
Special Issue-Agile Symposium, Malaysia.
Sci.Int.(Lahore),25(4),1117-24,2013 ISSN 1013-5316; CODEN: SINTE 8

1117

 A SURROGATE METRIC FOR ABSTRACTION COMPLEXITY IN
OO SOFTWAREDESIGN:THEORETICAL VALIDATION

Bajeh,Amos Orenyi

member, IEEE Computer Society

(UniversitiTeknologi PETRONAS, Seri Iskandar, Perak, Malaysia

bajeh_amos@yahoo.com)

Shuib Basri

(UniversitiTeknologi PETRONAS, Seri Iskandar, Perak, Malaysia

Shuib_basri@petronas.com.my)

Low Tan Jung
(UniversitiTeknologi PETRONAS, Seri Iskandar, Perak, Malaysia

lowtanjung@petronas.com.my)

ABSTRACT: The measurement of the quality attributes of software designs is crucial to the development of
quality software. Design refinements, in order to enhance the quality of software products, become harder

and costlier after implementation. Quality indicators that can be measured from High Level Designs (HLD)

provide early information that can guide developers in building quality into software product at the design

phase before the implementation of the design. This paper presents the identification and theoretical

validation of an OO metrics that can be taken as surrogates for the measurement of the complexity due to

the level of abstraction in OO software HLD. The metric can be used as part of measurement models for

external quality attributes such as maintainability. It can serve as early indicator of complexity level in

design and thus aid in developing maintainable products which are crucial to the success of development

processes, such as the agile software development process, that tends to manage complexity by using

iterative and incremental approach to software development.

Keywords:OO metrics, Validation, Abstraction, Complexity, Agile development, Retrospectives

1. INTRODUCTION
The significance of measurement in any engineering

discipline is succinctly captured by the statement: “You

can‟t control what you can‟t measure”-Tom DeMarco.
Measurement plays an integral part in the development of

engineering artifact such as software designs in software

engineering. Measuring the attributes of software designs

informs developers on the quality of their products and how

to control complexity in order to develop software products

with desirable qualities [1-5]. Measurement of the internal

attributes of software serves as surrogates for the estimation

of the external attributes such as usability, maintainability,

changeability, analyzability, etc. This is depicted by Briand

et al.‟s description of a causal chain model shown in Figure

1 [6]. It shows that structural properties or attributes have
impact on the cognitive complexity of a design and this in

turn affects the external quality attributes of the design. It

implies that in order to estimate the external quality

attributes of software designs, the internal quality attributes

must be measured accurately as much as possible. In Object-

Fig 1: Briand et al.’s Causal chain model

Oriented (OO) software development research literature,

several OO metrics [7-11] have been proposed to measure

the internal attributes of OO software design, and several

quality models [12-19] have been proposed to estimate the

external quality attributes of OO software products.

Complexity as a concept is multifaceted and only specific

dimension of it can be measured at a time; attempting to
measure complexity as a single value has been seen to be an

impossible task; Fenton [20] liken such attempt to the a

search for the impossible holy grail. Thus, to measure the

complexity of an OO software design, specific viewpoint or

dimension should be considered. The OO mechanisms:

abstraction, encapsulation and information hiding;

inheritance; and polymorphism can be considered as specific

dimensions from which design complexity can be measured.

This paper focuses on the identification and theoretical

validation of an OO metric that can serve as surrogate

measure of the complexity due to the level of abstraction in
an OO HLD. The identification and theoretical validation of

OO abstraction metric is to ensure that the metric measures

the concept of complexity [21], and conforms to the theory

of measurement [22]. Consequently, this will ensure that the

metric properly discriminates between different alternative

OO software designs. Metrics that properly discriminating

between designs will ensure that the same value is not

assigned to different designs having different levels of the

measured attribute (e.g. abstraction).

In the literature, the theoretical validation of OO metrics is

seldom carried out before the proposal of some of the

existing external quality measurement models that use the
metrics [4, 16, 17, 18]. Consequently this often renders the

models inherently invalid theoretically. The empirical

validation of such models can be nothing but a premature

task since some/all of their constituent metrics are

theoretically invalid.

mailto:lowtanjung@petronas.com.my

Special Issue-Agile Symposium, Malaysia
 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),25(4),1117-24,2013

1118
To aid in early quality management of OO software,

this study identifies and validates OO abstraction metric that

can be collected/measured from OO HLD. The HLD is the

UML class diagram -the de facto design notation for OO

software- which consists of classes, their attributes and

methods declarations, and class interrelationships. The

declarations specify the attributes‟ data types and visibility;

methods‟ visibility, return data types and signatures.

The other parts of this paper are organized as follows:
Section II presents the approach that will be used to validate

the OO metric that is identified in section III. The theoretical

validation of the metric is presented in section IV while the

applicability of the metric is discussed in section V. Section

VI concludes the paper and states the future work.

2. METHODOLOGY
Existing OO abstraction measurement metrics that can be

measured from HLD are identified from the literature and

discussed. The promising metric, among the identified

metrics, is further validated using existing metric validation

properties and axioms. The theoretical validation of the
metric is carried out using two approaches: the property-

based approach and the measurement theory approach. The

property-based approach provides the necessary but not

sufficient properties that a metric must satisfy. The

properties only indicate the quality concept that a metric

measures; quality concept such as complexity, size and

length. On the other hand, the measurement theory approach

provides sufficient properties that must be satisfied to show

that a metric is theoretically valid but do not indicate the

quality concept the metric measures. The complexity

properties proposed by Briand et al. [21] are used in this

study for the property-based validation while the axioms for
distance function, used by Poels n Dedene [22] to develop

the DISTANCE framework, are used for the measurement

theory-base validation. The satisfaction of the complexity

properties will show that the identified metric measures

complexity, while the satisfaction of the distance function

axioms will show that the metric conforms to the theory of

measurement.

2.1 Briand et al. Properties for Complexity Metric

In [21], Briand et al. defined the properties of five quality

concepts. The properties of complexity metrics was defined

thus:

A system, S is defined as a pair RES , where E is the

elements of the system and R is the binary relations on the

elements of the system (i.e. EER), representing the

relationships between the elements of the system. Base on

this definition of a system, the following are the five Briand

et al.‟s properties of a valid complexity metric (in this paper,
the properties are designated as P1, P2, P3, P4 and P5):

P1. Nonnegativity: The complexity of a system

RES , is nonnegative, i.e. 0)(sComplexity .

P2. Null Value: The complexity of a system RES , is

null if R is empty, i.e. 0)(sComplexityR .

P3. Symmetry: The complexity of a system
RES ,

 does not

depend on the convention chosen to represent the

relationships between its elements, i.e. given that RES ,

and 11 , RES ,)()(1SComplexitySComplexity .

P4. Module Monotonicity: The complexity of a system

RES , is no less than the sum of the complexities of

any two of its modules with no relationships in common

RES , and
111 , mm REm and

222 , mm REm and

Smm 21
and 21 mm RR ,

)()()(21 mComplexitymComplexitySComplexity
P5. Disjoint Module Additivity: The complexity of a

system RES , , composed of two disjoint modules
1m

and
2m , is equal to the sum of the complexities of the two

modules, i.e. RES , ,
21 mmS and

21 mm ,

)()()(21 mComplexitymComplexitySComplexity

2.2 Distance Function (Measurement Theory) Axiom

The distance function axioms for the measurement theory-
based validation approach are as follows [22] (in this paper,

the axioms are designated as A1, A2, A3 and A4):

Let A be a set. The function δ: A x A is a metric if

and only if:

A1: Non-negativity: a, b A: δ(a, b) 0

A2: Identity: a, b A: δ(a, b) = 0 a = b

A3: Symmetry: a, b A: δ(a, b) = δ(b, a)

A4: The Triangle inequality:

a, b, c A: δ(a, b) δ(a, c) + δ(c, b)

3. Identification of OO Abstraction Metrics

The appropriate use of the OO mechanisms enhances the

quality of OO software products [23]. A properly abstracted

design with good encapsulation and hiding of data and

operation details reduces complexity and consequently

enhances the external quality attributes of OO software.

Measuring the level of use of the OO mechanisms in a

design can serve as a surrogate for estimating the (external)
quality of the design. This Section presents the identification

of the OO metric for the measurement of OO abstraction.

The identified metric will be validated in the Section IV.

Abstraction, in computer programming, is the concept used

to reduce details and allow a programmer (designer) to focus

on one design perspective at a time [2], thereby reducing

complexity. It is a concept employed in software

development to manage complexity by keeping away

implementation details and allowing the designer to focus on

one design perspective at a time. The interfaces of the

abstracted components/parts (i.e. hidden implementation
details) are subsequently used in other design components.

In the literature, the measurement of the abstraction of OO

software design has relatively received minimal attention

compare to the measurement of other mechanisms (e.g.

information hiding, inheritance and polymorphism). Very

few OO metrics have been proposed for the measurement of

the level of abstraction in OO designs. Some of the metrics

for abstraction identified from the literature are the

Measurement of Functional Abstraction (MFA) proposed by

Bansiya and Davis [10] and the Abstractness (A) metrics

defined in the Borland Together Tool [24].

Special Issue-Agile Symposium, Malaysia.
Sci.Int.(Lahore),25(4),1117-24,2013 ISSN 1013-5316; CODEN: SINTE 8

1119

 The MFA metric is the ratio of the number of methods

inherited by a class to the total number of methods

accessible by member methods of the class. This metric is an

inheritance based metrics that is only measurable from

inheritance hierarchies. The Abstractness (A) metric is “the

ratio of the number of the abstract classes and interfaces in a

package to the total number of classes and interfaces in the

same package”. It simply measures the percentage of the

total number of classes and interfaces that are abstract in a
package.

These metrics, MFA and A, are the ratios of two numbers

and thus do not completely discriminate between different

designs. For instance, if a design, P has a total of 20 classes

out of which 10 are interfaces and abstract classes, and

another design Q has 40 classes out of which 20 are

interfaces and abstract classes; the Abstractness (A) metric

will yield the same value of 0.5 for the two designs P and Q

implying that they have the same level of abstraction. This

deficiency is also noticed with MFA since it is also the ratio

of two numbers. Thus, MFA and A do not satisfy the
measurement theory Identity axiom (A2 above): using the

instance given above, the distance between the metric values

of P and Q is zero and yet they are not the same in terms of

abstraction.

To measure the complexity due to the level of abstraction of

a design, first, a metric that measures abstraction as defined

above must be used and such metric must be theoretically

valid by satisfying the properties (P1-P5) and the axioms

(A1-A4) stated in section 2. The metric that is proposed for

the measurement of abstraction in this study, measures the

total number of points where Abstract Data Types (ADT) or

User-defined Data Type (UDT) are used in a design. This
number of points signifies the number of places in a design

where details are kept away (abstracted) in other to facilitate

the understanding of one aspect of the design at a time, and

thus enhance the external quality (e.g. analyzability) of the

design. Fig. 2 depicts a model of this metric, where two data

items of class X are of the ADT/UDT Person and Dog. Here,

the arrows link class X to Person and Dog showing that the

implementation details of the two data elements are in

classes Person and Dog.

Fig 2: Number of Abstraction Points (NAP)

In this paper, this metrics is named Number of Abstraction Points
(NAP) and its theoretical validity is presented in the next section.

The metric will serve as a surrogate for the measurement of
complexity due to the level of abstraction in OO design. It can be

used as one of the measures in developing external quality

measurement models.

4. Metric Validation

The designs in Fig 3, 4 and 5 will be used to validate NAP.

Fig. 3 depicts the model for measuring NAP, Fig. 4 is the

design of some selected classes in junit-a java based testing

framework, and Fig. 5 is a design collected from the

literature.

4.1 Property-based Validation

In other to use the Briand et al.‟s complexity properties to

validate the proposed metric NAP, the system (S), elements
(E) and the binary relations (R) have to be defined. Let an

OO UML class diagram design be a system S , E is the set of

the classes in the system design, and R is the set of data

(attributes and parameters) that are ADT or UDT in the

classes. The data items of types ADT/UDT represents a

logical linkage between the classes in which the data items
are declared and the ADT/UDT definition which specifies

the implementation of the data type. This logical relation is

what is depicted in Fig. 2.

The property-based validation of NAP follows:

P1.Nonnegativity: obviously this property is satisfied by

NAP since for any given design the total number of data

elements of type ADT cannot be a negative number. It is

zero when there is no any data/attribute of the type ADT,

and it is greater than zero when there are data items of type

ADT. Thus, 0)(SNAP ; the nonnegativityproperty is

satisfied.

P2. Null Value: the NAP for a system in which none of its
data elements is of ADT will be zero i.e. R thus

.0)(SNAP
P3. Symmetry: using system

1S in Fig. 3 (a); the inverse of
this system is

2S , depicted in Fig. 3 (b), in which the
direction of the relation is reversed (i.e. 1

12 SS). For the
two systems, 2)()(21 SNAPSNAP thus, the symmetry
property is satisfied.
P4. Module Monotonicity: Using the UML diagram of junit
(version 3.8.1) shown in Fig. 4 (a) as a system S; Fig 4(b) is
a representation of S using the defined model in Fig 2.
Modules 1m and 2m in Fig 4(c) can be taken as
two modules of S that do not have any relationship (i.e.

Smm 21 and
21 mm RR). Using the metric NAP to

measure the system and the two modules we have
12)(SNAP

,

5)1(mNAP and 3)2(mNAP ; which show that

)2()1()(mNAPmNAPSNAP . This expression is also
true for any two of the modules in Fig 4(c). Thus, the
module monotonicityproperty is satisfied.
P5. Disjoint Module Additivity: this property is also

implied by module monotonicity property P4 above, but

with the condition that 21 mmS and 21 mm . Using

Fig 4(c), assuming module m1 consist of classes TestCase,

TestResult, Test, AssertionFailedError, Protectable and

TestListener; and that S is made up of m1 and m2, then
NAP of S is the sum of the NAP of the two modules i.e

)2()1()(mNAPmNAPSNAP . Thus, the disjoint

moduleadditivity property is satisfied

Implemented in

Special Issue-Agile Symposium, Malaysia
 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),25(4),1117-24,2013

1120

(a) S1

(b) S2

.

Fig 3: Abstraction model

4.2 Measurement Theory-based Validation

The distance between any two points/values is the absolute

difference between the two points/values. The designs in

Fig. 4 and 5 will be used to show that the metric satisfies the
A2, A3 and A4 axioms stated in section II. The NAP values

for some of the classes in the figures are:

BasicComponent=1, Application=4, UIComponent=3,

BaseTestRunner=3 and Clock=3.

A1.Nonnegativity: this axiom is obviously satisfied since

the number of abstraction points in any given design can

either be zero or greater than zero i.e. a design can either

have one or more variables of type ADT(s) or no variable of

type ADT. Thus the value of NAP is always nonnegative (

0).

A2. Identity: by the definition of the metric, NAP, any two

OO HLD with equally number of variables of ADT are

intuitively having the same level of abstraction. This implies

that the value of NAP will be the same for the two designs

and thus the distance between the two designs in terms of

NAP will be zero (i.e. δ (a, b) = 0 where a and b represents

the two designs). For instance, the BaseTestRunner class and

the Clock class in Fig 4(b) and 5(b) respectively are of the

same level of abstraction; thus, δ(BaseTestRunner, Clock) =

033
033

. This can also be seen in classes TestResult and

Application in Fig 4(b) and 5(b) respectively. Thus, the

identity property is satisfied.

A3. Symmetry: for any two of the designs in Fig. 5, the

absolute distance between them is symmetric. For instance,

BasicComponent and Clock: δ (BasicComponent, Clock) = δ

(Clock, BasicComponent) i.e. 1331 . This is also true

for any combination of any two designs since the absolute

difference between them is the same irrespective of which is
the minuend or subtrahend. Table 1 explicitly shows this for

some of the designs in Fig 4 and Fig 5. Thus, the symmetry

axiom is satisfied.

A4. The triangle inequality: also, for any three designs, the

distance between the NAP of any two (of the three) designs

will be less than the sum of the distance between each of the

two designs and the third one. For instance,

BasicComponent, Application and UIComponent having the

metric values 1, 4 and 3 respectively:

δ(BasicComponent, Application)
δ(BasicComponent, UIComponent) + δ (UI Component,

application)

i.e.
433141

 is true.
Also, Table 2(a) show that this axiom is satisfied for some

other possible combination of any three of the designs in Fig

5 while Table 2(b) shows how some possible permutation of

three of the classes in Fig 5 satisfy the axiom. Thus the

triangle inequality axiom is satisfied.

5. Metric Applicability

Having shown that the metrics NAP for abstraction is a valid

metrics based on measurement theory axioms, and that the

metrics satisfy the Briand et al.‟s complexity properties, it

can be used as surrogates for measuring the complexity due
to the level of abstraction in OO software design. The effect

of complexity on external quality attributes is the same

[25].For instance, external quality attribute such as

analyzability and testabilitycan be expressed as the inverse

of complexity: the more complex a system becomes, the less

analyzable and testable the system will be; conversely, the

less complex a system becomes, the more analyzable and

testable the system will be. This type of relationship between

quality concepts (e.g. complexity) and external attributes

(e.g. analyzability) is what is depicted in the causal chain

model (Fig. 1) described by Briand et al. Thus, the
complexity metric NAP can be used as indicator of

complexity from abstraction viewpoint.

Theoretically valid metrics such as NAP can be used as

quality indicators for OO HLD either as standalone metric or

part of quality models for external quality attributes such as

analyzability, testability, maintainability, etc. Design

complexities need to be managed right from the early stage

of a software process in order to build software products that

are maintainable. Agile software development strongly

advocates for tasks such as „responding to change requests‟

over „following a rigid plan‟ which is perceived to cause
delay in software delivery. Thus, controlling the complexity

of designs will ensure the development of products that can

Special Issue-Agile Symposium, Malaysia.
Sci.Int.(Lahore),25(4),1117-24,2013 ISSN 1013-5316; CODEN: SINTE 8

1121

 be easily maintained in order to incorporate change requests.

Agile software development methodologies uphold the

principles of frequently delivering, to product owners,

working software with best architectural designs [26]. The

Agile approach is incremental and iterative [26 - 30].

Business functionalities are grouped into iterations. At the

end of iteration, a new version of the working software is

delivered to client who in turn provides feedback to the

development team. The next iteration, in addition to
incorporating the feedback from the client, involves the

implementation of additional functionality. Thus the

software product incrementally grows in size and

functionality. The iterative approach itself helps in managing

design complexities in a divide-and-conquer manner;

however, developers need to keep tab on how the

complexity of the design grows with iterations and

measurement can serve this purpose. This is much more so

during the task of agile retrospectives when the development

team reviews the activities carried out during an iteration

and identify what worked well, what has not been done well,
how best to resolve impediments and also improve on the

software design. A typical retrospective agenda [27,

29]includes, among others, gathering data, generating

insights from data and deciding what to do to improve the

software design. NAP becomes handy here for the estimation

of the level of complexity due to abstraction in the design.

This measurement can be collected as data to give insight on

how the complexity of the design is growing over time

through the iterations.This can lead the team to decide how

to manage the growing complexity of the software design by

refining the design in order to minimize complexity.

6. CONCLUSION AND FUTURE WORK
This paper has identified and theoretically validated a

metric, Number of Abstraction Points (NAP), which can

serve as surrogates for measuring the complexity due to the

level of abstraction in OO software high-level designs. The

measurement theory distance function axioms are used to

validate the metric in order to show that the metric complies

with the theory of measurement, while the complexity metric

properties proposed by Briand et al. are used to show that

the metric measures the concept of complexity.

The applicability of the validated metric, NAP was presented

and it promises to be useful quality indicator in terms of the
design complexityof OO software in software process such

as the agile process that requires highly maintainable

software designs for easy incorporation of changes as

software requirements evolves and designs are refined to

improve quality. During agile retrospectives, NAP

measurement can be used to gather information on how the

complexity of the software increases in the iteration under

review. This information will give insight into the design

complexity and thus triggers the agile team into deciding on

how to refine the design to keep complexity in check if it is

growing unfavorably.

The identification and validation of complexity metrics

using other OO mechanisms (e.g. inheritance and

polymorphism) as specific viewpoints will be carried out as

future works. Also, the empirical validation and analysis
showing practical utilization of the metric in an agile

development process (e.g. scrum) will also be conducted as

future work
Table 1: Symmetry axiom satisfied

a b),(),(abba

Clock TestResult 3443 true

BasicComponent Application 1441 true

UIComponent BasicComponent 3113 true

TestCase UIComponent 1331 true

Application BaseTestRunner 4334 true

Table 2: The Triangle inequality axiom satisfied
X: BasicComponent , Y: UIComponent , Z: Application and W:

Clock
(a) Possible combination of 3 of the classes in Fig 4

(b) (b) Possible permutation of 3 of the classes in Fig 4

a b c),(),(),(bccaba

Valid?

X Y Z 144131 true

X Y W 333131 true

X Z W 433141 true

Y Z W 433343 true

Z W Y 333434 true

.

a b c),(),(),(bccaba

Valid?

X Y Z 344131 true

X Z Y 433141 true

Y X Z 144313 true

Y Z X 411343 true

Z X Y 133414 true

Z Y X 311434 true

Special Issue-Agile Symposium, Malaysia
 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),25(4),1117-24,2013

1122

Fig 4: UML class diagram (showing some classes only) for junit- a java based testing framework

(b)

TestCase

BaseTestRunner

Protectabl

e

TestListener

TestSuitLoader AssertionFailedError

TestResult

Test

(c)

m1

m3

m2

TestCase

BaseTestRunner

Protectabl

e

TestListener

TestSuitLoader AssertionFailedError

TestResult

Test

X:

Y:

Special Issue-Agile Symposium, Malaysia.
Sci.Int.(Lahore),25(4),1117-24,2013 ISSN 1013-5316; CODEN: SINTE 8

1123

Fig 5: Sample system for metric validation (classes from [24])

REFERENCES
[1] F.T.Sheldon, K. Jerath, and H. Chung, Metrics for

maintainability of class inheritance hierarchies, Journal of
Software Maintenance and Evolution: Researchand Practice,
vol. 14, pp. 147-160, 2002.

[2] R.S. Pressman, Software Engineering: A practitioner’s
approach,McGraw Hill ,New York, USA, 2005.

[3] L. Badri, M. Badri and A. B. Gueye, Revisiting Class
Cohesion: An empirical investigation on several systems,
Journal of Object Technology, vol. 7, pp. 55-75, 2008.

[4] M. Genero, M. Piattini, E. Manso and G. Cantone, “Building
UML class diagram maintainability prediction models based
on early metrics, In Software Metrics Symposium,
2003.Proceedings. Ninth International, pp. 263-275, 2003.

[5] K. Aggarwal, Y. Singh, P. Chandra and M. Puri, Measurement
of software maintainability using a fuzzy model, Journal of
Computer Sciences, vol. 1, pp. 538-542, 2005.

[6] L.C. Briand, J. Wust, S.V. Ikonomovski, and H. Lounis,
Investigating quality factors in object-oriented designs: An
industrial case study, In ICSE‟99: Proceedings of the 21st

International Conference on Software engineering, New York,
NY: ACM, pp. 345-354, 1999.

[7] S. R. Chidamber and C.F. Kemerer, A metrics suite for object
oriented design, Software Engineering, IEEE Transactions on,
vol. 20, pp. 476-493, 1994.

[8] M. Lorenz and J. Kidd, Object-Oriented Software Metrics,
Prentice Hall, 1994.

[9] W. Li and S. Henry, Object-oriented metrics that predict
maintainability, J. Syst. Software, vol. 23, pp. 111-122, 1993.

[10] J. Bansiya and C.G. Davis, A hierarchical model for object-
oriented design quality assessment, Software Engineering,
IEEE Transactions on, vol. 28, pp. 4-17, 2002.

[11] M. Genero, M. Piattini and C. Calero, A survey of metrics for
UML class diagrams, Journal of Object Technology, vol. 4,
pp. 59-92, 2005.

[12] International Organization for Standardization/International
Electrotechnical Commission. 2001. ISO/IEC 9126-1
Standard, Software Engineering, Product Quality, Part 1:
Quality Model," Author, Geneva.

[13] J.A. McCall, P.K. Richards, G.F. Walters, Rome Air
Development Center and United States. Air Force Systems
Command. Electronic Systems Division. 1977, Factors in
Software Quality, Rome Air Development Center, Air Force
Systems Command.

[14] R. G. Dromey, A model for software product quality, IEEE
Transactions onSoftware Engineering, vol. 21, pp. 146-162,
1995.

[15] B. W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G. J.
MacLeod and M.J. Merrit, Characteristics of software quality,
1978.

XtInterval

BasicComponent

XtPointer

XtResultList

UIComponent

Widget

MainWindow XtAppContent Display

Application

Clock
m1

m2

m3

XtInterval

BasicComponent

XtPointer

XtResultList

UIComponent

Widget

MainWindow XtAppContent Display

Application

Clock

Special Issue-Agile Symposium, Malaysia
 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),25(4),1117-24,2013

1124
[16] S. Rizvi and R. Khan, Maintainability Estimation

Model for Object-Oriented Software in Design Phase
(MEMOOD), Journal of Computing, vol. 2, pp. 26-32, 2010.

[17] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris, E.
Theodoridis, C. Tjortjis and N. Tsirakis, A data mining

methodology for evaluating maintainability according to
ISO/IEC-9126 software engineering–product quality
standard,Special Session on System Quality and
Maintainability-SQM2007, 2007

[18] I. Heitlager, T. Kuipers, and J. Visser, A practical model for
measuring maintainability, In Quality of Information and
Communications Technology, 2007 (QUATIC 2007), 6th
International Conference on the, pp. 30-39, 2007.

[19] F. B. Abreau, M. Goulao and R. Esteves, Towards the design
quality evaluation of object-oriented software systems, In
Proceedings of the 5th International Conference on Software
Quality, 1995.

[20] N. Fenton, Software measurement: A necessary scientific
basis, IEEE Transactions on Software Engineering, Vol. 20,
No. 3, March 1994.

[21] L. Briand, S. Morasca, and V. Basili, Property-based software
engineering measurement, IEEE Transaction on Software
Engineering, 22(1), 68-86, 1999.

[22] G. Poels and G. Dedene, Distance-based software
measurement: Necessary and sufficient properties for software
measures,Information and Software Technology, 42(1), 35-46.

[23] H.D. Rombach, Design measurement: Some lessons learned,
IEEE Software, vol. 7, No. 2, pp 17-25, 1990.

[24] Borland Together Tool, 2008.

[25] R. V. Binder, Design for testability in Object-Oriented
Systems, Communication of ACM, vol. 37, no. 9, 1994.

[26] C. Mike, Succeeding with Agile: Software Development using
Scrum. Pearson Education India, 2010.

[27] J. Blankenship, M. Bussa and S. Millett, The art of agile
development, in Pro Agile. NET Development with
ScrumAnonymousSpringer, 2011, pp. 1-11.

[28] C. Larman, Agile and Iterative Development: A Manager's
Guide,Addison-Wesley Professional, 2004.

[29] J. Shore, The Art of Agile Development. O'Reilly, 2008.
[30] T. Dyba and T. Dingsoyr, "What do we know about agile

software development?",IEEE Software, vol. 26, pp. 6-9,
2009.

