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ABSTRACT: The measurement of the quality attributes of software designs is crucial to the development of 
quality software. Design refinements, in order to enhance the quality of software products, become harder 

and costlier after implementation. Quality indicators that can be measured from High Level Designs (HLD) 

provide early information that can guide developers in building quality into software product at the design 

phase before the implementation of the design. This paper presents the identification and theoretical 

validation of an OO metrics that can be taken as surrogates for the measurement of the complexity due to 

the level of abstraction in OO software HLD. The metric can be used as part of measurement models for 

external quality attributes such as maintainability. It can serve as early indicator of complexity level in 

design and thus aid in developing maintainable products which are crucial to the success of development 

processes, such as the agile software development process, that tends to manage complexity by using 

iterative and incremental approach to software development. 
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1. INTRODUCTION 
The significance of measurement in any engineering 

discipline is succinctly captured by the statement: “You 

can‟t control what you can‟t measure”-Tom DeMarco. 
Measurement plays an integral part in the development of 

engineering artifact such as software designs in software 

engineering. Measuring the attributes of software designs 

informs developers on the quality of their products and how 

to control complexity in order to develop software products 

with desirable qualities [1-5]. Measurement of the internal 

attributes of software serves as surrogates for the estimation 

of the external attributes such as usability, maintainability, 

changeability, analyzability, etc. This is depicted by Briand 

et al.‟s description of a causal chain model shown in Figure 

1 [6]. It shows that structural properties or attributes have 
impact on the cognitive complexity of a design and this in 

turn affects the external quality attributes of the design. It 

implies that in order to estimate the external quality 

attributes of software designs, the internal quality attributes 

must be measured accurately as much as possible. In Object- 

 
Fig 1: Briand et al.’s Causal chain model 

Oriented (OO) software development research literature, 

several OO metrics [7-11] have been proposed to measure 

the internal attributes of OO software design, and several 

quality models [12-19] have been proposed to estimate the 

external quality attributes of OO software products. 

Complexity as a concept is multifaceted and only specific 

dimension of it can be measured at a time; attempting to 
measure complexity as a single value has been seen to be an 

impossible task; Fenton [20] liken such attempt to the a 

search for the impossible holy grail. Thus, to measure the 

complexity of an OO software design, specific viewpoint or 

dimension should be considered. The OO mechanisms: 

abstraction, encapsulation and information hiding; 

inheritance; and polymorphism can be considered as specific 

dimensions from which design complexity can be measured. 

This paper focuses on the identification and theoretical 

validation of an OO metric that can serve as surrogate 

measure of the complexity due to the level of abstraction in 
an OO HLD. The identification and theoretical validation of 

OO abstraction metric is to ensure that the metric measures 

the concept of complexity [21], and conforms to the theory 

of measurement [22]. Consequently, this will ensure that the 

metric properly discriminates between different alternative 

OO software designs. Metrics that properly discriminating 

between designs will ensure that the same value is not 

assigned to different designs having different levels of the 

measured attribute (e.g. abstraction). 

In the literature, the theoretical validation of OO metrics is 

seldom carried out before the proposal of some of the 

existing external quality measurement models that use the 
metrics [4, 16, 17, 18]. Consequently this often renders the 

models inherently invalid theoretically. The empirical 

validation of such models can be nothing but a premature 

task since some/all of their constituent metrics are 

theoretically invalid.              
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To aid in early quality management of OO software, 

this study identifies and validates OO abstraction metric that 

can be collected/measured from OO HLD. The HLD is the 

UML class diagram -the de facto design notation for OO 

software- which consists of classes, their attributes and 

methods declarations, and class interrelationships. The 

declarations specify the attributes‟ data types and visibility; 

methods‟ visibility, return data types and signatures. 

The other parts of this paper are organized as follows: 
Section II presents the approach that will be used to validate 

the OO metric that is identified in section III. The theoretical 

validation of the metric is presented in section IV while the 

applicability of the metric is discussed in section V. Section 

VI concludes the paper and states the future work. 

2. METHODOLOGY 
Existing OO abstraction measurement metrics that can be 

measured from HLD are identified from the literature and 

discussed. The promising metric, among the identified 

metrics, is further validated using existing metric validation 

properties and axioms. The theoretical validation of the 
metric is carried out using two approaches: the property-

based approach and the measurement theory approach. The 

property-based approach provides the necessary but not 

sufficient properties that a metric must satisfy. The 

properties only indicate the quality concept that a metric 

measures; quality concept such as complexity, size and 

length. On the other hand, the measurement theory approach 

provides sufficient properties that must be satisfied to show 

that a metric is theoretically valid but do not indicate the 

quality concept the metric measures. The complexity 

properties proposed by Briand et al. [21] are used in this 

study for the property-based validation while the axioms for 
distance function, used by Poels n Dedene [22] to develop 

the DISTANCE framework, are used for the measurement 

theory-base validation. The satisfaction of the complexity 

properties will show that the identified metric measures 

complexity, while the satisfaction of the distance function 

axioms will show that the metric conforms to the theory of 

measurement.  

2.1 Briand et al. Properties for Complexity Metric 

In [21], Briand et al. defined the properties of five quality 

concepts. The properties of complexity metrics was defined 

thus: 

A system, S is defined as a pair RES , where E is the 

elements of the system and R is the binary relations on the 

elements of the system (i.e. EER ), representing the 

relationships between the elements of the system. Base on 

this definition of a system, the following are the five Briand 

et al.‟s properties of a valid complexity metric (in this paper, 
the properties are designated as P1, P2, P3, P4 and P5): 

P1. Nonnegativity: The complexity of a system 

RES ,  is nonnegative, i.e. 0)(sComplexity .  

P2. Null Value: The complexity of a system RES ,  is 

null if R is empty, i.e. 0)(sComplexityR . 

P3. Symmetry: The complexity of a system 
RES ,

 does not 

depend on the convention chosen to represent the 

relationships between its elements, i.e. given that RES ,

and 11 , RES , )()( 1SComplexitySComplexity . 

P4. Module Monotonicity: The complexity of a system 

RES ,  is no less than the sum of the complexities of 

any two of its modules with no relationships in common 

RES , and 
111 , mm REm and

222 , mm REm and

Smm 21
and 21 mm RR , 

)()()( 21 mComplexitymComplexitySComplexity  
P5. Disjoint Module Additivity: The complexity of a 

system RES , , composed of two disjoint modules 
1m  

and
2m , is equal to the sum of the complexities of the two 

modules, i.e. RES , , 
21 mmS  and 

21 mm , 

)()()( 21 mComplexitymComplexitySComplexity  

2.2 Distance Function (Measurement Theory) Axiom 

The distance function axioms for the measurement theory-
based validation approach are as follows [22] (in this paper, 

the axioms are designated as A1, A2, A3 and A4): 

Let A be a set. The function δ: A x A  is a metric if 

and only if: 

A1: Non-negativity: a, b A: δ(a, b) 0 

A2: Identity:  a, b  A: δ(a, b) = 0  a = b 

A3: Symmetry: a, b  A: δ(a, b) = δ(b, a) 

A4: The Triangle inequality: 

a, b, c A: δ(a, b) δ(a, c) + δ(c, b) 

3. Identification of OO Abstraction Metrics 

The appropriate use of the OO mechanisms enhances the 

quality of OO software products [23]. A properly abstracted 

design with good encapsulation and hiding of data and 

operation details reduces complexity and consequently 

enhances the external quality attributes of OO software. 

Measuring the level of use of the OO mechanisms in a 

design can serve as a surrogate for estimating the (external) 
quality of the design. This Section presents the identification 

of the OO metric for the measurement of OO abstraction. 

The identified metric will be validated in the Section IV. 

Abstraction, in computer programming, is the concept used 

to reduce details and allow a programmer (designer) to focus 

on one design perspective at a time [2], thereby reducing 

complexity. It is a concept employed in software 

development to manage complexity by keeping away 

implementation details and allowing the designer to focus on 

one design perspective at a time. The interfaces of the 

abstracted components/parts (i.e. hidden implementation 
details) are subsequently used in other design components.  

In the literature, the measurement of the abstraction of OO 

software design has relatively received minimal attention 

compare to the measurement of other mechanisms (e.g. 

information hiding, inheritance and polymorphism). Very 

few OO metrics have been proposed for the measurement of 

the level of abstraction in OO designs. Some of the metrics 

for abstraction identified from the literature are the 

Measurement of Functional Abstraction (MFA) proposed by 

Bansiya and Davis [10] and the Abstractness (A) metrics 

defined in the Borland Together Tool [24].  
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 The MFA metric is the ratio of the number of methods 

inherited by a class to the total number of methods 

accessible by member methods of the class. This metric is an 

inheritance based metrics that is only measurable from 

inheritance hierarchies. The Abstractness (A) metric is “the 

ratio of the number of the abstract classes and interfaces in a 

package to the total number of classes and interfaces in the 

same package”. It simply measures the percentage of the 

total number of classes and interfaces that are abstract in a 
package.  

These metrics, MFA and A, are the ratios of two numbers 

and thus do not completely discriminate between different 

designs. For instance, if a design, P has a total of 20 classes 

out of which 10 are interfaces and abstract classes, and 

another design Q has 40 classes out of which 20 are 

interfaces and abstract classes; the Abstractness (A) metric 

will yield the same value of 0.5 for the two designs P and Q 

implying that they have the same level of abstraction. This 

deficiency is also noticed with MFA since it is also the ratio 

of two numbers. Thus, MFA and A do not satisfy the 
measurement theory Identity axiom (A2 above): using the 

instance given above, the distance between the metric values 

of P and Q is zero and yet they are not the same in terms of 

abstraction.  

To measure the complexity due to the level of abstraction of 

a design, first, a metric that measures abstraction as defined 

above must be used and such metric must be theoretically 

valid by satisfying the properties (P1-P5) and the axioms 

(A1-A4) stated in section 2. The metric that is proposed for 

the measurement of abstraction in this study, measures the 

total number of points where Abstract Data Types (ADT) or 

User-defined Data Type (UDT) are used in a design. This 
number of points signifies the number of places in a design 

where details are kept away (abstracted) in other to facilitate 

the understanding of one aspect of the design at a time, and 

thus enhance the external quality (e.g. analyzability) of the 

design. Fig. 2 depicts a model of this metric, where two data 

items of class X are of the ADT/UDT Person and Dog. Here, 

the arrows link class X to Person and Dog showing that the 

implementation details of the two data elements are in 

classes Person and Dog.  

 

 

Fig 2: Number of Abstraction Points (NAP) 

In this paper, this metrics is named Number of Abstraction Points 
(NAP) and its theoretical validity is presented in the next section. 

The metric will serve as a surrogate for the measurement of 
complexity due to the level of abstraction in OO design. It can be 

used as one of the measures in developing external quality 

measurement models. 

4. Metric Validation 

The designs in Fig 3, 4 and 5 will be used to validate NAP. 

Fig. 3 depicts the model for measuring NAP, Fig. 4 is the 

design of some selected classes in junit-a java based testing 

framework, and Fig. 5 is a design collected from the 

literature. 

4.1 Property-based Validation 

In other to use the Briand et al.‟s complexity properties to 

validate the proposed metric NAP, the system (S), elements 
(E) and the binary relations (R) have to be defined. Let an 

OO UML class diagram design be a system S , E is the set of 

the classes in the system design, and R is the set of data 

(attributes and parameters) that are ADT or UDT in the 

classes. The data items of types ADT/UDT represents a 

logical linkage between the classes in which the data items 
are declared and the ADT/UDT definition which specifies 

the implementation of the data type. This logical relation is 

what is depicted in Fig. 2. 

The property-based validation of NAP follows: 

P1.Nonnegativity: obviously this property is satisfied by 

NAP since for any given design the total number of data 

elements of type ADT cannot be a negative number. It is 

zero when there is no any data/attribute of the type ADT, 

and it is greater than zero when there are data items of type 

ADT. Thus, 0)(SNAP ; the nonnegativityproperty is 

satisfied. 

P2. Null Value: the NAP for a system in which none of its 
data elements is of ADT will be zero i.e. R thus 

.0)(SNAP  
P3. Symmetry: using system 

1S in Fig. 3 (a); the inverse of 
this system is

2S , depicted in Fig. 3 (b), in which the 
direction of the relation is reversed (i.e. 1

12 SS ). For the 
two systems, 2)()( 21 SNAPSNAP  thus, the symmetry 
property is satisfied. 
P4. Module Monotonicity: Using the UML diagram of junit 
(version 3.8.1) shown in Fig. 4 (a) as a system S; Fig 4(b) is 
a representation of S using the defined model in Fig 2. 
Modules  1m  and 2m  in Fig 4(c) can be taken as  
two modules of S that do not have any relationship (i.e. 

Smm 21 and
21 mm RR ). Using the metric NAP to 

measure the system and the two modules we have
12)(SNAP

, 

5)1(mNAP and 3)2(mNAP ; which show that

)2()1()( mNAPmNAPSNAP . This expression is also 
true for any two of the modules in Fig 4(c). Thus, the 
module monotonicityproperty is satisfied. 
P5. Disjoint Module Additivity: this property is also 

implied by module monotonicity property P4 above, but 

with the condition that 21 mmS and 21 mm . Using 

Fig 4(c), assuming module m1 consist of classes TestCase, 

TestResult, Test, AssertionFailedError, Protectable and 

TestListener; and that  S is made up of m1 and m2, then 
NAP of S is the sum of the NAP of the two modules i.e

)2()1()( mNAPmNAPSNAP .  Thus, the disjoint 

moduleadditivity property is satisfied 

  

Implemented in 
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(b)  S2 
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Fig 3: Abstraction model 

 

4.2  Measurement Theory-based Validation 

The distance between any two points/values is the absolute 

difference between the two points/values. The designs in 

Fig. 4 and 5 will be used to show that the metric satisfies the 
A2, A3 and A4 axioms stated in section II. The NAP values 

for some of the classes in the figures are: 

BasicComponent=1, Application=4, UIComponent=3, 

BaseTestRunner=3 and Clock=3. 

A1.Nonnegativity: this axiom is obviously satisfied since 

the number of abstraction points in any given design can 

either be zero or greater than zero i.e. a design can either 

have one or more variables of type ADT(s) or no variable of 

type ADT. Thus the value of NAP is always nonnegative (

0 ). 

A2. Identity: by the definition of the metric, NAP, any two 

OO HLD with equally number of variables of ADT are 

intuitively having the same level of abstraction. This implies 

that the value of NAP will be the same for the two designs 

and thus the distance between the two designs in terms of 

NAP will be zero (i.e. δ (a, b) = 0 where a and b represents 

the two designs). For instance, the BaseTestRunner class and 

the Clock class in Fig 4(b) and 5(b) respectively are of the 

same level of abstraction; thus, δ(BaseTestRunner, Clock) =

033
033

. This can also be seen in classes TestResult and 

Application in Fig 4(b) and 5(b) respectively. Thus, the 

identity property is satisfied. 

A3. Symmetry: for any two of the designs in Fig. 5, the 

absolute distance between them is symmetric. For instance, 

BasicComponent and Clock: δ (BasicComponent, Clock) = δ 

(Clock, BasicComponent) i.e. 1331 . This is also true 

for any combination of any two designs since the absolute 

difference between them is the same irrespective of which is 
the minuend or subtrahend. Table 1 explicitly shows this for 

some of the designs in Fig 4 and Fig 5. Thus, the symmetry 

axiom is satisfied. 

A4. The triangle inequality: also, for any three designs, the 

distance between the NAP of any two (of the three) designs 

will be less than the sum of the distance between each of the 

two designs and the third one. For instance, 

BasicComponent, Application and UIComponent having the 

metric values 1, 4 and 3 respectively: 

δ(BasicComponent, Application)  
δ(BasicComponent, UIComponent) + δ (UI Component, 

application) 

i.e. 
433141

 is true. 
Also, Table 2(a) show that this axiom is satisfied for some 

other possible combination of any three of the designs in Fig 

5 while Table 2(b) shows how some possible permutation of 

three of the classes in Fig 5 satisfy the axiom. Thus the 

triangle inequality axiom is satisfied. 

5. Metric Applicability 

Having shown that the metrics NAP for abstraction is a valid 

metrics based on measurement theory axioms, and that the 

metrics satisfy the Briand et al.‟s complexity properties, it 

can be used as surrogates for measuring the complexity due 
to the level of abstraction in OO software design.  The effect 

of complexity on external quality attributes is the same 

[25].For instance, external quality attribute such as 

analyzability and testabilitycan be expressed as the inverse 

of complexity: the more complex a system becomes, the less 

analyzable and testable the system will be; conversely, the 

less complex a system becomes, the more analyzable and 

testable the system will be. This type of relationship between 

quality concepts (e.g. complexity) and external attributes 

(e.g. analyzability) is what is depicted in the causal chain 

model (Fig. 1) described by Briand et al. Thus, the 
complexity metric NAP can be used as indicator of 

complexity from abstraction viewpoint.  

Theoretically valid metrics such as NAP can be used as 

quality indicators for OO HLD either as standalone metric or 

part of quality models for external quality attributes such as 

analyzability, testability, maintainability, etc. Design 

complexities need to be managed right from the early stage 

of a software process in order to build software products that 

are maintainable. Agile software development strongly 

advocates for tasks such as „responding to change requests‟ 

over „following a rigid plan‟ which is perceived to cause 
delay in software delivery. Thus, controlling the complexity 

of designs will ensure the development of products that can 
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 be easily maintained in order to incorporate change requests. 

Agile software development methodologies uphold the 

principles of frequently delivering, to product owners, 

working software with best architectural designs [26]. The 

Agile approach is incremental and iterative [26 - 30]. 

Business functionalities are grouped into iterations. At the 

end of iteration, a new version of the working software is 

delivered to client who in turn provides feedback to the 

development team. The next iteration, in addition to 
incorporating the feedback from the client, involves the 

implementation of additional functionality. Thus the 

software product incrementally grows in size and 

functionality. The iterative approach itself helps in managing 

design complexities in a divide-and-conquer manner; 

however, developers need to keep tab on how the 

complexity of the design grows with iterations and 

measurement can serve this purpose. This is much more so 

during the task of agile retrospectives when the development 

team reviews the activities carried out during an iteration 

and identify what worked well, what has not been done well, 
how best to resolve impediments and also improve on the 

software design. A typical retrospective agenda [27, 

29]includes, among others, gathering data, generating 

insights from data and deciding what to do to improve the 

software design. NAP becomes handy here for the estimation 

of the level of complexity due to abstraction in the design. 

This measurement can be collected as data to give insight on 

how the complexity of the design is growing over time 

through the iterations.This can lead the team to decide how 

to manage the growing complexity of the software design by 

refining the design in order to minimize complexity. 

6. CONCLUSION AND FUTURE WORK 
This paper has identified and theoretically validated a 

metric, Number of Abstraction Points (NAP), which can 

serve as surrogates for measuring the complexity due to the 

level of abstraction in OO software high-level designs. The 

measurement theory distance function axioms are used to 

validate the metric in order to show that the metric complies 

with the theory of measurement, while the complexity metric 

properties proposed by Briand et al. are used to show that 

the metric measures the concept of complexity.  

The applicability of the validated metric, NAP was presented 

and it promises to be useful quality indicator in terms of the 
design complexityof OO software in software process such 

as the agile process that requires highly maintainable 

software designs for easy incorporation of changes as 

software requirements evolves and designs are refined to 

improve quality. During agile retrospectives, NAP 

measurement can be used to gather information on how the 

complexity of the software increases in the iteration under 

review. This information will give insight into the design 

complexity and thus triggers the agile team into deciding on 

how to refine the design to keep complexity in check if it is 

growing unfavorably. 

The identification and validation of complexity metrics 

using other OO mechanisms (e.g. inheritance and 

polymorphism) as specific viewpoints will be carried out as 

future works. Also, the empirical validation and analysis 
showing practical utilization of the metric in an agile 

development process (e.g. scrum) will also be conducted as 

future work 
Table 1: Symmetry axiom satisfied 

 
a b ),(),( abba   

Clock TestResult 3443  true 

BasicComponent Application 1441  true 

UIComponent BasicComponent 3113  true 

TestCase UIComponent 1331  true 

Application BaseTestRunner 4334  true 

 

Table 2: The Triangle inequality axiom satisfied 
X: BasicComponent , Y: UIComponent , Z: Application  and W: 

Clock 
(a) Possible combination of 3 of the classes in Fig 4 

(b) (b) Possible permutation of 3 of the classes in Fig 4 

a b c ),(),(),( bccaba

 

Valid? 

X Y Z 144131  true 

X Y W 333131  true 

X Z W 433141  true 

Y Z W 433343  true 

Z W Y 333434  true 

.  

 

 

a b c ),(),(),( bccaba

 

Valid? 

X Y Z 344131  true 

X Z Y 433141  true 

Y X Z 144313  true 

Y Z X 411343  true 

Z X Y 133414  true 

Z Y X 311434  true 
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Fig 4: UML class diagram (showing some classes only) for junit- a java based testing framework 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

(b)

 

 

TestCase 

BaseTestRunner 

Protectabl

e 

TestListener 

TestSuitLoader AssertionFailedError 

TestResult 

Test 

(c)

 
 

 

 

 

 

 

m1 

m3 

m2 

TestCase 

BaseTestRunner 

Protectabl

e 

TestListener 

TestSuitLoader AssertionFailedError 

TestResult 

Test 

X: 

Y: 



Special Issue-Agile Symposium, Malaysia. 
Sci.Int.(Lahore),25(4),1117-24,2013 ISSN 1013-5316; CODEN: SINTE 8 

 

1123 

  
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig 5: Sample system for metric validation (classes from [24]) 
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