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ABSTRACT.: LetR be an associative ring with identity and let M be a right R- module . Let A be a submodule of M , we

. . M. —
say that A is p- small (denoted by A<<, M) if whenever M = A + X, 7 is cosingular , then M = X. In this article , we

give some properties of p- small submodules. We say that A is a p-coclosed submodule of M denoted by (A<,cc M) if

A . A M .
whenever Y is cosingular and Y <<y Y for some submodule X of A, we have X = A. In this paper , several

properties of these submodules are given. As a generalization of hollow module, a nonzero R- module M is called p-
hollow module if every proper submodule of M is p-small submodule of M. Also, we give a characterization of p- hollow
modules and gives conditions under which the direct sum of p- hollow modules is p- hollow.

Keywards. p-small submodule , p-coclosed submodule , p-hollow module.

INTRODUCTION.

Throughout this paper , rings are associative with
unity and modules are unital right R- modules , where R
denotes such a ring and M denotes such a module. A
submodule A of M is called a small submodule of M if
whenever A + B= M for some submodule B of M, we have
M = B ; and in this case we write A <<M, See [1].

We write E(M) , Rad(M) and Z(M) for the
injective envelope , the Jacobson radical and the
singular submodule of M, respectively.

For a right R- module M , Ozcan [2] , defined the
submodule Z*(M) as a dual of singular submodule to be
the set of all elements meM such that mR is a small
module.

Z*(M) = {meM : mR<< E(M) }. A module M is called
cosingular (non cosingular) module if Z*(M) = M (Z*(M)
=0). It is clear that Rad M < Z*(M).

A submodule A of M is called coclosed submodule of M

A M
denoted by (A<, M) if whenever Y << — for

some submodule X of A, we have X = A. See [3]. A
nonzero module M is called hollow module, if
every proper submodule of M is small in M. See [1].

As a generalization of small submodules , we
introduced the concept of p- small submodules. A
submodule A of M is called p- small submodule of M

M
(denoted by A<<, M) if whenever M = A + X, Y is

cosingular , then M = X.
We state the main properties of cosingular modules and
introduced the main properties of p- small submodules and
supplying examples and remarks for this concepts. Also,
we define yu- coclosed submodules of M and p-hollow
modules as a generalizations of coclosed submodules and
hollow modules respectively and give the basic properties
of these concepts and prove a characterization of p- hollow
modules and give certain conditions under which the
direct sum of p- hollow modules is p- hollow.
2. Cosingular modules and p-small submodules

In this section , we give the basic properties of
cosingular modules , also we added some results about
cosingular modules which are needed later. we introduced
M- small submodules as a generalization of small

submodules which illustrated by examples and remarks and
give the properties of p- small submodules.
Lemma 2.1: [2] Let M be an R- module. Then
1) Iff: M — M'is a homomorphism of R- modules
M, M'. Then f (Z*(M)) < Z*(M).
(2) Let A be a submodule of M. Then Z*(A) = AN
Z*(M).
3) Let M; (i) be any collection of R- modules and
letM = EBI M;. Then Z*(M) = 69| Z*(M)).
le le

Lemma 2.2.[2] For any ring R , the class of cosingular R-
modules is closed under submodules ,
homomorphic images and direct sums but not (in general)
under essential extensions or extensions.
Corollary 2.3 [2] . Let R be a right cosingular ring. Then
any (right) R- module is cosingular.
Corollary 2.4. Every Z- module is cosingular.

We need to prove the followings.

M
Proposition 2.5. Let A < B < M such that K is
_ M.

cosingular , then E is cosingular.

M M .
Proof. Let f: — —> — be defined by, f (m+A) = m+B ,

A B

) . ) . . M

YV me M. It is clear that that f is epimorphisim. Since X

M
is cosingular , E is cosingular , by lemma (2.1)
Corollary 2.6. Let A and B be submodules of an R-

module M. If — is

is cosingular , then

A+ B
cosingular.
Proof. Clear from previous proposition.
Proposition 2.7. Let M be an R- module and let A be a

M
submodule of M , if M is cosingular module , then K is

cosingular.
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M
Proof. Let M be a cosingular module , letn : M — —

M
be the natural epimorphisim, n (Z*(M)) < Z*(X) , by

M M M
lemma (2.1) , hence M) <Z*(—), —< Z*(—).
(2.1) n (M) (A) A (A)

M M
But we know that Z*(K ) is a submodule of K ,

M M M
therefore — = Z*(—). Thus — is cosingular.
A A A
Proposition 2.8. Let f : M — M' be a homomorphisim and

M
let A be a submodule of M such that X is cosingular ,

f(M)

then is cosingular.
f(A)
Proof. From the first and third isomorphisim theorems,
LU
f(M) Kerf M .
= =~ — whichis cosingular. Hence
f (A) A A
Kerf
fm)
is cosingular.
f(A)

Definition 2.9. Let M be an R- module and let A be a
submodule of M , we say that A is p- small submodule of

M
M (denoted by A<<, M), if whenever M = A + X, Y is

cosingular , then M = X.

Examples and Remarks2.10.

@ It is clear that if A is small submodule of M , then
A is p-small submodule of M. Thus 0<<, M. Also, in Z, as

Z-module {0,2}<<,Z,

(2) The converse of (1) is not truein general. For
example, Consider Zg as Zg- module. Note that Z*(Zg) = {x
€ Zg: X.Zg<< E(Ze} ={x € Zs: X.Zg<< Zg} = 0, because Zg
is injective Z- module and the only small submodule of Zg
is 0, then every submodule of Zg is noncosingular. Hence,

_ _ _ Z, _
={0,2,4}y and ———— ={0,3} are
{0,2,4}

noncosingular. Thus {0,3}and {0,2,4} p-small
submodules of Zg but not small in Zg.
(3)  2Zis not p- small submodule of Z.

In the following proposition we consider condition
under which p-smallness is smallness.
Proposition 2.11.Let M be a cosingular R- module and let
A be a submodule of M, then A<<, M if and only if
A<<M.
Proof. (<) clear.
(=) Let A<<y, M, and let US M such that M=A+ U,

_ o M
since M is cosingular module , then U is cosingular ,

(by proposition (2.7)). But A<<, M , therefore M = U.
Thus A<<M.
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Corollary 2.12. Let M be a small R- module and let A be a
submodule of M, then A<<, M ifand only if A<<M.
Proof. (<) clear.

(=) Since M is a small module , then by [2] M is
cosingular module. Thus A<<M.

Corollary 2.13. Let M be an R- module and let A be a
submodule of M . If M does not contain any maximal
submodule, then A<<, Mif and only if A<<M.

Proof. Let A<<, M , since M does not contain any
maximal submodule , then M = Rad M < Z*(M) , hence M
is cosingular which implies that A<<M. The converse is
clear.

Now , we give
small submodules.
Proposition 2.14. Let M be an R- module
(1) Let A < B < M. Then B<<, M if and only if

M

B
A<<yMand — <<, —.
A A

some properties of the p-

(2) Let A, B be submodules of M, then A+B<<, M
if and only if A<<, M and B<<, M. More general if A; ,
A, , ..., A, are submodules M with A<, M, V

n
i=1,.....n, then ZAi <<, M.

i=1
3 Let A, B be submodules of M with A < B , if
A<<, B , then A<<, M.
4) Let f : M—>M' be a homomorphisim such that
A<<, M, then f(A)<<, M,
(5) Let M = M; @ M, be an R- module and let A; <
M;and A; <M, , then A; @ Ax<<, M; @ M, if and only if
A1<<H M; and A2<<H M.
Proof. (1) (=) Suppose that B<<, M and let U be a

M
submodule of M such that M = A +U | U is cosingular ,

since A<B,then M =B+ U, but B<<, M, therefore M

M B
= U. Thus A<<, M. Now assume that — = — + — ,
A A A
M
A M. .
for some submodule L of M and T ET is cosingular
A
, by third isomorphisim theorem. Then M =B + L, but

M

B
B<<,M, hence M =L, thus — <<, —.
A
B M
(<=) Suppose that A<<, M and K <<y X To prove

M
that B<<, M, LetM =B+ U , U is cosingular , hence

M
M E+U+A A = is cosingular
A A A 'U+A 7~ U+A gular.,
A
B M
by corollary (2.6). But — <<, — , then — =
y y (2.6) A S A
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U+A

which implies that M = U + A, since A<<, M,

M

T} is cosingular , then M = U. It follows that A<<, M.
(2) (=) Suppose that A+B<<, M and let M = A + U,
M

Th is cosingular , then M = A+B +U, but A+B<<, M,

therefore M = U, then A<<, M. Similarly , B<<,M.
(<) Assume that A<<, M and B<<,M , to prove that

M
A+B<<, M, letM = A+ B + L, T is cosingular for

some submodule L of M , then

is cosingular , since
B+L

A<<, M, then M=B+L,but B<<,M,therefore M =L
, which means that A+B<<, M. By induction one can
easily prove that it is true for any
finite number of submodules.

M
(3) Suppose that A<<, Band let M = A + U, Uis
cosingular. SinceB=B"M=BN(A+U)=A+ (BN

U) , (by modular law). Now B = B+U = M

BnU U U

which is cosingular , hence

is cosingular. But
BnU

A<<, B, therefore B=B MU, that s A<B<U,then M=
U. Thus A<<, M.
(4) Let f: M—>M'be ahomomorphisim and let A<<, M.

= f (M) and
erf
) M
= f (A). Since A<<, M, then n
Kerf Kerf Kerf
, by (1), hence f (A) <<, f (M) < M". Therefore f (A) <<,
M', by (3).

(5) (=) Suppose that A; @ A,<<, M@ M, , let P: M,
@M, —> M, be the projection map , since Al(-BA2<<Ll
M; © M,, then P(A; @ A;) <<, P(M; ® M)), that is A;<<,
M. Similarly , Ay<<, M,.

(<) Suppose that Ai<<, M;  and A<, M,
Consider the following injection maps J;: M; — M; @
M, and J;: M, = M; @ M, , since Aj<<, M; and A,<<,
M, then A;@ {0}<<, M;@ M, and {0} ® Ax<<, M; D
M, , which implies that A; @ Ax<<, M; @ M,,

Note. Infinite sum of p- small submodules of a module M

need not be - small in M as the
following example shows:

Consider Q as Z- module < Z ><<,Q,p,q ez, but

Z< P >= u{£}= Q which is not p - small in Q.
Py q

q

Remark. Let f:M — M'be a homomorphisim from R-
module M in M' the inverse image of p- small submodule
of M’ need not be p- small in M, as the following example
shows:
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Consider 7 : Z — E = Z, the natural epimorphism ,

note that 0 <<, Z, , but f * (0) = 2Z is not u- small in f~
(25 =Z.

Proposition 2.15. Let M be an R- module and let A <B be
submodules of M , if B is a direct summand of M and
A<<, M, then A<<, B.

Proof. Suppose that A<<, M and let B be a

direct summand of M , M = B@ B', for some submodule
B
B' of M, to show that A<<, B , let B = A+ U, U

is cosingular , then M =B + B'= A + U +B'. Now by the

: . M A+U +B'
second isomorphism theorem = =
U+B' U+ B
B B o
= = —which is
BN (U +B") U+(BNBY)
cosingular , (by modular law). Since A<<, M, then M =

U+B.NowB=BNM=BN(U+B")=U+(BNB)=U
, (by modular law). Thus A<<, B.

Proposition 2.16. Let M be an R- module and let A, B and
C be submodules of M with A< B< C<M, if B<<, C, then
A<<y M.

Proof. Suppose that B<<, Candlet M =A+U, M is

U

cosingular for some U <M, since A<B,then M =B + U.
Now,C=CnM=Cn(B+U) =B+ (CnU),b

C+U M
modular law. Note that = =
CnU U U
which is cosingular , then C is cosingular , but
CcCnu

B<<, C, therefore C=C MU, then A<C < U, thatis M =
U. Thus A<<, M.

NOTE. The converse of proposition (2.16) is
not true in general. For example. Consider Z;, as Z-

module 0<{0 4 8}<{0 2,4,6,810} <7y, Itis
clear that 0<<, Z;, , but {0 4 8}|s not p-small |n{0

2,4,6,8,103}, smce{O 4 8}+{0 6} {0 2,46

é _0} {0 2 4 68 1O}|s cosingular but{(_),é};t{
(0.6,
0,2,4,6,810y

Proposition 2.17. Let A, B and C be submodules of M

with A <B <C <M. Then 52 <<y M if and only if c
A A B

<<, — and E <<HM .
A
Proof. (=) Suppose that 9 <<y M and let M =
A A B
9 + —, Miscosingular,M=C+U,then M = —
B B U A A
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<<MM,thenM:g,M:Uand
A A

A

<<, — . Now since E < —
B A A

, thus

, then Z <<y

¢
B
M B M , by proposition (2.14-1).
A
C

M B
(<) Assume that — <<, — and — <<, M and let
B B A

) . M
+ — , — s cosingular , M = C + K, then E

K
A

X<

+B M is cosingular , by corollary
B ' K+B ’

(2.6). But < <<, M
B B

C K

B

K+B
B

M
, therefore — =
B

K+B , hence M = K B

A A A

. But — <<,

, M
M
A
K
therefore M = — , implies that M = K. Thus E<<u
A A A

M

A
Lemma 2.18. Let M be a module such that M = A + B
and M = (AN B) + C for submodules A , B and C of M.
ThenM=(BNC)+A=(ANC)+B.
Proof. See [4, Lemma 1.2]
We end this section by the following theorem.

Theorem 2.19. Let M = A + B be a module with %

. (AnC)
cosingular. Let B < C and — <<,—. Then —
B (AN B)
M
<<p _—,
(AN B)
M (ANC) U M
Proof. Let = + , — IS
(AnB) (AnB) (AnB) U

cosingular , then M = (AN C) + U, implies that M = C +

U. By Lemma (2.18) , M = (AnU) + C , % =
(AnU)+B
B
(AnU)+B

M
+ — . Since —is cosingular , then
B B

L C M
is cosingular. But B <<y B , therefore
M = (ANU) + B. Again by Lemma (2.18) , M = (AN B)
(AnC) M

<<H
(AN B) (AN B)

3. W - coclosed submodules and p- hollow modules
Definition 3.1. Let M be an R- module and let A be

+ U =U. Thus

a submodule of M |, wesay that A is a p-

coclosed submodule of M denoted by (A<, M)
A M

if whenever — is cosingular and — <<, —
X X

for some submodule X of A, we have X = A.
Examples and Remarks 3.2.

(1) Consider Z;, as Z- module , {0 ,3,6 ,9} <wee Z12 »

since the only submodule X of {O ,3,6 ,9} such that

91

|

7 _
A is cosingular and A <<y 12 is{O ,3,
X X X

(2) Consider Zg as Z- module , let A = {6 ,E ,Z ,é} , X
={0 ,4_1} , note that A is not - coclosed submodule of Zg

: sinceA is cosingular and AL w ={0,2}
X 0.4,

<<= =8 _Z,but A% X
{0,4}

(3) Let M be an R- module and let A be a

coclosed submodule of M, then A is a p- coclosed in M.

A
To see this, let X be a submodule of A such that X <<,

M A . . A
—, Y is cosingular. It is sufficient to show that Y

X

<< —. let — = —+ — |, where B is a

M
submodule of M contains X. Note that E =

A+(B+X) _ A
B AN (B+X)

which is cosingular , by

M A
corollary (2.6), hence E is cosingular , but we have Y

M A M .
<<, — , therefore — << — ,then A=X. Thus Ais a
X X X

M- coclosed in M.

(4) Let M be a cosingular R- module and let A be
submodule of M, then A is a p- coclosed if and only if it is
coclosed in M.

(5) Every direct summand of an R- module M is p-
coclosed.

Proposition3.3. Let A be a u- coclosed submodule of an R-
module M, if X < A <M and X<<, M, then X<<, A.
Proof. Suppose that A is a - coclosed in M and X<<, M,

A . . . . .
letA=X+K, E is cosingular. Since A is - coclosed in

A M
M, itis sufficient to show that — <<, — , let — =
K K
A B M.
— + — , —iscosingular ,then M=A+B=X+K +
K K B

M
B = X + B. But X<<;, M and B is cosingular , therefore

M = B. So we get the result.

The following proposition gives the basic properties of
p-coclosed submodules.
Proposition3.4. Let M be an R- module and let A<B <M
. Then:

May-June
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B
(1) If B is p- coclosed in M, then Z is Y- coclosed in

M

A

(2) If Alis u- coclosed in M, then A is p- coclosed in B.
The converse is true if B is g- coclosed in M.

(3) Let C be a p- coclosed submodule of M , then

B M . B
for any A<B <C, — <<, — if andonly if —<<,
A A A

C

A
B . .M .
(4) IfA<<,Band K is Y- coclosed in K , then B is

p-coclosed in M.

B
Proof. (1) Assume that B is - coclosed in M, let % <<,
A
M B
A A . .
Yand 7 is cosingular , where A < X < B <M. By
A A

IR

B
the third isomorphisim theorem Y =

> | X|> | w
A
> x> =

M B
— and — is cosingular. Since B is py- coclosed in M ,

B

X B
thenB =X ,s0 —=—_. Thus — is u- coclosed in— .
A A A A
(2) Suppose that A is p- coclosed in M and let X be a

A B A
submodule of A such that — <<, — , — is cosingular
X X X

A M
, then Y <<py, by proposition (2.14-3). But A is -

coclosed in M , therefore A = X. Thus A is - coclosed in
B

For the converse , assume that A is - coclosed in B and
B is p- coclosed in M. Let X be a submodule of A such

that A << M A is cosingular and. By (1) E is -
X XX ' X

coclosed in M and by proposition (3.3) , A <, —
X X X

But A is p- coclosed in B, therefore A =X . Thus A is p-

coclosed in M.

(3) Clear.

ISSN 1013-5316; CODEN,SINTE 8

(4) Assume that E <<, M , E is cosingular , then
K K K
B M
B = K << K = M B
K+ A K+A "K+A KiA K+A
K K
is cosingular , by propositions (2.5) and (2.14-1). Since
E SHCCM by (1) , then i <uee M ,then B =
A A K+ A K+ A

K+A. But A<<, B, therefore B = K. Thus B is p-coclosed
in M.

Definition3.5. A nonzero R- module M is called p- Hollow
module if every proper submodule of M is p-small
submodule of M.

Examples and Remarks3.6.

1-  Z, as Z- module is p- hollow.

2- Zgas Z- module is not u- hollow , since {6 ,é} and

{0,2,4}are not p- small in Zs.
3- Z as Z- module is not p- hollow , since 2z is not p-
small in Z.
4-  Every simple module is a p- hollow. For example Z,
as Z- module.
5- It is clear that every hollow module is p- hollow.
But the converse is not true in general. For example Zg
as Zg- module.
6- Let M be a cosingular R- module. Then M is
hollow ifand only if M is p- hollow.

The following theorem gives a characterization of p-
hollow module.
Theorem3.7. Let M be an R- module. Then M is p-
hollow if and only if every proper submodule A of M

M . . .
such that I is cosingular is small in M.

Proof. (=) Let A be a proper submodule of M such that

is cosingular , we have to show that A<<M.

Assume that there exists B M such that M = A+B.

M
Since M is a p- hollow , then B<<, M and we have Y is

cosingular , then M = A which is a contradiction. Thus
A<<M.

(<) To show thatM is a p- hollow , let A be a
proper submodule of M. Assume that A is not p- small in
M, thatis there exists a proper submodule B of M

such that and M =

is cosingular A+B. By

our assumption B<<M , then A = M , which is a
contradiction.

Proposition3.8. A nonzero epimorphic image of p-
hollow is p- hollow.

Proof. Let f : M—> M" be an epimorphisim and let M be a

p- hollow module, we have to show that M'is p- hollow ,
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let A be a proper submodule of M', then f (A) is a proper
submodule of M , if f *(A) = M , then A = M" which is
a contradiction. Since M is p- hollow , then f *(A) <M,
and hence A<<, M', by proposition(2.14-4).

Corollary3.9. Let M be a p- hollow and let A be a

M
submodule of M. Then K is 4- hollow

M . -
Proof. Let n: M —>I be the natural epimorphisim.

M
Since M is p- hollow , then by previous proposition K

is W- hollow.
The converse of previous corollary is not true as the
following example shows: Consider Z as Z- module |,

Z
note that E = Z,is u- hollow , but Z is not - hollow.

Proposition3.10. Let M be an R- module and let A be
a nonzero Y- hollow submodule of M, then either A<<,
M or A is - coclosed submodule of M but not both.

Proof: Suppose that A is a nonzero - hollow submodule
of M and A is not p- coclosed , we have to show that
A<<, M. Since A is not - coclosed , then there exists L <

A A
A such that — <<, — and —
L L

L

is cosingular.

M
To prove that A<<, M, let M = A+K, ? is cosingular ,

A L+K M
+

then — = —
L L L L+ K

is cosingular

A M
by corollary (2.6). But E <<, T therefore M = L+K.

Now A = ANM = AN(L+K) = L+ (ANK) , by
A A+K M . .
= = —, which s
ANnK K K
cosingular. But A is p- hollow and L is proper submodule
of A, therefore L<<, A, hence A= ANK,A<K , M=
K. Thus A<<, M.

modular law.

A M
If A<<, M and A is p- coclosed , then — <<, —
0

0
by proposition (2.14-1) , implies that A = 0 , which is
a contradiction.

Proposition3.11. Every nonzero p- coclosed submodule
of p- hollow is p- hollow.

Proof. Let M be a p- hollow module and let A be a
nonzero p- coclosed submodule of M, let L be a proper
submodule of A, since M is p- hollow , then L<<, M. But
A is p- cocloed , therefore L<<, A, by proposition (3.3).
Thus A is p- hollow.

Corollary3.12. Every direct summand of p- hollow is p-
hollow.

Proposition3.13. Let M be a cosingular R- module , let

M
A<<, M if I is finitely generated , then M is finitely

generated.
M M
Proof. Since K is finitely generated , then — =

R(X1+A)+R(XotA)+...... +R(X,+A) , for some Xq,Xa,..... X €

M. Claim that M = Rx;+Rx,+...... +Ry, , letmeM , m+A
R(X1+A)+R(X2+A)+ ...... +R(Xn+A) , MtA =,
(X1 +A)+ 1y (XotA)F...... +rn (X+tA) , e R, Vi=1
s ThEN M+A = 1y X+ 1 Xot. oL + X tA M-y Xt
M Xot...... T Xy €A, M- X+ Xt ... +rXx, =a, for
some aeA , M = <X, X2, ...., Xo> +A. Since M is
M
< X11X2111111Xn >

A<<,M , therefore M = Rx;+Rx+...... +RX, .
finitely generated.

Immediately , one can easily prove the following two

corollaries.
Corollary3.14. Let M be a cosingular R- module and let A

M
e— =
A

cosingular , then

is cosingular. But

Thus M is

M
be a proper submodule of M, if M is u- hollow and if K

is finitely generated , then M is finitely generated.
Corollary3.15. Let M be an R- module with any factor of
M is a cosingular , let A be a proper submodule of M if M

M
is p- hollow and K is finitely generated , then M is

finitely generated.

Recall that an R- module M is called V- module if every
module is M- injective. R is called V-ring , if the right
module Ry is a V- module, see [5].

Theorem3.16: Let R be a V- ring , then every nonzero R-
module is a p- hollow module.

Proof: Let R be a V- ring and let M be an R- module , to
show that M is p- hollow , let A be any proper submodule

M
of Msuchthat M = A+ B, E is cosingular. Since R is V-

ring , then Z*(M)=0 , for any R- module M , by [5 ,
M M M

theorem12], hence Z*(—) = B. But Z*(—) = — .
B B B

Thus M =B , so the we get the result.

Example3.17. Q :H Fi, where F; = Z,. Let R be the
i=1

subring of Q generated by _®1Fi and 1g. Then R is
1=

commutative regular ring , hence it is V- ring by [6]. Thus
R is p-hollow module.

Remark. A direct sum of p- hollow modules need not be
H- hollow as the following example shows. The Z- modules

Zs=<4 > and Z, =<6 > are p-hollow, but Z;® Z,= Z,, is
not W- hollow module.
Let M be an R- module. Recall that a submodule A of

M is called a fully invariant if g(A) < A, for every g €
End(M) and M is called duo module if every submodule of
M is fully invariant. See [7].

Now , we give conditions under which the direct sum of
p- hollow modules is a p- hollow.
Proposition3.18. Let M; and M, be R- modules and let M
= M; @ M, such that M is a duo module. Then M is p-
hollow if and only if M; and M, are p- hollow, provided
that AMM; #M;,i=1,2, V AcM.
Proof. (=) Clear by corollary (3.12).
(<) Let A be a proper submodule of M. Since M is a duo

module , then A = (A M) @ (A M,). Hence each of A
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MMy, ANM, is a proper submodule of M; and M,
respectively. It follows that AN M; <<, M; and AN
M,<<, M, , since M; and M, are p- hollow. Then by
proposition (2.14-5) , A<<, M. Thus M is p- hollow.

Recall that an R- module M is called distributive if for
allA,Band C <M, AN (B+C) = (AN B)+(ANC). See
[8].

Proposition3.19. Let M; and M, be R- modules and let M
= M; @ M, such that M is a distributive module. Then M is
p- hollow if and only if M; and M, are p- hollow, provided
that ANM; #M;,i=1,2, V AcM.
Proof. (=) Clear by corollary (3.12).
(<) Let A be a proper submodule of M. Since M is a

distributive module , then A = (ANM;))D (AN M,).
Hence each of AMM;, AN M, is a proper submodule of
M, and M respectively. It follows that A M;<<, M, and
AN Myx<, M, , since M; and M, are p- hollow. Then by
proposition (2.14-5) , A<<, M. Thus M is p- hollow.
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