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ABSTRACT: In this paper, we propose a layer discrimination with non-zero and pixel restoration wiener 

filter approach to remove impulse and Poisson noise from X-ray image. Many filters have been used for 

impulse noise removal from color and gray scale images with their own strengths and weaknesses  but X-

ray images contains Poisson noise and unfortunately  there is no intelligent filter which can detect impulse 

and Poisson noise from X-ray images. Our proposed filter use layer discrimination with non-zero adjacent 

element elimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images 

and then restore only those detected pixels with wiener filter in a simple way. Our Proposed algorithms are 

very effective and much more efficient than all existing filters used only for Impulse noise removal. The 

proposed method uses a new powerful and efficient noise detection method to determine whether the pixel 

under observation is corrupted or noise free. If it is corrupted then restore it with wiener filter in second 

step while those uncorrupted pixels are remaining unchanged. Results from computer simulations are used 

to demonstrate pleasing performance of our proposed method. 
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INTRODUCTION 
Digital images may be corrupted by impulse noise in some 

applications. Attenuate noise is an essential task in digital 

image processing. The most important thing of this task is 

how to reduce noise while keeping the image details. There 

are many works on the restoration of images corrupted by 

impulse noise. The most popular impulse noise filter is 

median filter [1] but it smears some details and edges of 

original images especially when the noise level is high. 

Different remedies of the median filter have been proposed, 

such as weighted median filter [2] center weighted median 

filter [3]. These filters apply median operation to each pixel 

regardless if the current pixel is contaminated or not, while 

this operation could produce serious image blurring and can 

suffer noise free pixels. 

Early developed switching median filters often provide good 

outputs only at smaller noise levels [4]. A soft-switching 

impulse detector at the expense of computational complexity 

works on highly corrupted noisy images [5]. The Progressive 

Switching Median Filter (PSMF) involves in numerous 

iterations bringing down the computational efficiency [6]. 

[7] Proposes a more efficient Switching Median Filter 

(Krishnan filter) based on [8,9], which makes possible a 

perfect removal of impulse noise from images corrupted 

with salt and pepper noise and maintains a good 

computational efficiency. 

These noise detection processes often lead to incorrect 

discrimination between pixel and noise. The noise adaptive 

soft-switching median (NASM) filter was proposed in to 

address this issue [10]. The NASM achieves robust 

performance in removing impulse noise while noise ranging 

from 10% to 50%. However, for those corrupted images 

with noise density greater than 50%, the quality of the 

recovered images become significantly degraded.  

BDND perform well and can achieve pleasing result even 

noise density up to 90% [11]. However, it is too time-

consuming to be used in real applications. Directional 

switching median filter detect only impulse noise corrupted 

pixel in same way like BDND but with a bit modification 

[12]. BDND with Square root approach design and work in 

same way like the rest but with a bit changing in detection 

process can only use for Impulse noise detection and 

restoration [13]. 

In this paper, we proposed a novel LDNzAdEE algorithm to 

detect Impulse and Poisson noise corrupted pixels in an 

efficient, fast and in most  

reliable way and then restore those detected pixels with a 

second novel PRWF algorithm. PRWF algorithm will 

restore all detected pixels in a very simple and efficient way 

and it will de-blur the image as well. The quality of the 

filtered images is more prominent than BDND, BDND by 

Elimination, and BDND with Square root approach. 

2. IMPULSE & POISSON NOISE DETECTION 

METHOD  

In this section, first, we will discuss about different Impulse 

and Poisson noise models and then at the end we will discuss 

about our proposed noise detection algorithm. 

2.1. Impulse noise models 

2.1.1. Noise model 1  
Pixels are randomly corrupted by two fixed extreme values 

“0” and “255” generated with the same probability. That is, 

for each image pixel at location (i, j) with intensity value si,j, 

the corresponding pixel of the noisy image will be xi,j , in 

which the Probability Density Function of xi,j is 

              P/2,     for x = 0       

f (x) =        1 – P,   for x = si,j                           (1) 

                      P/2,     for x = 255             

Where „P‟ is the noise density.  
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Equation 1 shows that each pixel in an image has probability 

P/2‟ to be corrupted into either a white dot (salt) or a black 

dot (pepper) and has a probability “1-p‟ to be noise-free 

pixels or clean pixels. The binomial distribution is the 

discrete probability distribution of the number of successes 

in a sequence of “n’ independent yes/no experiments, each 

of which yields success with probability “p”. Thus, in a 

window, if “n‟ represents the number of trials i.e. total 

number of pixels and “r‟ represents the number of success 

i.e. pixels corrupted with noise having a probability “p‟ and 

probability “1-p‟ for noise free pixels, then the Probability 

Density Function f(x) of an image corrupted with impulse 

noise can also be expressed as 

                     n  

  f (x) =        p
r
  (1 – p)

n-r
                         (2) 

                     r 

In this proposed method, the noise density within the placed 

window size is calculated by using the equation for 

probability expressed as the ratio of number of impulses 

(NA) to the total number of pixels (N), mathematically 

expressed as 

  f (x) = NA/N                                                     (3) 

2.1.2. Noise model 2  
Model 2 is similar to Model 1, except that each pixel might 

be corrupted by either “pepper” noise (i.e.0) or “salt” noise 

(i.e. 1) with unequal probabilities. That is, 

 

                 P1,     for x = 0       

   f (x) =         1 – P,   for x = si,j                           (4) 

                      P2,      for x = 255             

    p = p1 + p2 is the noise density and p1! = p2 

2.1.3. NOISE MODEL 3  
Instead of two fixed values, impulse noise could be more 

realistically modeled by two fixed ranges that appear at both 

ends with a length of m each, respectively. For example, if m 

is 10, noise will equal likely be any values in the range of 

either [0, 9] or [246, 255]. That is, 

 

                  P/2m,     for 0 < = x < m        

f (x) =       1 – P,   for x = si,j                                (5) 

                  P/2m,     for 255 – m < x < = 255   

  „P‟ is the noise density.  

2.1.4. Noise model 4  
Model 4 is similar to Model 3, except that the densities of 

low-intensity impulse noise and high-intensity impulse noise 

are unequal. That is, 

       P1/m,     for 0 < = x < m     

 f (x) =        1 – P,   for x = si,j                           (6) 

                               P2/m,     for 255 – m < x < = 255            

  p = p1 + p2 is the noise density and p1! = p2 

2.1.5. Noise model 5 (Poisson noise)  

Poisson noise can affect X-ray image pixels intensity value 

with any random value of (m) respect to the neighbouring 

pixel i.e. pixel can get any random value. That is, 

                  P1/m     for 0 < = x <= m 

f(x) =         1 – P = Si,j                                               (7) 

                   P2/m    for 255 - m < = x < = 255 

 

2.2. Layer discrimination using non-zero adjacent 

element elimination (LDNzAdEE) algorithm 

Our proposed algorithm is applied to each pixel of a noisy 

X-ray image in order to identify whether the pixel is 

„corrupted‟ or „noise free‟. A two-dimensional binary 

decision Metrics is formed at the end of the detection phase; 

with„0 ‟indicating the position of uncorrupted pixels and„1‟, 

indicating the position of corrupted ones.  

The proposed process consists of two iterations, in which the 

second iteration will called conditionally. In summary, the 

steps of the proposed detection method are as follows: 

 

1. Read Noisy X-ray Image & Impose 7*7 Window 

around i
th

 & j
th

 pixel and Create a Binary Map 

(BM) of same sub Image. 

2. Store all the values under the window in a vector 

(V) and Sort it in ascending order.  

3. Find Lowest & Highest values in Vector V. 

4. From Lowest to (Lowest + Highest) / 2, Compute 

the difference of Non-Zero adjacent pixels in V and 

store it in Vector D.  

5. Find the maximum difference in D (From Lowest 

to (Lowest + Highest) / 2) & Mark its 

corresponding pixel in V as b1. 

6. Similarly, from (Lowest + Highest) / 2 to Highest, 

Compute the difference of Non-Zero adjacent 

pixels in V and store it in Vector D.  

7. Find the maximum difference in D (From Lowest 

+ Highest) / 2 to Highest) & Mark its 

corresponding pixel in V as b2. 

8. If selected pixel belongs to middle cluster then 

Uncorrupted. Set corresponding location in BM as 

“0” and go to step 10. ELSE 

9. Invoke 2
nd

 iteration and impose 3*3 window on 

same pixel and go to step 2. 

10. End. (move to next pixel to check where corrupted 

or not) 

As compared to BDND (PE Ng, K. K. Ma, 2006), BDND by 

elimination (A. Nasimudeen, et al., 2012) and BDND by 

square root calculation (M Ashima, A Tayal, 2012), our 

proposed approach is more robust and reliable. By using 

Non-zero adjacent element elimination and with 

Lowest/Highest idea, we can remove a lot of unnecessary 

comparison that ultimately improve calculation speed and 

can detect Poisson noise corrupted pixels as well.  

Beside all these advantages, at the end we will restore all 

detected pixels with a novel Pixel Restoration Wiener Filter 

approach, which is quite simple, very fast and are well suited 

to remove blurriness from X-ray image.  

As we studied that all the existing system/approaches used 

median filters families like switching median filter, 
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directional median filter or Decision based median filter etc 

but all these approaches are supposed to be used for 

removing impulse noise only and no one can handle Poisson 

noise effect from X-ray images like image blurriness. PRWF 

can handle restoration of all detected pixels and image 

blurriness in an efficient way.  

For the understanding of the algorithmic steps mentioned 

above, a 5×5 windowed sub image (instead of 7×7) with the 

center pixel “165” is used as an example for illustrating the 

proposed detection process in figure 1.  

3. PIXEL RESTORATION WIENER FILTER 

ALGORITHM 

Steps for PRWF are as follow: 

1. Firstly, Pixel xij is selected from image X,  

Then in same way bij is selected from binary map BM, 

where i = 1 to (M −1) and j = 1 to (N −1) for an image 

of size MxN. (BM already constructed during 1
st
 

algorithm) 

If bij =‟0‟, then pixel xij is „uncorrupted‟. Hence, go to 

step 5 ELSE go to 2. 

2. Select a 3X3 window Wx in X and Wb in BM centered 

around (i,j)
th

 pixel xij in X and bij in BM respectively. 

3. Check for „0‟s (uncorrupted pixels) in Wb and store 

corresponding elements of Wx in vector Z. 

4. If Z is a null vector, go to step 5. Else, replace xij with 

Wiener of vector Z. 

xij = Wiener (Z) 

5. Increment i,j and consider next xij, bij and go to step 2. 

 

4. EXPERIMENTAL RESULTS 

The performance of the proposed filter is tested against 

BDND, BDND by elimination, and BDND with square root 

filter on a variety of standard test images.  Objective 

comparisons of the performances of these filters on images 

corrupted by various impulse noises and Poisson noise are 

made with the Peak Signal to Noise ratios (PSNR) of the 

images restored by them. Table 1 shows miss detection and 

false alarm and Table 2 represents PSNR results for all 

existing and proposed approaches 
 

 

 

Figure 1. LDNzAdEE Algorithm Example 

 

 

 

 

 



 ISSN 1013-5316; CODEN: SINTE 8 Sci. Int.(Lahore),26(3),1045-1049,2014 1046 

For our experiments, we used intel Pentium core i5 

computer and grayscale images with 8 bit and with 

256*256 resolution.  

 
Table 1. Shows Miss Detection and False Alarm 

 
Technique / 

Noise Type 

Impulse 

Noise with 

Density 20% 

Impulse 

Noise with 

Density 90% 

Poisson 

Noise with 

Density 20% 

Poisson 

Noise with 

Density 
90% 

BDND 

Miss 

Detection 
    0 

False Alarm  

 224 

Miss 

Detection 
    0 

False Alarm  

  447 

Miss 

Detection 
    80 

False Alarm  

  511 

Miss 

Detection 
  119 

False Alarm  

  745 

BDND by  

Elimination 

Miss 

Detection       

    0 
False Alarm 

 180 

Miss 

Detection       

    2 
False Alarm 

 328 

Miss 

Detection       

    51 
False Alarm 

  425 

Miss 

Detection       

  68  
False Alarm 

 654 

BDND with 
square root 

Miss 

Detection 

    0 

False Alarm   
  160 

Miss 

Detection 

    0 

False Alarm   
  298 

Miss 

Detection 

  180 

False Alarm   
   354 

Miss 

Detection 

  235 

False Alarm   
  691 

LDNzAdEE 

Miss 

Detection  

    0 
False Alarm  

 47 

Miss 

Detection  

    0 
False Alarm  

  67 

Miss 

Detection  

    12 
False Alarm  

   80 

Miss 

Detection  

  47 
False Alarm  

  91  

Now we can check PSNR results in Table 2.  

 
Table 2. Shows PSNR results 

 
Technique / 

Noise Type 

Impulse 

Noise with 

Density 20% 

Impulse 

Noise with 

Density 90% 

Poisson 

Noise with 

Density 
20% 

Poisson Noise 

with Density 

90% 

BDND 

MSE: 

18.3970 

PNSR: 

31.9730 

MSE: 

26.7637 

PNSR: 

34.7875 

MSE: 

29.1188 

PNSR: 

29.5231 

MSE: 33.1989 

PNSR: 

25.9594 

BDND by  

Elimination 

MSE: 
15.2528 

PNSR: 

28.9730 

MSE: 
22.9906 

PNSR: 

30.0008 

MSE: 
28.0419 

PNSR: 

30.8444 

MSE: 30.5816 
PNSR: 

27.8353 

BDND with 

square root 

MSE: 

18.3811 

PNSR: 
29.7895 

MSE: 

23.1122 

PNSR: 
27.9182 

MSE: 

29.8589 

PNSR: 
28.5620 

MSE: 32.8782 

PNSR: 

25.0663 

Proposed 
Approach 

MSE: 

12.7873 

PNSR: 
35.2779 

MSE: 

14.1472 

PNSR: 
34.8153 

MSE: 

22.5806 

PNSR: 
36.7944 

MSE: 26.1737 

PNSR: 

28.0898  

 

The results in the table show that our proposed approach 

provides the best results. 

5. CONCLUSION 

In this paper, we propose a fast and reliable algorithm for 

impulse and Poisson noise detection, experimental 

results show that our method performs better than all 

cited filters. The tremendous advantage of the proposed 

method is that it is simple and can be realized even faster 

than all existing filters and can detect corrupted pixels in 

an efficient and reliable way. To remove blurriness from 

X-ray image, our PRWF algorithm outperforms all 

existing approaches.  
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