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ABSTRACT: In this paper, the equations of motion for a general space curve and in spicial case a helix 

curve )=(   are derived by applying the first compatibility conditions for dependent variables ( time 

and arc length). As application of the equations of motions, some famous  equation  is optianed . 
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1. INTRODUCTION 
A lot of physical processes can be modelled in terms of the 
motion of curves, including the dynamics of vortex filaments 

in fluid dynamics [1], the growth of dendritic crystals in a 

plane [2], and more generally, the planar motion of 

interfaces [3]. The Subject of how space curves evolve in 

time is of great interest and has been investigated by many 

authors. Pioneering work is attributed to Hasimoto who 

showed in [1] the non-linear Schr odinger equation 

describing the motion of an isolated non-stretching thin 

vortex filament. Lamb [4] used the Hasimoto transformation 

to connect other motions of curves to the mKdV and sine-

Gordon equations. Nakayama, et al [5] obtained the sine-
Gordon equation by considering a non-local motion. Also 

Nakayama and Wadati [6] presented a general formulation 

of evolving curves in two dimensions and its connection to 

mKdV hierarchy. Nassar, et al [7]-[12] have studied 

evolution of manifolds and obtained many interesting 

results. R. Mukherjee and R. Balakrishnan [13] applied their 

method to the sine-Gordon equation and obtained links to 

five new classes of space curves, in addition to the two 

which were found by Lamb [4]. For each class, they 

displayed the rich variety of moving curves associated with 

the one-soliton, the breather, the two-soliton and the soliton-
antisoliton so-lutions. 

In this paper, Time evolution equations for a general helix 

curve are derived from applying the first compatibility 

conditions for dependent variables ( time and arc length) as 

well as general helix space curve is reconstructed from its 

curvature. 

Here, we consider the motion of curves in three-dimensional 

Euclidean space. Let r  denote a point on a space curve. As 

usual, time is denoted by t .  

 Here, 21,ee  and 3e  are the unit tangential, normal and 

binormal vectors along the curve, and 21,  and 3  are 

the tangential, normal and binormal velocities. velocities 

fields are functionals of the intrinsic quantities of curves, for 

example, curvature, ,  torsion, ,  metric, ,g  etc. Time 

evolution equations for such quantities are derived from (1) 

and the geometrical relations. As applications to physics, 

these models are useful to describe the motion of vortex 

filaments in inviscid fluid, motion of fronts in viscous 

fingering in a Hele-Shaw cell, and kinematics of interfaces 
in crystal growth. 

Consider a curve in 3-D represented by the parameter u  

i.e., ).(= urr  Let ),( tur  be the position vector of any 

point moves on the curve at the time t  such that 

).(=,0)( uu rr  We define the metric of the curve, 

),,( tug  and arc length ),,( tus  as  

,),(=),(,:=
0

dvtvgtus
uu

g
u








 rr
         (1) 

and then the unit tangent vector of the curve, 1e  is defined 

by  

.=:= 2

1

1
u

g
s 





  rr
e  

With this definition of the unit tangent vector one can 

canonically define a unit normal vector ,2e  and binormal 

vector ,3e  according to the well-known Serret-Frenet 

relations  
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   is the curvature of the curve and   its torsion. 

In the same spirit one can also consider describing 

the time evolution of the curve. First we note that the FSE 

Eq. (2) can be written compactly as  

1,2,3.=;= iisi ee                       (3) 

Where the Darboux vector ,= 13 ee    or simply 

),,0,(   in the ,ie  basis. The dynamics of the triad can 

be described by defining a new vector ),,(= 321   

such that, similar to Eq. (3),  

1,2,3.=;= iiti
ee                         (4) 

 which can be written in matrix form as 
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2. Reconstruction of curve from its curvature and torsion 

Consider the Serret-Frenet relations  

EA
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dE
=                                                 (6) 

 where  
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   is the curvature of the curve and   its torsion. 

Now, let  

,=(0),=(0),=(0) 033022011 eeeeee          (7) 

 Basic existence and unique result for systems of linear 

ODEs guarantees the following fundamental theorem:  

Theorem 1 If )(s  and )(s  are given smooth functions 

on an interval ),,(= baI  where I0 and 0>)(s  

then, given 030201 ,, eee , (6) has a unique solution on 

Is  satisfying (7). Moreover  

,)((0)=)( 1
0

dttersr
s

                         (8) 

We have noted that knowledge of   and   essentially 

fixes a space curve and we here list some simple functions 

for   and   and the corresponding curves they generate.   

(i) If 0,=)(=)( ss   the curve is an ( untwisted) straight 

line.  

 (ii) If 0,=)(s  and =)(s  constant 0  the curve is a 

circular arc.  

(iii) If 0,=)(s  but 0)( s  the curve is twisted) 

straight line.  

(iv) If =)(s  constant and =)(s  constant, the curve is 

a circular helix. The curve winds around a circular cylinder.  

(v) If =
)(

)(

s

s




 constant, the curve is a generalized ( not 

necessarily circular ) helix. The curve winds around a 
generalized circular cylinder.  

We will use a powerful method called eigenvalue method to 

solve the homogeneous system (6)in the case (v) 



=

)(

)(

s

s
 

,i.e., we solve  

EBs
ds

dE
)(=                                          (9) 

 with  
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The idea is to find solution of form  

.)(=)(=)( )( dsssvesE s 
                   (10) 

 Now taking derivative on ),(sE  we have  

)()(=
)( sesv

ds

sdE                                        (11) 

 Put (10) and (11) into the homogeneous equation (9), we get  

)(

)(

)(=

)()(=)(=
)(

s

s

esBv

sEsBesv
ds

sdE








 

 So 

,= vBv   

 which indicates that   must be an eigenvalue of B  and 

v  is an associate eigenvector. 

We find that 

2

321 1=0,=,=,=   ii are the 

eigenvalues of B  with associated eigenvectors  
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 viviv  

)(),(),(
321

sEsEsE  are 3  linearly independent ( as 

vectors) solution of the homogeneous system (9).Then the 

general solution )(sEh  of can be written as 

  

)(
3

33222
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])))((sin))((cos(

)))((sin))((cos([=)(
s

h

evcsvsvc

svsvcsE









whic

h can be written in matrix form as 
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If (0,1,0),=(1,0,0),= 0201 ee  and (0,0,1)=03e  are 

the standards unit vectors then 1,=1c  1,=2c  and 

1=3c  

Hence  

.,)(sin,)(cos(0)=)(
00






  sdtdtrsr

ss

 (11) 

 In two-dimensional Euclidean space  (11) 0.  and  
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.)(sin,)(cos(0)=)(
00






  dtdtrsr

ss

  

3. Equations of motion 

It is important to notice that u  and t  are independent but 

s  and t  are not independent. As a consequence, wile u  

and t  derivatives commute, s  and t  derivatives in 

general do not commute;  

Lemma 1   
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g
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Proof.  
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Applying the first compatibility condition  (12) to the matrix 

yields the following equations:  

A
g

g
BA
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A t
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],[= 









                        (13) 

 Written explicitly, Eq. (15) reads  
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For a given g  and ,i  1,2,3,=i  the motion of the 

curve is determined from these equations. 

For the choice s
ss 



 == 2

2

1  and 

 =3  Equation (16) lead to the nonlinear 

Schrodinger equation  
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The sine-Gordan equation ;=  sinst  

is obtained with the choice  

0=,
1

=
1

= 321  





sincos  

 

 

4. Helix Case 

Here we restrict ourselves to arc length parameterized 

general helix curves. That is .=   which implies that 

the motion of the curve is described by 
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 If we set s =  and t=3  then from the 

compatibility condition (12), (15)leads to 0=2  and 

.= 31      

We can deal with the motion of helix curves (  = ) in a 

different way from that in the previous sections. In terms of 

the components of the tangent, normal and bi-normal vectors 

321 ,eee  of helix curve of the curve is expressed as (see 

Section 2) 
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where 
2

0
1=,=   ds

s

 

Applying (5) to the vector ,r  yields the following 

equations  

.=,=0,= 3312  t             (16) 

Application heat equation   

In the above equation (16)if we take ss=3  we 

get the known heat equation  

     0,== sst                                    (17) 

According to Lie’s algorithm [15-17], the 

infinitesimal generator of the maximal symmetry 

group admitted by (17) is given by  

  ),,(),,(= ststX t

i           (18) 

 if and only if the invariance condition of (17) is  

0=)(
(20)
|

[2] X                                        (19) 

 where   
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 is the prolongation of the vector field (18). The 

variables   s are given by the formulae:  
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 Executing the Lie’s algorithm, we obtain the Lie 

point symmetries of (17) given by 
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We look for solutions invariant under the linear 

combination 21 XX   where 21 XX   is a 

constant. Solving the characteristic system for the 

invariants of the linear combination, we obtain  

),(=),(,=  stts           (23) 

 where   is an arbitrary function of  . The 

substitution of (23) into (17) yields  

0=                                 (24) 

 where a prime denotes differentiation with respect 

to   and   represents the wave speed. Solving 

(24), we get  

21= cec   and the plane curve is given by; 

.)(sin,)(cos=)(
00








 dtdtr
ss

      ( 25) 

where 1c  and 2c  are arbitrary constants. Figure  

1: the helix curves corresponding to (28) 

at 5.,3.,0  ttt  with 121  cc  
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Figure  1 
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