ON A GENERALIZATION OF SMALL SUBMODULES

Wasan Khalid¹, Enas Mustafa Kamil²

¹ University of Baghdad ,Department of mathematics , College of Science , , Baghdad , Iraq.

wasankhalid65@gmail.com

² University of Baghdad ,Department of mathematics , College of Science , , Baghdad , Iraq.

mustafaenas@gmail.com

ABSTRACT.: Let R be an associative ring with identity and let M be a right R- module . Let A be a submodule of M, we

say that A is μ - small (denoted by $A \ll_{\mu} M$) if whenever M = A + X, $\frac{M}{X}$ is cosingular, then M = X. In this article, we

give some properties of μ - small submodules. We say that A is a μ -coclosed submodule of M denoted by $(A \leq_{\mu cc} M)$ if

whenever $\frac{A}{X}$ is cosingular and $\frac{A}{X} \ll \frac{M}{X}$ for some submodule X of A, we have X = A. In this paper, several

properties of these submodules are given. As a generalization of hollow module, a nonzero R- module M is called μ -hollow module if every proper submodule of M is μ -small submodule of M. Also, we give a characterization of μ -hollow modules and gives conditions under which the direct sum of μ - hollow modules is μ -hollow.

Keywards. μ -small submodule , μ -coclosed submodule , μ -hollow module.

INTRODUCTION.

Throughout this paper , rings are associative with unity and modules are unital right R- modules , where R denotes such a ring and M denotes such a module. A submodule A of M is called a small submodule of M if whenever A + B = M for some submodule B of M, we have M = B; and in this case we write A <<M, See [1].

We write E(M), Rad(M) and Z(M) for the injective envelope, the Jacobson radical and the singular submodule of M, respectively.

For a right R- module M , Ozcan [2] , defined the submodule $Z^*(M)$ as a dual of singular submodule to be the set of all elements $m \in M$ such that mR is a small module.

 $Z^*(M) = \{ m \in M : mR \le E(M) \}$. A module M is called cosingular (non cosingular) module if $Z^*(M) = M$ ($Z^*(M) = 0$). It is clear that Rad M $\le Z^*(M)$.

A submodule A of M is called coclosed submodule of M denoted by $(A \leq_{cc} M)$ if whenever $\frac{A}{X} \ll \frac{M}{X}$ for some submodule X of A, we have X = A. See [3]. A nonzero module M is called hollow module, if every proper submodule of M is small in M. See [1].

As a generalization of small submodules , we introduced the concept of μ - small submodules. A submodule A of M is called μ - small submodule of M (denoted by A<< μ M) if whenever M = A + X , $\frac{M}{X}$ is

cosingular, then M = X.

We state the main properties of cosingular modules and introduced the main properties of μ - small submodules and supplying examples and remarks for this concepts. Also, we define μ - coclosed submodules of M and μ -hollow modules as a generalizations of coclosed submodules and hollow modules respectively and give the basic properties of these concepts and prove a characterization of μ - hollow modules and give certain conditions under which the direct sum of μ - hollow modules is μ - hollow.

2. Cosingular modules and µ-small submodules

In this section , we give the basic properties of cosingular modules , also we added some results about cosingular modules which are needed later. we introduced μ - small submodules as a generalization of small

submodules which illustrated by examples and remarks and give the properties of $\mu\text{-}$ small submodules.

Lemma 2.1: [2] Let M be an R- module. Then

(1) If $f: M \to M'$ is a homomorphism of R-modules M, M'. Then $f(Z^*(M)) \le Z^*(M')$.

(2) Let A be a submodule of M. Then $Z^*(A) = A \cap Z^*(M)$.

(3) Let M_i ($i \in I$) be any collection of R- modules and let $M = \bigoplus_{i \in I} M_i$. Then $Z^*(M) = \bigoplus_{i \in I} Z^*(M_i)$.

Lemma 2.2.[2] For any ring R, the class of cosingular Rmodules is closed under submodules , homomorphic images and direct sums but not (in general) under essential extensions or extensions.

Corollary 2.3 [2] . Let R be a right cosingular ring. Then any (right) R- module is cosingular.

Corollary 2.4. Every Z- module is cosingular.

We need to prove the followings.

Proposition 2.5. Let
$$A \leq B \leq M$$
 such that $\frac{M}{A}$ is

cosingular, then
$$\frac{M}{B}$$
 is cosingular.

Proof. Let
$$f: \frac{M}{A} \to \frac{M}{B}$$
 be defined by $, f(m+A) = m+B ,$

 $\forall m \in M$. It is clear that that *f* is epimorphisim. Since $\frac{M}{A}$

is cosingular, $\frac{M}{B}$ is cosingular, by lemma (2.1)

Corollary 2.6. Let A and B be submodules of an R-module M. If $\frac{M}{A}$ is cosingular, then $\frac{M}{A+B}$ is cosingular.

Proof. Clear from previous proposition.

Proposition 2.7. Let M be an R- module and let A be a submodule of M, if M is cosingular module, then $\frac{M}{A}$ is cosingular

cosingular.

359

Proof. Let M be a cosingular module , let $\pi : M \to \frac{M}{A}$ be the natural epimorphisim , $\pi (Z^*(M)) \leq Z^*(\frac{M}{A})$, by lemma (2.1) , hence $\pi (M) \leq Z^*(\frac{M}{A})$, $\frac{M}{A} \leq Z^*(\frac{M}{A})$. But we know that $Z^*(\frac{M}{A})$ is a submodule of $\frac{M}{A}$, therefore $\frac{M}{A} = Z^*(\frac{M}{A})$. Thus $\frac{M}{A}$ is cosingular.

Proposition 2.8. Let $f: M \to M'$ be a homomorphisim and let A be a submodule of M such that $\frac{M}{A}$ is cosingular,

then
$$\frac{f(M)}{f(A)}$$
 is cosingular.

Proof. From the first and third isomorphisim theorems, M

$$\frac{f(M)}{f(A)} \cong \frac{\overline{Kerf}}{\frac{A}{Kerf}} \cong \frac{M}{A}$$
 which is cosingular. Hence
$$\frac{f(M)}{\frac{f(M)}{Kerf}}$$
 is cosingular.

Definition 2.9. Let M be an R- module and let A be a submodule of M , we say that A is μ - small submodule of M

M (denoted by A << μ M), if whenever M = A + X , $\frac{M}{X}$ is

cosingular , then M = X.

Examples and Remarks2.10.

(1) It is clear that if A is small submodule of M , then A is μ -small submodule of M. Thus $0<<_{\mu} M$. Also, in Z_4 as Z – module { $\overline{0}, \overline{2}$ } $<<_{\mu} Z_4$.

(2) The converse of (1) is not true in general. For example, Consider Z₆ as Z₆- module. Note that $Z^*(Z_6) = \{x \in Z_6: x.Z_6 << E(Z_6) = \{x \in Z_6: x.Z_6 << Z_6\} = 0$, because Z₆ is injective Z- module and the only small submodule of Z₆ is 0, then every submodule of Z₆ is noncosingular. Hence,

$$\frac{Z_6}{\{\overline{0},\overline{3}\}} \cong \{\overline{0},\overline{2},\overline{4}\} \quad \text{and} \quad \frac{Z_6}{\{\overline{0},\overline{2},\overline{4}\}} \cong \{\overline{0},\overline{3}\} \quad \text{are}$$

noncosingular. Thus $\{0,3\}$ and $\{0,\overline{2},\overline{4}\}$ μ -small submodules of Z_6 but not small in Z_6 .

(3) 2Z is not μ - small submodule of Z.

In the following proposition we consider condition under which μ -smallness is smallness.

Proposition 2.11.Let M be a cosingular R- module and let A be a submodule of M , then $A{<<}_{\mu}$ M if and only if A<<M.

Proof. (\Leftarrow) clear.

(⇒) Let A<<_µ M, and let U≤ M such that M = A + U,
since M is cosingular module, then
$$\frac{M}{U}$$
 is cosingular,
(by proposition (2.7)). But A<<_µ M, therefore M = U.
Thus A<

Corollary 2.12. Let M be a small R- module and let A be a submodule of M , then $A \ll_{\mu} M$ if and only if $A \ll M$. **Proof.** (\Leftarrow) clear.

 (\Rightarrow) Since M is a small module , then by [2] M is cosingular module. Thus A<<M.

Corollary 2.13. Let M be an R- module and let A be a submodule of M . If M does not contain any maximal submodule , then $A <<_{\mu} M$ if and only if A << M.

Proof. Let $A{<<}_{\mu}$ M , since M does not contain any maximal submodule , then $M = Rad \ M \leq Z^*(M)$, hence M is cosingular which implies that $A{<<}M$. The converse is clear.

Now , we give some properties of the μ -small submodules.

Proposition 2.14. Let M be an R- module

(1) Let $A \le B \le M$. Then $B <<_{\mu} M$ if and only if B = M

A <<
$$\mu$$
 M and $\frac{B}{A} << \mu \frac{M}{A}$.

(2) Let A, B be submodules of M, then $A+B<<_{\mu} M$ if and only if $A<<_{\mu} M$ and $B<<_{\mu} M$. More general if A_1 , A_2 ,, A_n are submodules M with $A_i<<_{\mu} M$, \forall

$$i=1,\ldots,n$$
, then $\sum_{i=1}^n Ai \ll_{\mu} M$.

(3) Let A , B be submodules of M with $A \leq B$, if $A{<<_{\mu}}B$, then $A{<<_{\mu}}M.$

(4) Let $f : M \rightarrow M'$ be a homomorphisim such that $A \ll_{\mu} M$, then $f(A) \ll_{\mu} M'$.

(5) Let $M = M_1 \bigoplus M_2$ be an R- module and let $A_1 \le M_1$ and $A_2 \le M_2$, then $A_1 \bigoplus A_2 <<_{\mu} M_1 \bigoplus M_2$ if and only if $A_1 <<_{\mu} M_1$ and $A_2 <<_{\mu} M_2$.

Proof. (1) (\Rightarrow) Suppose that $B <<_{\mu} M$ and let U be a submodule of M such that M = A + U, $\frac{M}{U}$ is cosingular, since $A \le B$, then M = B + U, but $B <<_{\mu} M$, therefore M = U. Thus $A <<_{\mu} M$. Now assume that $\frac{M}{A} = \frac{B}{A} + \frac{L}{A}$,

for some submodule L of M and $\frac{\frac{M}{A}}{\underline{L}} \cong \frac{M}{L}$ is cosingular

, by third isomorphisim theorem. Then M = B + L, but $B <<_{\mu} M$, hence M = L, thus $\frac{B}{A} <<_{\mu} \frac{M}{A}$. (\Leftarrow) Suppose that $A <<_{\mu} M$ and $\frac{B}{A} <<_{\mu} \frac{M}{A}$. To prove that B << M. Let M = B + U. $\frac{M}{A}$ is cosingular, hence

that
$$B <<_{\mu} M$$
, Let $M = B + U$, $\frac{M}{U}$ is cosingular, hence
 M

$$\frac{M}{A} = \frac{B}{A} + \frac{U+A}{A}, \frac{\frac{M}{A}}{\frac{U+A}{A}} \cong \frac{M}{U+A} \text{ is cosingular}$$

by corollary (2.6). But
$$\frac{B}{A} <<_{\mu} \frac{M}{A}$$
 , then $\frac{M}{A}$ =

 $\frac{U+A}{A}$ which implies that M = U + A, since A << μ M, $\frac{M}{U}$ is cosingular, then M = U. It follows that A << μ M. (2) (\Rightarrow) Suppose that A+B<< M and let M = A + U, is cosingular , then M = A+B +U, but A+B<<_{\!\mu} M , therefore M = U, then $A <<_u M$. Similarly, $B <<_u M$. (\Leftarrow) Assume that A<<_µ M and B<<_µM, to prove that A+B<<_ μ M , let M = A + B + L, $\frac{M}{I}$ is cosingular for some submodule L of M, then $\frac{M}{B+L}$ is cosingular, since $A{<\!\!\!<_{\mu}} M$, then M=B+L , but $B{<\!\!\!<_{\mu}} M$, therefore M=L, which means that A+B<<_{\mu} M. By induction one can easily prove that it is true for any finite number of submodules. (3) Suppose that A << μ B and let M = A + U , $\frac{M}{r}$ is cosingular. Since $B = B \cap M = B \cap (A + U) = A + (B \cap A)$ U), (by modular law). Now $\frac{B}{B \cap U} \cong \frac{B+U}{U} = \frac{M}{U}$ which is cosingular, hence $\frac{B}{B \cap U}$ is cosingular. But A<<_ μ B, therefore B = B \cap U, that is A \leq B \leq U , then M = U. Thus $A \ll_{\mu} M$. (4) Let $f: \mathbf{M} \rightarrow \mathbf{M}'$ be a homomorphisim and let $A \ll_{\mu} \mathbf{M}$. By the first isomorphisim theorem $\frac{M}{Kerf} \cong f(M)$ and $\frac{A}{Kerf} \cong f(A)$. Since $A \ll_{\mu} M$, then $\frac{A}{Kerf} \ll_{\mu} \frac{M}{Kerf}$, by (1), hence $f(A) \ll_{\mu} f(M) \leq M'$. Therefore $f(A) \ll_{\mu} f(M) \leq M'$. M', by (3).

(5) (\Rightarrow) Suppose that $A_1 \oplus A_2 \ll_{\mu} M_1 \oplus M_2$, let $P: M_1 \oplus M_2 \to M_1$ be the projection map, since $A_1 \oplus A_2 \ll_{\mu} M_1 \oplus M_2$, then $P(A_1 \oplus A_2) \ll_{\mu} P(M_1 \oplus M_2)$, that is $A_1 \ll_{\mu} M_1$. Similarly, $A_2 \ll_{\mu} M_2$.

(\Leftarrow) Suppose that $A_1 <<_{\mu}$ M_1 and $A_2 <<_{\mu}$ M_2 . Consider the following injection maps $J_1: M_1 \rightarrow M_1 \oplus M_2$ and $J_2: M_2 \rightarrow M_1 \oplus M_2$, since $A_1 <<_{\mu} M_1$ and $A_2 <<_{\mu} M_2$, then $A_1 \oplus \{0\} <<_{\mu} M_1 \oplus M_2$ and $\{0\} \oplus A_2 <<_{\mu} M_1 \oplus M_2$, which implies that $A_1 \oplus A_2 <<_{\mu} M_1 \oplus M_2$.

Note. Infinite sum of μ - small submodules of a module M need not be μ - small in M as the following example shows:

Consider Q as Z- module $\langle \frac{p}{q} \rangle \langle \langle \mu \rangle Q$, p, $q \in \mathbb{Z}$, but

$$\sum_{\substack{\underline{p} \in Q \\ q}} < \frac{p}{q} > = \bigcup \{ \frac{p}{q} \} = Q \text{ which is not } \mu \text{ - small in } Q.$$

Remark. Let $f: M \to M'$ be a homomorphisim from Rmodule M in M' the inverse image of μ - small submodule of M' need not be μ - small in M, as the following example shows: Consider $\pi : \mathbb{Z} \to \frac{\mathbb{Z}}{2\mathbb{Z}} \cong \mathbb{Z}_2$ the natural epimorphism , note that $0 \ll_{\mu} \mathbb{Z}_2$, but $f^{-1}(\overline{0}) = 2\mathbb{Z}$ is not μ - small in f^{-1}

 $^{1}(Z_{2}) = Z$. **Proposition 2.15.** Let M be an R- module and let A \leq B be submodules of M , if B is a direct summand of M and

submodules of M , if B is a direct summand of M and $A <<_{\mu} M$, then $A <<_{\mu} B$. **Proof.** Suppose that $A <<_{\mu} M$ and let B be a

direct summand of M, M = B \oplus B', for some submodule B' of M, to show that A<<_{\mu} B, let B = A + U, $\frac{B}{U}$ is cosingular, then M = B + B' = A + U +B'. Now by the second isomorphism theorem $\frac{M}{U+B'} = \frac{A+U+B'}{U+B'} \cong$ $\frac{B}{D} = \frac{B}{D} = \frac{B}{D}$ which is

$$\overline{B \cap (U+B')} = \overline{U+(B \cap B')} = \overline{U}$$
 which is

cosingular , (by modular law). Since $A \ll_{\mu} M$, then M = U + B'. Now $B = B \cap M = B \cap (U + B') = U + (B \cap B') = U$, (by modular law). Thus $A \ll_{\mu} B$.

Proposition 2.16. Let M be an R- module and let A , B and C be submodules of M with A \leq B \leq C \leq M , if B $<<_{\mu}$ C , then A $<<_{\mu}$ M.

Proof. Suppose that $B \ll_{\mu} C$ and let M = A + U, \underline{M} is \underline{U}

cosingular for some $U \le M$, since $A \le B$, then M = B + U. Now, $C = C \cap M = C \cap (B + U) = B + (C \cap U)$, by modular law. Note that $\frac{C}{C \cap U} \cong \frac{C+U}{U} = \frac{M}{U}$

which is cosingular, then $\frac{C}{C \cap U}$ is cosingular, but $B <<_{\mu} C$, therefore $C = C \cap U$, then $A \le C \le U$, that is M = U. Thus $A <<_{\mu} M$.

NOTE. The converse of proposition (2.16) is not true in general. For example. Consider Z_{12} as Zmodule, $0 \le \{\overline{0}, \overline{4}, \overline{8}\} \le \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\} \le Z_{12}$. It is clear that $0 <<_{\mu} Z_{12}$, but $\{\overline{0}, \overline{4}, \overline{8}\}$ is not μ -small in $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$, since $\{\overline{0}, \overline{4}, \overline{8}\}$ + $\{\overline{0}, \overline{6}\} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{6}\}$ $, \overline{8}, \overline{10}\}$, $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$ is cosingular but $\{\overline{0}, \overline{6}\} \neq \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$

Proposition 2.17. Let A , B and C be submodules of M with $A \le B \le C \le M$. Then $\frac{C}{A} <<_{\mu} \frac{M}{A}$ if and only if $\frac{C}{B}$ $<<_{\mu} \frac{M}{B}$ and $\frac{B}{A} <<_{\mu} \frac{M}{A}$. **Proof.** (\Rightarrow) Suppose that $\frac{C}{A} <<_{\mu} \frac{M}{A}$ and let $\frac{M}{B} =$ $\frac{C}{B} + \frac{U}{B}$, $\frac{M}{U}$ is cosingular, M = C + U, then $\frac{M}{A} = \frac{C}{A}$ $+\frac{U}{A}$. Since $\frac{C}{A} \ll_{\mu} \frac{M}{A}$, then $\frac{M}{A} = \frac{U}{A}$, M = U and hence $\frac{M}{R} = \frac{U}{R}$, thus $\frac{C}{R} <<_{\mu} \frac{M}{R}$. Now since $\frac{B}{A} \leq \frac{C}{A}$ $<<_{\mu} \frac{M}{A}$, then $\frac{B}{A} <<_{\mu} \frac{M}{A}$, by proposition (2.14-1). (\Leftarrow) Assume that $\frac{C}{P} \ll_{\mu} \frac{M}{R}$ and $\frac{B}{A} \ll_{\mu} \frac{M}{A}$ and let $\frac{M}{A} = \frac{C}{A} + \frac{K}{A}$, $\frac{M}{K}$ is cosingular, M = C + K, then $\frac{M}{R}$ $= \frac{C}{R} + \frac{K+B}{R}$, $\frac{M}{K+B}$ is cosingular, by corollary (2.6). But $\frac{C}{R} \ll \frac{M}{R}$, therefore $\frac{M}{R} = \frac{K+B}{R}$, M = K+B, hence $\frac{M}{A} = \frac{K}{A} + \frac{B}{A}$. But $\frac{B}{A} <<_{\mu} \frac{M}{A}$, therefore $\frac{M}{A} = \frac{K}{A}$, implies that M = K. Thus $\frac{C}{A} <<_{\mu}$ $\frac{M}{A}$.

Lemma 2.18. Let M be a module such that M = A + Band $M = (A \cap B) + C$ for submodules A, B and C of M. Then $M = (B \cap C) + A = (A \cap C) + B$. **Proof.** See [4, Lemma 1.2]

We end this section by the following theorem. **Theorem 2.19.** Let M = A + B be a module with $\frac{m}{R}$ cosingular. Let B \leq C and $\frac{C}{R} \ll \frac{M}{R}$. Then $\frac{(A \cap C)}{(A \cap R)}$ $<<_{\mu} \frac{M}{(A \cap B)}$

Proof. Let $\frac{M}{(A \cap B)} = \frac{(A \cap C)}{(A \cap B)} + \frac{U}{(A \cap B)}$, $\frac{M}{U}$ is cosingular , then $M = (A \cap C) + U$, implies that M = C + CU. By Lemma (2.18) , M = (A \cap U) + C , $\frac{M}{D}$ =

$$\frac{(A \cap U) + B}{B} + \frac{C}{B}$$
. Since $\frac{M}{B}$ is cosingular, then

 $\frac{(A \cap U) + B}{B}$ is cosingular. But $\frac{C}{B} <<_{\mu} \frac{M}{B}$, therefore $M = (A \cap U) + B$. Again by Lemma (2.18), $M = (A \cap B)$ + U = U. Thus $\frac{(A \cap C)}{(A \cap B)} \ll_{\mu} \frac{M}{(A \cap B)}$

3. µ - coclosed submodules and µ- hollow modules

Definition 3.1. Let M be an R- module and let A be , we say that A is a μ a submodule of M coclosed submodule of M denoted by $(A \leq_{\mu cc} M)$ if whenever $\frac{A}{X}$ is cosingular and $\frac{A}{X} \ll_{\mu} \frac{M}{X}$ for some submodule X of A, we have X = A. **Examples and Remarks 3.2.**

(1) Consider Z_{12} as Z- module , { $\overline{0}, \overline{3}, \overline{6}, \overline{9}$ } $\leq_{\mu cc} Z_{12}$, since the only submodule X of $\{0,3,6,9\}$ such that $\frac{A}{V}$ is cosingular and $\frac{A}{V} <<_{\mu} \frac{Z_{12}}{V}$ is $\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$. (2) Consider Z₈ as Z- module, let A = { $\overline{0}, \overline{2}, \overline{4}, \overline{6}$ }, X = { $0, \overline{4}$ } , note that A is not μ - coclosed submodule of Z_8 , since $\frac{A}{X}$ is cosingular and $\frac{A}{X} = \frac{\{0, 2, 4, 6\}}{[\overline{0}, \overline{4}]} \cong \{\overline{0}, \overline{2}\}$ $\ll_{\mu} \cong \frac{Z_8}{\{\overline{0},\overline{4}\}} Z_4$ but $A \neq X$.

(3) Let M be an R- module and let A be a coclosed submodule of M , then A is a μ - coclosed in M. To see this , let X be a submodule of A such that $\frac{A}{V} \ll_{\mu}$ $\frac{M}{X}$, $\frac{A}{X}$ is cosingular. It is sufficient to show that $\frac{A}{X}$ $<< \frac{M}{Y}$. Let $\frac{M}{Y} = \frac{A}{Y} + \frac{B}{Y}$, where B is a submodule of M contains X. Note that $\frac{M}{R}$ =

$$\frac{A + (B + X)}{B} \cong \frac{A}{A \cap (B + X)}$$
 which is cosingular, by

corollary (2.6), hence $\frac{M}{R}$ is cosingular, but we have $\frac{A}{V}$

$$\ll_{\mu} \frac{M}{X}$$
, therefore $\frac{A}{X} \ll \frac{M}{X}$, then A = X. Thus A is a

- coclosed in M.

(4) Let M be a cosingular R- module and let A be submodule of M, then A is a µ- coclosed if and only if it is coclosed in M.

(5) Every direct summand of an R- module M is µcoclosed.

Proposition 3.3. Let A be a μ - coclosed submodule of an Rmodule M , if $X \le A \le M$ and $X <<_{\mu} M$, then $X <<_{\mu} A$.

Proof. Suppose that A is a μ - coclosed in M and X<< $_{\mu}$ M,

let A = X + K, $\frac{A}{K}$ is cosingular. Since A is μ - coclosed in

M, it is sufficient to show that
$$\frac{A}{K} <<_{\mu} \frac{M}{K}$$
, let $\frac{M}{K} =$

$$\frac{A}{K} + \frac{B}{K}$$
, $\frac{M}{B}$ is cosingular, then M = A + B = X + K +

B = X + B. But X << μ M and $\frac{M}{R}$ is cosingular, therefore

M = B. So we get the result.

The following proposition gives the basic properties of µ-coclosed submodules.

Proposition3.4. Let M be an R- module and let $A \le B \le M$. Then :

(1) If B is
$$\mu$$
- coclosed in M, then $\frac{B}{A}$ is μ - coclosed in

A

(2) If A is μ - coclosed in M, then A is μ - coclosed in B. The converse is true if B is μ - coclosed in M.

(3) Let C be a μ- coclosed submodule of M , then for any A ≤ B ≤ C, B/A <<_μ M/A if and only if B/A <<_μ C/A.
(4) If A<<_μ B and B/A is μ- coclosed in M/A , then B is

μ-coclosed in M.

Proof. (1) Assume that B is μ - coclosed in M , let $\frac{\frac{Z}{A}}{X} \ll_{\mu}$

$$\frac{\frac{M}{A}}{\frac{X}{A}} \text{ and } \frac{\frac{B}{A}}{\frac{X}{A}} \text{ is cosingular , where } A \leq X \leq B \leq M. By$$

the third isomorphisim theorem $\frac{B}{X} \cong \frac{\frac{B}{A}}{\frac{X}{A}} <<_{\mu} \frac{\frac{M}{A}}{\frac{X}{A}} \cong$

 $\frac{M}{X} \text{ and } \frac{B}{X} \text{ is cosingular. Since B is } \mu\text{- coclosed in M ,}$ then B = X , so $\frac{B}{A} = \frac{X}{A}$. Thus $\frac{B}{A}$ is $\mu\text{- coclosed in } \frac{M}{A}$. (2) Suppose that A is $\mu\text{- coclosed in M and let X be a}$ submodule of A such that $\frac{A}{X} \ll_{\mu} \frac{B}{X}$, $\frac{A}{X}$ is cosingular

, then $\frac{A}{X} \ll \frac{M}{X}$, by proposition (2.14-3). But A is μ -

coclosed in M , therefore A=X. Thus A is $\mu\text{-}$ coclosed in B

For the converse , assume that A is μ - coclosed in B and B is μ - coclosed in M. Let X be a submodule of A such that $\frac{A}{X} \ll \frac{M}{X}$, $\frac{A}{X}$ is cosingular and. By (1) $\frac{B}{X}$ is μ - coclosed in $\frac{M}{X}$ and by proposition (3.3) , $\frac{A}{X} \ll \frac{B}{X}$

But A is μ - coclosed in B, therefore A = X. Thus A is μ coclosed in M.

(3) Clear.

(4) Assume that
$$\frac{B}{K} \ll_{\mu} \frac{M}{K}$$
, $\frac{B}{K}$ is cosingular, then

$$\frac{B}{K+A} \cong \frac{\frac{B}{K}}{\frac{K+A}{K}} \ll_{\mu} \frac{\frac{M}{K}}{\frac{K+A}{K}} \cong \frac{M}{K+A}, \frac{B}{K+A}$$

is cosingular, by propositions (2.5) and (2.14-1). Since $\frac{B}{A} \leq_{\mu cc} \frac{M}{A}$ by (1), then $\frac{B}{K+A} \leq_{\mu cc} \frac{M}{K+A}$, then B =

A A K + A K + AK+A. But A $<<_{\mu}$ B, therefore B = K. Thus B is μ -coclosed in M.

Definition 3.5. A nonzero R- module M is called μ - Hollow module if every proper submodule of M is μ -small submodule of M.

Examples and Remarks3.6.

1- Z_4 as Z- module is μ - hollow.

2- Z_6 as Z- module is not μ - hollow, since $\{\overline{0}, \overline{3}\}$ and $(\overline{0}, \overline{2}, \overline{4})$

 $\{\overline{0},\overline{2},\overline{4}\}$ are not μ - small in Z₆.

3- Z as Z- module is not $\mu\text{-}$ hollow , since 2z is not $\mu\text{-}$ small in Z_

4- Every simple module is a μ - hollow. For example Z_2 as Z- module.

5- It is clear that every hollow module is μ - hollow. But the converse is not true in general. For example Z₆ as Z₆- module.

6- Let M be a cosingular R- module. Then M is hollow if and only if M is μ - hollow.

The following theorem gives a characterization of μ -hollow module.

Theorem3.7. Let M be an R- module. Then M is μ -hollow if and only if every proper submodule A of M

such that $\frac{M}{A}$ is cosingular is small in M.

Proof. (\Rightarrow) Let A be a proper submodule of M such that M

 $\frac{M}{A}$ is cosingular, we have to show that A<<M.

Assume that there exists $B \subset M$ such that M = A+B.

Since M is a μ - hollow, then B<< μ M and we have $\frac{M}{A}$ is

cosingular , then M=A which is a % M=A contradiction. Thus A<<M.

(\Leftarrow) To show that M is a μ - hollow , let A be a proper submodule of M. Assume that A is not μ - small in M, that is there exists a proper submodule B of M M

such that $\frac{M}{B}$ is cosingular and M = A+B. By

our assumption $B \ll M$, then A = M, which is a contradiction.

Proposition 3.8. A nonzero epimorphic image of μ -hollow is μ -hollow.

Proof. Let $f: M \rightarrow M'$ be an epimorphisim and let M be a μ -hollow module, we have to show that M' is μ -hollow,

let A be a proper submodule of M', then $f^{-1}(A)$ is a proper submodule of M, if $f^{-1}(A) = M$, then A = M' which is a contradiction. Since M is μ - hollow, then $f^{-1}(A) \ll_{\mu} M$, and hence A<<_ μ M', by proposition(2.14-4).

Corollary 3.9. Let M be a μ - hollow and let A be a submodule of M. Then $\frac{M}{A}$ is μ -hollow

Proof. Let $\pi: M \to \frac{M}{\Lambda}$ be the natural epimorphisim.

Since M is μ - hollow, then by previous proposition $\frac{M}{A}$

is u-hollow.

The converse of previous corollary is not true as the following example shows: Consider Z as Z- module ,

note that
$$\frac{Z}{4Z} \cong Z_4$$
 is μ -hollow, but Z is not μ -hollow.

Proposition3.10. Let M be an R- module and let A be a nonzero μ - hollow submodule of M, then either A<<_u M or A is μ - coclosed submodule of M but not both.

Proof: Suppose that A is a nonzero µ- hollow submodule of M and A is not μ - coclosed, we have to show that A<< $_{\mu}$ M. Since A is not μ - coclosed , then there exists L \subset

A such that
$$\frac{A}{L} \ll_{\mu} \frac{M}{L}$$
 and $\frac{A}{L}$ is cosingular.

To prove that $A <<_{\mu} M$, let M = A + K, $\frac{M}{V}$ is cosingular,

then
$$\frac{M}{L} = \frac{A}{L} + \frac{L+K}{L}$$
, $\frac{M}{L+K}$ is cosingular,

by corollary (2.6). But $\frac{A}{L} \ll_{\mu} \frac{M}{L}$, therefore M = L+K. Now $A = A \cap M = A \cap (L+K) = L + (A \cap K)$, by modular law. $\frac{A}{A \cap K} \cong \frac{A+K}{K} = \frac{M}{K}$, which is

cosingular. But A is µ- hollow and L is proper submodule K. Thus $A \ll_{\mu} M$.

If A << μ M and A is μ - coclosed, then $\frac{A}{\Omega} << \frac{M}{\Omega}$

, by proposition (2.14-1), implies that A = 0, which is a contradiction.

Proposition3.11. Every nonzero µ- coclosed submodule of μ - hollow is μ - hollow.

Proof. Let M be a μ - hollow module and let A be a nonzero µ- coclosed submodule of M , let L be a proper submodule of A , since M is $\mu\text{-}$ hollow , then L<< $_{\mu}$ M. But Thus A is μ -hollow.

Corollary3.12. Every direct summand of µ- hollow is µhollow.

Proposition3.13. Let M be a cosingular R- module , let

A<<_ μ M if $\frac{M}{A}$ is finitely generated , then M is finitely generated.

Proof. Since $\frac{M}{A}$ is finitely generated, then $\frac{M}{A}$ = $R(x_1+A)+R(x_2+A)+...+R(x_n+A)$, for some $x_1,x_2,...,x_n \in$

M. Claim that $M = Rx_1 + Rx_2 + \dots + R_{X_n}$, let $m \in M$, m + A $\in \frac{M}{A} = \mathbf{R}(x_1+\mathbf{A}) + \mathbf{R}(x_2+\mathbf{A}) + \dots + \mathbf{R}(x_n+\mathbf{A})$, m+A = r_1 $(x_1+A)+r_2$ $(x_2+A)+\ldots+r_n$ (x_n+A) , $r_i \in \mathbb{R}$, $\forall i = I$,...,*n*. Then $m+A = r_1 x_1 + r_2 x_2 + \dots + r_n x_n + A$, $m - r_1 x_1 + r_2 x_2 + \dots + r_n x_n + A$ $r_2 x_2 + \dots + r_n x_n \in A$, m - $r_1 x_1 + r_2 x_2 + \dots + r_n x_n = a$, for some $a \in A$, $M = \langle x_1, x_2, \dots, x_n \rangle$ +A. Since M is cosingular , then $\frac{M}{\langle x_1, x_2, ..., x_n \rangle}$ is cosingular. But

A << $_{u}$ M, therefore M = Rx₁+Rx₂+....+Rx_n. Thus M is finitely generated.

Immediately, one can easily prove the following two corollaries.

Corollary3.14. Let M be a cosingular R- module and let A be a proper submodule of M, if M is μ - hollow and if $\frac{M}{A}$

is finitely generated, then M is finitely generated.

Corollary3.15. Let M be an R- module with any factor of M is a cosingular, let A be a proper submodule of M if M

is μ - hollow and $\frac{M}{A}$ is finitely generated, then M is

finitely generated.

Recall that an R- module M is called V- module if every module is M- injective. R is called V-ring , if the right module R_R is a V- module, see [5].

Theorem3.16: Let R be a V- ring , then every nonzero Rmodule is a μ - hollow module.

Proof: Let R be a V- ring and let M be an R- module, to show that M is μ - hollow , let A be any proper submodule of M such that M = A + B, $\frac{M}{R}$ is cosingular. Since R is Vring , then $Z^{\ast}(M)\!\!=\!\!0$, for any R- module M , by [5 , theorem12], hence $Z^*(\frac{M}{R}) = B$. But $Z^*(\frac{M}{R}) = \frac{M}{R}$.

Thus M = B, so the we get the result.

Example3.17.
$$Q = \prod_{i=1}^{\infty} Fi$$
, where $F_i = Z_2$. Let R be the

subring of Q generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_Q . Then R is commutative regular ring , hence it is V- ring by [6]. Thus R_R is μ -hollow module.

Remark. A direct sum of μ - hollow modules need not be μ- hollow as the following example shows. The Z- modules $Z_3 \cong <4>$ and $Z_2 \cong <6>$ are μ -hollow, but $Z_3 \oplus Z_2 \cong Z_{12}$ is not u- hollow module.

Let M be an R- module. Recall that a submodule A of M is called a fully invariant if $g(A) \leq A$, for every $g \in$ End(M) and M is called duo module if every submodule of M is fully invariant. See [7].

Now, we give conditions under which the direct sum of μ - hollow modules is a μ - hollow.

Proposition3.18. Let M_1 and M_2 be R- modules and let M = $M_1 \bigoplus M_2$ such that M is a duo module. Then M is μ hollow if and only if M_1 and M_2 are μ - hollow, provided that $A \cap M_i \neq M_i$, $i = 1, 2, \forall A \subset M$.

Proof. (\Rightarrow) Clear by corollary (3.12).

 (\Leftarrow) Let A be a proper submodule of M. Since M is a duo module , then $A = (A \cap M_1) \bigoplus (A \cap M_2)$. Hence each of A $\bigcap M_1$, $A \bigcap M_2$ is a proper submodule of M_1 and M_2 respectively. It follows that $A \bigcap M_1 <<_{\mu} M_1$ and $A \bigcap M_2 <<_{\mu} M_2$, since M_1 and M_2 are μ - hollow. Then by proposition (2.14-5), $A <<_{\mu} M$. Thus M is μ - hollow.

Recall that an R- module M is called distributive if for all A , B and C \leq M , A \cap (B+C) = (A \cap B)+(A \cap C). See [8].

Proposition3.19. Let M_1 and M_2 be R- modules and let $M = M_1 \bigoplus M_2$ such that M is a distributive module. Then M is μ - hollow if and only if M_1 and M_2 are μ - hollow, provided that $A \cap M_i \neq M_i$, $i = 1, 2, \forall A \subset M$.

Proof. (\Rightarrow) Clear by corollary (3.12).

(\Leftarrow) Let A be a proper submodule of M. Since M is a distributive module , then A = $(A \cap M_1) \oplus (A \cap M_2)$. Hence each of A $\cap M_1$, A $\cap M_2$ is a proper submodule of M_1 and M_2 respectively. It follows that A $\cap M_1 <<\!\!<_{\mu} M_1$ and A $\cap M_2 <<\!\!<_{\mu} M_2$, since M_1 and M_2 are μ - hollow. Then by proposition (2.14-5), A $<\!\!<_{\mu} M$. Thus M is μ - hollow.

REFERENCES

- [1] Inoue, T. **1983**. Sum of hollow modules, 331-336.
- [2] Ozcan, A. C. 2002. Modules with small cyclic submodules in their injective hulls, comm. In Algebra, 1575-1589.
- [3] Ganesan L. and Vanaja N., 2002 Modules for which every submodule has a unique coclosure , comm. Algebra , 2355-2377.

- [4] Keskin D. **2000.** On lifting modules , Com. Algebra, 3427-3440.
- [5] Ozcan, A. C. 1998. Some characterization of Vmodules and rings, Vietnam J. Math. 253-258.
- [6] Rosenberg, A. and Zelinsky, D. **1959** Finiteness of the injective hull, Math. Z., 372-380.
- [7] Orhan, N., Tutuncu, D. K. and Tribak, R. 2007. On Hollow-lifting modules, Taiwanese J. Math, 545-568.
- [8] Erdogdu, V. **1987**. Distributive modules, can. Math. Bull, 248-254.