -l response function incorporating a constant prey
refuge .

Kadim. Majeed and Naji [9] considerd a food web model
consisting of two predator - one stage -structured prey
involving Lotka — Volttera type of response of function

with prey refuge , Majeed and Ali [10] proposed and
analyzed a food chain model consisting of two predator -
one stage -structured prey with refuge involving two types
of functional responses Lotka-Voltera and Holling type- Il.
In this article, a stage - structured in both populations prey
and predator model incorporating refuge with linear
response function is proposed and analyzed. The considered
model consists of four nonlinear ordinary differential
equations to describe the interaction among  juvenile
prey, adult prey and juvenile predator, adult predator. This
system is analyzed by using the linear stability analysis
to find the conditions for which the feasible equilibrium
points are stable. Global stability conditions for proposed
model are described by using appropriate Lyapunove
functions
The mathematical model:-
Consider the ecological model consisting of stage -
structure prey in which the prey species growth
logistically in the absence of predation and stage-
structure predator in which the predator decay exponentially
in the absence of prey species .It is assumed that the
prey population divides into two compartments :
immature prey population X(t) that represents the
population size at time t and mature prey population;
Y(t) which denotes to population size at time t
Furthermore the population size of the immature
predator at time t is denoted by Z (t), while W (t)
represents the population size of mature predator at time
t.

Now in order to formulate the dynamics of such
system the following assumptions are considered
1. The immature prey depends completely in it's feeding
on the mature prey that growth logistically with
intrinsic growth rate r > 0and carrying capacity k > 0.
The immature prey individuals grown up and become
mature prey individuals with grown up rate fB; >
0 .However the immature and mature prey facing death
with natural death rates d; > 0and d, > 0 respectively.
2. There is type of protection of the prey species from
facing predation by the predator with refuge rate
constant m e (0,1 ).

3. The immature predator individuals grown up and
become mature predator individuals with grown up
rate 3, > 0.

4. The predator consumes the mature prey individual
according to the Lotka-Voltera type of functional
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response with predation rate ¢; > 0 and contribute a
portion of such food with conversion rates

0<e <1 .

5. Finally, in the absence of food the immature and
mature predator facing death with natural death rates
d; > 0and d, > 0 respectively.

Therefore the dynamics of the above proposed model
can be represented by the following set of first order
nonlinear differential equations.

ax Y

dy

2= eyc,(1 —m)YW—B,Z — dsZ

aw

ﬁ = ﬂzZ_d4_W .

With initial conditions X( 0 )= 0,Y(0) > 0,Z(0) =0 and
W(0) =0.

Note that the above proposed model has twelve

parameters in all which make the analysis difficult .So

in order to simplify the system, the number of
parameters is reduced by wusing the following
dimensionless variables and parameters:
t=rT r=& T =$ T =% r=elc1k
1 r 12 r I3 r y 4 r ’
_ds B _dy X Y
rS_r'6_ '7_r'x—k:y—k;
€1 €1
z=—27Z ,w=—W

Then the non —dimensional form of system; (1) can be
written as:

i [y—(lx_y)—(r1+ 7"2)]= iz y ,zw)

dt

dy X

E:yb_u_m) wn|=flx v 2 w) (2)
dz 7, (1 —m)yw

= %—(r5+ rs)]= f:(x, y ,z, w)
dw T Z

E=W 7_7"7]: fulx, ¥, z, w).

With

x(0)=0,y(0)=0,z(0)=0and w (0)=0.
It is observed that the number of parameters have been
reduced from twelve in the system (1)to eight in the
system (2).
Obviously the interaction functions of the system (2 )
are continuous and have continuous partial derivatives
on the following positive four dimensional space.
R ={(x, y, z, w)ER* : x(0) 20,y(0) =
0,z(0) =20,w(0) =0}
Therefore these functions are Lipschitzian on R%, and
hence the solution of the system (2)exists and is
unique .Further, all the solutions of system (2) with non
- negative initial conditions are uniformly bounded as
shown in the following theorem.
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Theorem (1): All the solutions of system (2) which
initiate in R% are uniformly bounded.

Proof: Let (x(t) ,y(t) ,z(t) ,w(t) ) be any solution
of the system (2) with non -negative initial
condition ( xy, Vo, Zo, Wo) € RY.

Now define the function : L(t) = x(t)+ y(t)+ z(t) +
w(t), and then taken the time derivative of L(t)

along the solution of the system (2), we get:
dL

EZ}’(l_}’)_rzx_ Y =152 — 17w

-1 -r)A -myw.
So, due to the fact that the conversion rate of food from
mature prey population to immature predator population
cannot exceeding the maximum predation rate of mature
predator population, always r, < 1, so,

< H L VVh H - { 2 7}
l ) ere ming? ,13,15,7 )
lhe“, + HL <

Again by solving this differential inequality for the initial

value L(0) =L,,we get:

1
Then, gim L(t) <— .

1 1
L) <—+|(L —Ht,
© +<° )e 4H

= 4H 4H
So, OSL(t)Sﬁ, vt>0,
hence all the solutions of system (2)are uniformly
bounded and the proof is complet.

The existence of equilibrium points:-

In this section, the existence of all possible
equilibrium points of system (2) is discussed. It is
observed that, system (2) has at most three equilibrium
points, which are mentioned in the following:

@®The equilibrium point E, = (0,0,0,0), which known
as vanishing point is always exists.
@®The free predators'
pointE; = (x , y, 0, 0), where:

— _ r1(1-13)-To13 - T1(1-73)—T273
y=T , and X = (T)rg,
uniquely in Int.R2 (Interior of R2) of xy — plane if in

addition of biological fact r; < 1 the necessary condition
holds:

equilibrium

exists

rn( -
< n@d —r) ) (3)
3
@Finally, the positive (coexistence) equilibrium
point E,( x*, y*, z*, w*), where:
ry(r3y" —1x7)
fE— (4a)
16(1 —m)y
15 + 76T
st (4h)
1,76(1 —m)
N 17(1s + 16) [1ar6 (1 — m) — (15 + 16)77]
= o) > ,and (4c)
(1 —m)2(r, +1y)
T, ryy* —rx*
w'=w(z) = 8 =3 TNX (4d)

zF =
Ty (1 —m)y*
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exists uniquely in the interior R% if the following

conditions hold:

1 rs(1 —m) > (15 + 15)15, and (4e)

rxt <3y’ (4f)

The local stability analysis of system (2)

In this section, the local stability analysis of

system (2 )around each of the above equilibrium points
is discussed through  computing the  Jacobian
matrix J(x,y,z,w)of system (2)at each of them
which is given by:

J= [ai]-]4x4 , Where (5)
an =—(+1), a,p =1-2y, a3 =ay
=0, ay; =1,
Ay, =13 —(1—m)w, a =0,
ay=—1-m)y, a3z =0, azx=nl-mw,
azz = —(rs + 1), a34 = 1,(1 —m)y, ay; =0,
Ay =0, Qy3 =75, Quq = —17.

The local stability analysis at Ej :
The Jacobian matrix of system (2)atE, can be written
as:

Jo = J(Ep)
—(Tl + 7"2) 1 0 O
_ 41 —T3 0 0
=1 o 0 —@s+r) o (69
0 0 Te -1

Then the characteristic equation of J,is given by:

(22 + tr(AD)A+ det(A))(—(s +15) —A)(—15— 1)
=0

so, either

(-(s+1)—A)(-r,—-21)=0,

this gives two eigenvalues of J, by:

Aoz = —(rs+715) <0,and Ay, = -1, <O0.

Or

A2+ tr(A)A + det(4) =0,

where:

gt 1 ],SO,
n T3

tr(A) = Aox + Aoy = —(1 + 1, +13) <0
det(A ) =Aox. Aoy = 11(r3 — 1) + 1o13.
Which gives the other two eigenvalues of J, with negative
real parts provided that the following condition holds:

r; > 1. (6b)

Then E, is locally asymptotically stable in the R% .
However, it is; a saddle point (unstable) otherwise.

The local stability analysis at E;

, and

The Jacobian matrix of system (2) at E; can be
written as:
Ji=J(E) = [byl, . (7a)

where:

by =—=(1+1), bip=1-2y, bj3 =0y, =0,

byy =71,byy = =13, by3 =0, by =—(1—m)y, by =
b3y = 0,b33 = —(15 +75), b3y =1,(1 —m)y, by =
by =0,by3 =76, byy =—1y.

Then the characteristic equation of J; is given by:

[22 —tr(A A+ det(4d )][A? — tr(B)A +det(B)] = 0

(7b)
where:
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i [—(n +r) 1- 23], and
n -3 _

B = [_(7”5 +76) n(l- m)y] 5o
Ts -1 ’

tT‘(/D = /‘llx + Aly = _(Tl + rz + T3) < 0,

det(/{) = /‘llx . Aly = ‘)"3(7"1 + Tz) - Tl(l - 2}_/) ,and

tr(B) = A1z + Ay = —(r5 + 76 +17) <0,

det(B) = Ay . dy =17(r5 +76) —176(1 —m)y

so, either

[22 + tr(A)A + det(A)] = 0, (7¢)

which gives the two eigenvalues of J; with negative real

parts due to the following condition

1

y> 5
Or
[A%2 + tr(B)A + det(B)] = 0
which gives the other two eigenvalues of J; with negative
real parts due to the following condition

17(rs +76) _ (7e)

1 76(1 —m)
Hence, E;is locally asymptotically stable in R} .However,
it is asaddle (unstable) point otherwise.
The local stability analysis at E,

(7d)

The Jacobian matrix of system (2)at E, can be
written as:

jzz[dij]4x4 ) (8a)

where :

dyp=—(+1r)<0, d,=1-2y",

diz= d1y =0, dyy =11 >0,
dy, =-1;—(1—-mw* <0, dy3=0,

dyy =—(1—m)y*,d3; =0 ,ds, =1,(1 —m)w* >0,
d3z = —(15 +716),d3s = (1 —m)y” > 0,dyy =0,

dy =0, dyz=71>0,dyy=—1, <0.
Then the characteristic equation of ], is given by:
[A* + Bj22 + B,bA2+ B; A+ B,] =0, (8b)
where:

By =—={o+v1)> 0.

B, =voy1 +vs — Vs

By = =2y,y2 —v1(¥3 + ¥s) — Ve

B, = dq1Y¢ > 0, with,

Yo =(d11 +dp) <0 ,y; =dz3+dy <0,
Y2 = d33das = Vs = d3adsz >0, y3 = dy1dy; <0,

Ys = di2dy1 > 0, yg = dpadsadys <O.
Now by using Routh -Hawirtiz criterion equation (8b)
has roots (eigenvalues) with negative real parts if and
only if B; >0, i=134 and

A= (BB, — B;)B; — BB, > 0.
Clearly B; > 0 and B; > 0 provided that:
v < %
Straightforward computation shows that:
A= [vov1(Yo + v1) = Yo(ys — 2¥2 — ¥s) + 2¥1¥s + VelBs

- (o + V1)2d11]’1

(8¢)

= ll - lz »
where
L = o + v ov12yovz +ve) + (3 + ¥s) (oys

+v71(v3 —vs))(rs — ¥s) 2yor2
+7ve)] ,and
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L =y1(ys +vs)[4vov2 + v1(¥s +¥s) + 26]
+ 2v0¥2(¥s + 2v0¥2) +¥6(2¥o¥2 + 76
+ (Vo +v1)?d11)

Hence, A will be positive if the following conditions hold:

L>1, (8d)
and ,
(n+r)m+A-—mwrn(l-2y9. (8e)

Therefore, all the eigenvalues of J; have negative real
parts under the given conditions and hence E, is locally
asymptotically stable. However, it is unstable otherwise.
The global stability analysis of system(2)
In this section the global stability analysis for the
equilibrium points, which are locally asymptotically stable,
of system (2)is studied analytically with the help of
Lyapunove method as shown in the following theorems.
Theorem ( 2 ): Assume that the vanishing equilibrium
point E, = (0,0,0,0) of system (2) is locally
asymptotically stable in R}. Then E, is globally
asymptotically stablein R% .
Proof: Consider the following function:

Vo(x,y,z,w) =x+y+z+ w,
Clearly V,: R% — R is a C! positive definite function.
Now by differentiating V;, with respect to time t and

doing some algebraic  manipulation, gives that:

dv
T =YL=y ) —rx—ry = (A =m)(1 = myw - 15z

- TyW.
Now, due to the facts that is mentioned in proof of theorem
(1), always r, < 1, we get,
I 0 < Yyl —1r) —npx—1rz— 1w .
Hence d—t < 0 under condition (6b) and then V, is strictly

Lyapunov function. Thus we obtain that E, is a globally
asymptotically stable in R% and the proof is complete.

Theorem (3 ): Assume that the free predators equilibrium
point E; = (x,y,0,0)of system (2)is a locally
asymptotically stable in R%. Then E; is a globally
asymptotically stable on the region w; c Rf that
satisfies the following conditions:

n i_(y_)_’)<2 n(y —y?) (9a)
y X x - X Xyy
y <(1-m)y (9b)

Proof: Consider the following function

V, (x,y,z,w) =c1( x—f—fln% )+c2 (y—)‘f—
ylng) + 3z + 4w,
where :¢; ,c, ,c3 and ¢,
determined.

Clearly V; : Rf > R is; a C! positive definite function.

Now by differentiating V; with respect to time t and
doing some algebraic manipulation, gives that:

are positive constants to be

av )
dt XX

(x —%)? e -y?2+
X —Xx) ———=
vy y-y
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[q (3— O+y )) Cz“] - D —)

x x

—,(y =y A —mw + czr, (1 — m)yw

- C3rSZ - C3T62 + 647"62 - C4_T7W.
Bychosen ¢; =c,=c3=c¢,=1, we get:
avy & -5% 7
< = R VA _5)\2
ai = T @0 3 -9

1 y 1 _ _
+Kx—— Shl )+ yi] - D0 -7

-1 -m)((1 —n)y =y Iw —152 — 17w
Now by using the conditions( 9 a ) we obtain that

dl _ 1
v l/(yy )—F(y 7

-@-m)(A-n) y—y) w—rsz
- 1w
Clearly, % is negative definite on the region w; due to the

condition (9b). Hence V; is strictly Lyapunove function
thus E; is a globally asymptotically stable on the
region w;and the proof is complete.

Theorem (4): Assume that the positive (coexistence)
equilibrium point E, = (x*,y*,z",w*) of system (2)is
locally asymptotically stable in the R% .Then E, is a
globally asymptotically stable on any region w,C
R%that satisfies the following conditions:

rn 1 —y* *— oy r
n, =y, =yt n (104)
y X X 2xx* yy*

yi<y' <y (10b)
7, rn(l—m

2A-mw< M (10¢)
z yy*zz

T T 2nrs(l—m
1o myy 4 e [ZAeO ) - ) (10d)
z w ZWwW

Proof: Consider the following function:
x
Vo( x,y,z,w ) = (x —-x* - x ln
y=y =y ln—)
g ;
+( z—2z" — 2z ln;vz
+ (w -w" —-w " )
Clearly V,:Rf - R is a C'positive definite function.

Now by differentiating V,with respect to time t and
doing some algebraic manipulation, gives that:

‘<

av,  ((y'=y*) y*z) e N "2
E_ X —-x") —7()/_)/)
n 1 (y-y") X X
+[<; T f)](x—x WXy—y")
-(1- -y m)( z —z*)?

F2A=m)(z=2 )y =y")
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1,
+;4(1—m)y* (z=2" ) (w—w")

TeZ"

So,

d * *2
thZS_ (((yx ; )>>(x )
rn 1 (Cy-y") . .
_(y_+x__x7>(x_x Yy —y9)

"
2y y*

e (w—w*)? +:V—6(w —w*)(z - z%).

+ (y=y" )2

rl *Zr_‘l' _ * ok _ *
(5570 ) LGy (s Yo mw)

(1 —m)(z— z*)Z)

2272*

*

-w*)(z-2z )+T6Z*(W—W* )2)
ww

—1-m)(y —y“w

Now by using the conditions(10a) — (10d) we obtain that:

2

dv, (y*_y*z) N n N
E<—l,7(x—x ) - /zyy*(y—y )‘
2

n . T4 X
—l W(}’_}’ )— ,ZZZ*(l—m)(Z—Z)‘

043

2l

B
i3

04

mmabume prey
=
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[=]

03
"0 100 00 W00 00 S000 GO0 TOO0 BOOD 9D 10000
Tima
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- / i (1-m)(z—2z"— o2 (w—w")
2zz* ww*

—(1-m)(y = y".
Clearly, % is negative definite on the region w, due to the

conditions ( 10b) .Hence V, is strictly Lyapunov function.
Thus E, is a globally asymptotically stable on the
region w, and the proof is complete.

Numerical analysis of system (2)

In this section, the dynamical behavior of system (2)is
studied numerically for one set of parameters and three
different initial points. The objectives of this study are:
first investigate the effect of varying the value of each
parameter on the dynamical behavior of system ( 2) and
second confirm our obtained analytical results. It is
observed that, for the following set of hypothetical
parameters that satisfies stability conditions of the
positive equilibrium point, system (2) has a globally
asymptotically stable positive equilibrium point as
shown in Fig.(11.1).

rn =05nr,=01,p =01, =05, =0.5,

re =05, =01,m=0.3 1D

Clearly, Fig. (11.1) shows that system (2) has a
globally asymptotically stable as the solution of system

(2) approaches asymptotically to the positive
equilibrium point E, =
(0.375,0.343,0.128,0.639 ) starting from three

different initial points and this is
obtained analytical results.

confirming our
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wl
11 w
. w3

0.9 i
0.8 i
0.7H i

7
0.6 -1 4

05 r r r r r r r r r
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

Fig.(11.1):-The time series of the solution of system (2) started from the three different initial
points (0.4,0.5,0.6,0.7),(0.3,0.4,0.5,0.6),and (0.2,0.3,0.4,0.5), for the data given by eq.(11) (a)- the
trajectories of xas afunction of time, (b) — the trajectories of y as afunction of time, (c) trajectories of z as afunction
of time, (d) the trajectories of w as afunction of time.

Now, in order to discuss the effect of the parameters
values of system (2)on the dynamical behavior of
the system, the system is solved numerically for the
data given in(11) with varying one parameter at
each time.

By varying the parameter r; which represents the
conversion rate of the immature prey into mature prey

and keeping the rest of parameters as data given in (11)
in the range 0.1 <r; <1, itis observed that the solution
of system (2)approaches asymptotically to the
positive equilibrium point E,,as shown in Fig.(11.2),
for typical value r; = 0.91.

1.4 T T T

121

0.81

T 1 1 1
Immature prey
Maturre prey
Immature predator
Mature predator

Populations

0.6

0.2

r r r

r

r

r r r r

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

Fig. (11.2 ):-Time series of the solution of system (2) for the data given in (11) withr; = 0.91, which approaches to
E, = (0.22,0.34,0.14,0.7 ) in the interior of R% .
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Now, varying the natural death rate parameter of immature
prey r, and keeping the rest of parameters values as
data given in (11), it is observed that for 0.01 <r, <
1 the solution of system (2) approaches asymptotically
to a positive equilibrium point E, .

On the other hand varying the natural death rate of
mature predator parameter r; and keeping the rest of
parameters values as data in (11), it is observed that
for 0.01 <r; <0.55 the solution of system
(2) approaches  asymptotically to the  positive
equilibrium point E,, as shown in Fig. (11.3)a , for

@)

— Immature prey
— Mature prey
Immature predator
Maturre predator ||

0.9

0.8

]
i

0.5

Populations

0ar

’ ‘M\\
03 \
o2pf

0.1ff

0 c ¢ c ¢ c c ¢ c c
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time
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typical value r; = 0.4 , while increasing this parameter for
0.55 < 1y < 0.829 causes extinction in the predator and the
solution of; system (2) approaches asymptotically to
E; =(x,y,0,0 ) in the interior of the positive
quadrant of xy —plane, as; shown in Fig. (11.3) b, for
typical value r, = 0.6 . and increasing this parameter farther
for 0.829< ry<1 the solution of system (2) approaches;
asymptotically to the vanishing equilibrium point E,, as
shown in Fig. (11.3) c, for typical value r; = 0.83.

Immature prey
Mature prey
Immature predator
Mature predator ||

0.9

0.8

0.7

0.6

Populations
o
3
 —

0 ) N r r r r r r r r
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

0.9

0.8

0.5

Populations

0.4

%
O.GJ[
ﬂ
i

0.3 “

0.2

T T T T T

Immature prey
Mature prey
Immature predator
Mature predator

(0] 1000 2000 3000 4000 5000 6000 7000
Time

8000 9000 10000

Fig(11.3) (a) :Time series of the solution of system (2)for the data given by (11) with r; = 0.4, which approaches
to E; =(0.37,0.34,0.04,0.21) in the interior of R}, and (b): Time series of the solution of system (2) for the data
given by (11)with r; = 0.6, which approaches to E; = (0.34,0.28,0,0 ) inthe interior of the positive quadrant of
xy —plane ,and (c) Time series of the solution of system (2)for the data given by (11)with r; = 0.83, which
approaches to E, in the interior of R%.

Moreover, varying the parameter; r, which represents the
conversion rate of predation of the mature predator upon
the mature prey, and keeping the rest of parameters
values as data given in (11), it is observed that for
0.01 <r, <0.19the solution of system ( 2 ) causes
extinction in the predator and the solution of system (2)
approaches  asymptotically to the free predator
equilibrium point E;, in the interior of the positive

quadrant of xy -plane as shown in Fig. (11.4) a, for
typical value 7, = 0.19 , while increasing this parameter
for 0.2 <r, <1 the solution of system ( 2 ) approaches
asymptotically to the positive equilibrium point E, ,as
shown in Fig.(11.4) b, for typical value r, =0.29.
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Fig . (11.4) (a)—Time series of the solution of system (2)for the data given by (11)with r4 = 0.19, which approaches
to E; = (0.18,0.88,0,0) in the interior of R% ,and (b) — Time series of the solution of system (2)for the data given by
(11) with 14 = 0.29, which approaches to E, = (0.40,0.59,0.07,0.34) in the interior of R% .

The varying of the parameters r; and rywhich represents
the natural death rate of the immature predator, and the
conversion rate of the immature predator to mature
predator respectively keeping the rest of parameters
values as data given in (11), it is observed that for
0.01 <715 <1land0.01 <715 < 1the solution of system
(2) still approaches asymptotically to a positive
equilibrium point E,.

For varying the natural death rate parameter of the mature

0.5

'

predator r,, with 0.01 <r, < 0.254 the solution of
@
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system (2) approaches asymptotically to the; positive
equilibrium point E, = ( x*,y",z",w" ) in the interior
of the interior of R%, as shown in Fig.(11.5) a, for typical
value r, = 0.2, while for 0.255 <, < 1 the solution of
system (2) approaches asymptotically to E; =
( %,%,0,0 ) in the interior of the positive quadrant of
xy — plane, as shown in
Fig.(11.5) b, for typical value r, = 0.5.

(b)

\

T T
Immature prey
— Mature prey
Immature predator
Mature predator

r r r r r r r

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

Fig .(11.5):- Time series of the solution of system (2)for the data given by (11) with different values of r; ,
(a):E; =(0.20,0.86,0.014,0.03) is a asymptotically stable withr; = 0.2, (b): E; =(0.18,0.88,0,0) is a asymptotically
stable with r, = 0.5.

Finally, varying the number of prey inside the refuge
parameter m and keeping the rest of parameters values
as data given in (11), it is observed that for 0.01 <
m < 0.74 the solution of system (2 )approaches
asymptotically to the positive equilibrium point E,, as
shown in Fig.(11.6) a, for typical valuem = 0.7, while

increasing this parameter in the range 0.74 <m < 1 leads
that the solution of system (2) approaches
asymptotically to free predator equilibrium point E; in Int.
R%, as shown in Fig. (11.6)b, for typical value m =
0.75.
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Fig(11.6 ):— Time series of the solution of system (2) for the data given by (11 ) with different values of m, (a) -
E, = (0.27,0.8,0.04,0.22) is a asymptotically stable withm = 0.7, (b)-E,; =(0.18,0.88,0,0 )is aasymptotically stable
with m =0.75.

CONCLUSIONS AND DISCUSSION:-

In this paper, we proposed and analyzed an ecological
model that described the dynamical behavior of the
prey-predator real system. The model included four non -
linear autonomous differential equations that describe
the dynamics of four different population, namely first
immature prey (X), mature prey (Y), immature predator
(Z) and (W) which is represent the mature predator.
The boundedness of system (2) has been discussed. The
existence conditions of all possible equilibrium points
are obtain. The local as well as global stability analyses
of these points are carried out. Finally, numerical
simulation is used to specific the control set of
parameters that affect the dynamics of the system and
confirm our obtained analytical results. Therefore system
(2) has been solved numerically for hypothetical set of
parameter given in eq. (11) and different initial point and
the following observations are obtained.

1- The system within the set of parameters imposed does
not have a periodic solution.

2- For the set hypothetical parameters value given in eq.
(11), the system (2) approaches asymptotically to globally
stable positive point E, = (0.375,0.343,0.128,0.639).
Further, with varying one parameter each time, it is
observed that varying the parameter values, r;i=
1,2,5and 6 do not have any effect on the dynamical
behavior of system (2) and the solution of the system

still approaches to positive equilibrium point E, =
(x*,y%,z",w").
3- As the natural death rate of mature prey ry

increasing to 0.55 keeping the rest of parameters as in
eq. (11), the solution of system (2) approaches to
positive equilibrium point  E, . However if 0.55 <1y <
0.829, then the predator will face extinction and the
trajectory transferred from positive equilibrium point to
the equilibrium point E; = (x,y,0,0), further more if
0.829 < r; < 1 the solution of system (2) approaches to
the vanishing equilibrium point E, thus, the parameters

r; = 0.55 and r; = 0.829 are bifurcation points of system
(2).

4- As the parameter 7, which represents the conversion rate
of food from the mature prey to the immature predator
increasing to 0.19 keeping the rest of parameters as in
eq.(11), the solution of system ( 2) approaches to the free
predators equilibrium point E; = (¥,y,0,0), while for the
values 0.19 <7, <1, then the trajectory transferred from
the free predators equilibrium point E; = (x¥,y,0,0) to
E, =(x",y",z",w"), which means revival of the predator
population thus, the parameterr, when 7, =0.19 is a
bifurcation point of system (2).

5- As the natural death rate of the mature predator r,
increasing to 0.254 keeping the rest of parameters as in
eq.(11), the solution of system ( 2 ) approaches to the
positive equilibrium point E,, further increasing r; in the
range 0.255 < r, < 1 causes the predator faced extinction
and the trajectory transferred from the positive
equilibrium point E, to the free predator equilibrium
point E; = (x,¥,0,0), thus, the parameter r, when r, =
0.255 is a bifurcation point of system (2).

6- As the number of prey inside the refuge m varying in
the range 0.01 <m < 0.74 and keeping the rest of
parameters values as data given in eq.( 11 ), the solution
of system (2 ) approaches asymptotically to the positive
equilibrium point E,, while increasing this parameter in the
range 0.74 <m <1 causes extinction of the predator
population and the trajectory transferred from
E,=(x%y*,z*,w" ), to E;= (x,y,0,0), thus, the
parameter m when m = 0.74 is a bifurcation point of
system (2).
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