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ABSTRACT: In this paper a Holling type-II prey-predator model considering Michaelis – Menten type of harvesting 

function is proposed and investigated. The existence, uniqueness and boundedness are discussed. The local and global 

stability of all possible equilibrium points are discussed. The persistence conditions of the proposed system are 

established. Local bifurcation analysis is carried out with the help of Sotomayor’s theorem. Hopf bifurcation conditions 

are presented. Finally numerical simulation is done to verify our obtained analytical results.  
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1. INTRODUCTION 

Prey–predator interaction and its outcomes are one of 

the most important topics that studied in ecology. The first 

well known classical model was given by Lotka-Volterra in 

1927, this model was developed by many researchers 

taking into consideration number of factors affecting the 

prey- predator system like delayed time, competition, 

diseases that affect both prey and predator refuge and many 

other factors [1-5] and the references therein. Predator’s 

functional response, which is defined as “the number of 

prey eaten per predator per unit of time”, plays an 

important role in population dynamics [6]. In theoretical 

ecology, there are in general three types of functional 

responses viz. prey-dependent functional response, ratio-

dependent functional response and predator-dependent 

functional response. The first one assumes that the per 

capita rate of predation depends on the prey numbers only, 

for example Lotka-Volterra type and Holling Types I–III 

[7]. The second one assumes that the per capita rate of 

predation depends on the ratio of prey numbers to predator 

number [8]. The third one assumes that the per capita rate 

predation depends on the numbers of both prey and 

predator, for example DeAngelis functional response [9]. 

It is well known that refuge and harvesting are two of 

the most important factors affecting the dynamics of prey-

predator systems. By using refuges the prey population is 

partially protected against predators. The existence of 

refuges has great influence on the coexistence of the prey-

predator systems [10-13]. Moreover the prey–predator 

interactions with harvesting have been extensively studied 

by many authors [14-20]. In fact there are different types of 

harvesting; the constant-effort harvesting, in which the prey 

is continuously being harvested at a linear function, and the 

other type is the nonlinear type harvesting which is more 

realistic from biological and economic points of view than 

the first type [21]. 

Recently, Xiao et al. [22] has been proposed and studied a 

ratio-dependent prey-predator model involving constant-

effort harvesting. They proved that the system has different 

behaviors for various parameter values. On the other hand, 

Haque and Sarwardi [23], considered a prey-predator 

harvesting model with Holling type -II functional response. 

They assumed that the system incorporates prey refuge 

proportional to both the species and constant-effort 

harvesting. 

On contrast to the type of harvesting that used in the Haque 

and Sarwardi model, in this paper we will proposed and 

stud the dynamics of Holling type-II prey-predator system 

incorporating constant rate of refuge and Michaelis–

Menten type function of harvesting that proposed by Clark 

[24]. 

 

2. Mathematical Model 

In this section, a Holling type-II prey-predator model 

considering Michaelis – Menten type of harvesting function 

is proposed for study. The model is also considering the 

effect of refuge on the dynamics of the prey-predator 

system. Now in order to formulate the mathematical form 

of the model the following hypotheses are adopted: 

1. The density of the prey population at time   is denoted 

by     , while the density of predator population at 

time   is denoted by     .  
2. The prey population, in the absence of the predator, 

grows logistically while the predator decays 

exponentially in the absence of their prey. 

3. It’s assumed that there is a constant number of prey’s 

refuge entering to the reserved area that can’t attacked 

by predator, however the non-refuged prey will be 

attacked by the predator according to the Holling type-

II functional response. 

4. Finally the system is assumed to be harvested by an 

external force according to Michaelis – Menten type of 

harvesting function. 

According to the above hypotheses, the dynamics of such 

prey-predator system can be represented mathematically 

with the following set of nonlinear differential equations. 
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where        and        and the parameters are 

described as in the table (1): 

Now in order to reduce the number of parameters and 

specify the control set of parameters the following 

dimensionless variables and parameters are used: 
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Thus the dimensionless system can be written as follows 
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Table 1: The description of the model parameters 

Parameter Description 

    intrinsic growth rate 

    carrying capacity 

    maximum attack rate 

    half saturation constant 

        
prey’s refuge rate, which leave  
       of prey available to be 

hunted by the predator 

        
the efficiency by which predator 

converts consumed prey into new 

predator 

    predator death rate 

             are suitable positive constants 

     catchability coefficient of the prey 

     catchability coefficient of the predator 

    hunting effort 

 

Clearly the system of differential equations given by (3) is 

continuous and has a continuous partial derivatives on the 

domain   
  {                      } and hence 

it has a unique solution in this domain. Farther more the 

solution of system (3) uniformly bounded   
   as shown in 

the following theorem. 

Theorem 1: All the solutions of system (3) that initiate in 

the positive quadrant are uniformly bounded. 

Proof.  According to the first equation of system (3), it’s 

observed that 
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Then by solving this differential inequality, it’s obtain that 
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     , where   

    {    }. Therefore by using again the Grounwall lemma 

for differential inequality [25], it’s observed that      

         

 
       , and hence for     we get that 

 
  

  
 

 

 
   

Hence the proof is complete and all solutions are uniformly 

bounded.                                       ■ 

 

3. Stability Analysis and Persistence 

In this section the stability analysis and persistence of 

system (3) are investigated. It’s clear that the system has at 

most three equilibrium points, which can be described as 

follow 

The trivial equilibrium point that denoted by          

always exists. The predator free equilibrium point that 

denoted by      ̅    where 

  ̅   
    

 
 

 

 
√                                     (4) 

Exists uniquely on the positive side of   axis provided 

that one set of the following conditions hold 

                                                     (5a) 

                                          (5b) 

Finally the coexistence equilibrium point is denoted by 

            where  

    
[          ][                ]
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While    represents a unique positive root of the following 

fourth order polynomial equation 
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Here we have 
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Straightforward computation shows that    exists uniquely 

in the interior of positive quadrant provided that the 

following sufficient conditions hold 

                                                   (8) 

With one of the following sets of conditions 

                                                  (9a) 

                                             (9b) 

                                           (9c) 

                                            (9d) 

                                           (9e) 

                                            (9f) 

Now in order to study the local stability of these 

equilibrium points the Jacobain matrix of system (3) at the 

point         is computed as follows  

                                   (10) 

here  
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Consequently the Jacobian matrix at trivial equilibrium 

point          becomes 
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]                   (11) 

Clearly the eigenvalues of    are given by  

      
  

  
 and         

  

  
                    (12) 

Therefore    is locally asymptotically stable if and only if  

                                      (13)  

The Jacobian matrix at the predator free equilibrium point 

     ̅    is computed by 

   [
 ̅    
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]   (14) 

Then the eigenvalues are given by 

      ̅    
  

     ̅  
 ;     

        ̅

         ̅
 

  

  
    (15)  

Clearly these two eigenvalues are negative and hence    is 

locally asymptotically stable if and only if the following 

conditions hold 
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     ̅  
                                                (16a) 

        ̅

         ̅
     

  

  
                                              (16b) 

Finally the Jacobian matrix of system (3) at the coexistence 

equilibrium point            is computed as follows: 
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Accordingly the eigenvalues of    are the roots of the 

characteristic equation given by: 
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with   
            ,   

        and   
     

  . Now according to the Routh–Hurwitz criterion the 

equation (18) has two roots with negative real parts 

provided that     and    . Straightforward 

computation shows that these two requirements are 

satisfied and hence            is locally asymptotically 

stable if and only if the following two conditions hold: 
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In the following theorem, the global stability of the 

coexistence equilibrium point under certain conditions is 

investigated with the help of suitable Lyapunov function. 

Theorem 2. Let            be locally asymptotically 

stable then it’s a globally asymptotically stable in the 

interior of   
  provided that the following conditions are 

satisfied 
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here            are given in the proof while   
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  are given in (18). 

Proof. Consider the following real valued function 
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where          are positive constants to be determined. 

Clearly the function   is positive definite so that 
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  we get after some 

manipulation that 
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So if the conditions (20a) and (20b) hold then 
  

  
   and 

hence due to Lyapunov first theorem     is globally 

asymptotically stable in the interior of first quadrant. Hence 

the proof is complete.            ■             

Now before we go further to study the local bifurcation of 

the system the persistence of system (3), which indicates to 

coexistence of all the species in system (3) for all    , is 

studied in the following theorem using the average 

Lyapunov function as shown in the following theorem. 

Theorem 3.  The system (3) is persistent provided that 

                          (21a) 
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                             (21b) 

Proof. Consider the following function  

             , 

Where    and   are positive constants, clearly          

for all               
  and           when         

 .  Furthermore, it’s clear that  
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Now the proof follows if  
  

 
   for all the boundary 

equilibrium points, for suitable choice of constants     

and    .  
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Clearly 
  

 
       under condition (21a) with suitable 

choice of positive constants   sufficiently large with 

respect to the constant    . While 
  

 
       under 

condition (21b). Hence the proof is complete.         ■ 

 

4. The local bifurcation study 

In the following the occurrence of local bifurcation 

types is investigated through applying the Sotomayor’s 

theorem [26]. It is well known that the nonhyperbolic 

equilibrium point property is a necessary but not sufficient 

condition for the occurrence of bifurcation around that 

point. Accordingly, in the following theorem the candidate 

bifurcation parameter is selected so that the equilibrium 

point under study will be a nonhyperbolic point. 

Theorem 4. As the parameter    passes through the value 

of   
    , the system (3), around the trivial equilibrium 

point, has no saddle node bifurcation. However it has a 

transcritical bifurcation provided that 

                          (22) 

Otherwise the system undergoes a pitchfork bifurcation. 

https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion
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Proof. It is easy to verify that as the parameter    passes 

through the value of   
  the Jacobain matrix of system (3) 

at    , Eq. (11), becomes 
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Clearly   
  has simple zero eigenvalue      , then 

         is nonhyperbolic point.   

Let    *
   

   
+ and    *

   

   
+ denote the eigenvectors 

corresponding to the simple zero eigenvalue        of the 

matrix   
  and   

   respectively. Then we obtain that 
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 . Moreover, by rewrite system (3) in the form        , 

where   *
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bifurcation cannot occur. 
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Then   
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         ]    under condition (22), 

and hence the system (3) experience a transcritical 

bifurcation at the equilibrium point    with      
 . 

However, if the condition (22) violates then straightforward 

computation shows that the third derivative of   with 

respect to   at       
   is computed by 
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Thus system (3) undergoes a pitchfork bifurcation.            ■              

Theorem 5. Assume that condition (16a) holds, then as the 

parameter    passes through the value of   
  

        ̅

         ̅
 

  

  
, the system (3), around the predator free 

equilibrium point      ̅   , has no saddle node 

bifurcation. However it has a transcritical bifurcation 

provided that 
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Otherwise the system undergoes a pitchfork bifurcation 

Proof.  It’s clear that as the parameter    passes through 

the   
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     ̅    becomes a nonhyperbolic point and the 

Jacobain matrix of system (3) at this point will be 
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other eigenvalue given by      ̅    
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negative due to condition (16a).   

Let    *
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         ]    under condition (23a), 

and hence the system (3) undergoes a transcritical 

bifurcation at the equilibrium point    with      
 . 

However, if the condition (23) violates then straightforward 

computation shows that the third derivative of   with 

respect to   at       
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Thus system (3) undergoes a pitchfork bifurcation. Hence 

the proof is complete.                                                          ■ 

Theorem 6. Assume that conditions (19a) and the 

following condition hold 
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here    and    are given in the proof. Then as the 

parameter    passes through the value of   
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  ], the system (3), around the 

positive equilibrium point           , has a saddle node 

bifurcation. However the transcritical and pitchfork 

bifurcations can’t occur. 

Proof. It’s clear that as the parameter    passes through the 

  
  then the positive equilibrium point            

becomes a nonhyperbolic point and the Jacobain matrix of 

system (3) at this point will be   
  (   )   

, where     as 

given in Eq. (17) with     
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Clearly   
  has simple zero eigenvalue      , with the 

other eigenvalue given by            , which is 

negative due to condition (19a).   

Let    *
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+ denote the eigenvectors 

corresponding to the simple zero eigenvalue        of the 

matrix   
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   respectively. Then we obtain that 
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which gives that:  
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Thus transcritical and pitchfork bifurcations can’t occur 

while the first condition of saddle node bifurcation is 

satisfied. Now since the second derivative of   with respect 

to   at       
   is computed by  
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Clearly   
 [         

         ]    under the condition 

(24). Hence the proof is complete.                      ■

                           

Now, before we go further to study the global dynamics of 

system (3) numerically, the occurrence of Hopf bifurcation 

in system (3) around the positive equilibrium point is 

investigated. It’s well known that the Hopf bifurcation 

refers to the local birth or death of a periodic solution from 

equilibrium as a parameter crosses a critical value. 

Consequently the planar dynamical system (3) undergoes a 

Hopf bifurcation around the positive equilibrium point  

           as a specific parameter (say    as shown in 

the following theorem) passes through a critical value (say 

  
 ) so that the eigenvalues of the linearized system about 

the equilibrium point    be given by             
       with the following two conditions are satisfied [26]: 

1.     
     and     

      (non-hyperbolicity 

condition) 

2. 
  

   
|
     

 
   (transversality condition) 

Theorem 7. Assume that conditions (19b) along with the 

following condition are satisfied. 

 
        

  
   

  

  
                         (25) 

Then system (3) undergoes a Hopf bifurcation around the 

positive equilibrium point    as the parameter    passes 

through the value   
  

  
    

  [  
        

  
   

  

  
  ]. 

Proof. Clearly, due to the characteristic equation of system 

(3) at            that given by Eq. (18), the eigenvalues 

of the Jacobian matrix    (   )   
, which is given by Eq. 

(17) are written as        
 

 
 

 

 
√            

      , where   and   are given in Eq. (18). It is easy to 

verify that     
    

    
  

 
  . While     

     

under conditions (19b) and (25) and hence     
   √  

 , which means the nonhyperbolicity condition holds. 

Moreover, since we have that  
  

   
|
     

 
 

  

   
    , 

hence the second condition of Hopf bifurcation 

(transversality condition) is satisfied. Thus the system (3) 

undergoes a Hopf bifurcation and the proof is complete.   ■ 

Note that since the form of   
  in the above theorem 

depends on many other parameters, then the Hopf 

bifurcation may occurs for different parameters values too. 

 

5. Numerical Simulation 

In this section the global dynamics of system (3) is 

investigated numerically in order to verify the obtained 

analytical results in addition to specify the control set of 

parameters. For the following set of hypothetical 

parameters, system (3) is solved numerically and the 

obtained numerical solutions are drawn in the form of 

phase portrait and time series. 

 
                             
                           

                (26) 

 

It’s observed that for the set of data (26), system (3) has a 

globally asymptotically stable positive equilibrium point 

               starting from four different initial points 

as shown in the phase portrait given in Fig. (1) and time 

series given in Fig. (2). Clearly these two figures show the 

existence of a globally asymptotically stable point of 

system (3) as obtained analytically.  

Now in order to discover the control set of parameters and 

specify the bifurcation point whenever it exist, the system 

is solved numerically with varying one parameter, in the set 

of data (26), each time and then the obtained solutions are 

drawn in number of figures as shown below.  
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Fig.1: Globally asymptotically stable positive equilibrium 

point for system (3) using data (26). 

 
Fig. 2: Time series of the solution given in Fig. (1). (a) The 

solution of   as a function of time. (b) The solution of   as a 

function of time. 

 

It’s observed that for the set of data (26) with         
    , system (3) approaches asymptotically to the positive 

equilibrium point. However, increasing the parameter    in 

the range         with the other parameters fixed as in 

(26), the solution approaches asymptotically to the predator 

free equilibrium point             as shown in Fig. (3) 

when       . While decreasing this parameter in the 

range         with the other parameters as given in (26), 

the positive equilibrium point became unstable and the 

solution of system (3) approaches asymptotically to the 

periodic solution as shown in Fig. (4) for the typical values 

           , which indicates to occurrence of Hopf 

bifurcation. 

 

Fig. 3: (a) System (3) approaches to              for 

       with other parameters fixed as in (26). (b) Time 

series of the solution given by (a). 

 

 

Fig. 4: (a) System (3) approaches to periodic attractor for 

        with other parameters fixed as in (26). (b) Time 

series of the solution given by (a). (c) System (3) approaches to 

large periodic attractor for        with other parameters 

fixed as in (26). (d) Time series of the solution given by (c). 

 

On the other hand it’s observed that for the data (26) with 

             the solution of system (3) still 

approaches to the positive equilibrium point, however 

increasing this value of the parameter in the range    
     leads to occurrence of Hopf bifurcation and the 

system approaches asymptotically to periodic dynamics as 

shown in Fig. (5) for the values            . Moreover 

decreasing the value of    in the range            , 

the solution of system (3) approaches asymptotically to 

predator free equilibrium point             as shown in 

the typical figure given by Fig. (6c-6d) when        . 

Finally, further decreasing in the range        leads to 

approaching of the solution to trivial equilibrium point 

         as shown in the typical figure given by Fig. (6a-

6b) when       .  
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Fig. 5: (a) System (3) approaches to periodic attractor for 

       with other parameters fixed as in (26). (b) Time 

series of the solution given by (a). (c) System (3) approaches to 

large periodic attractor for         with other parameters 

fixed as in (26). (d) Time series of the solution given by (c). 

 

 

 
Fig. 6: (a) System (3) approaches to          for        

with other parameters fixed as in (26). (b) Time series of the 

solution given by (a). (c) System (3) approaches to    
         for         with other parameters fixed as in 

(26). (d) Time series of the solution given by (c). 

 

For the range of parameter         with the rest of 

parameters as in (26) the solution of system (3) still 

approaches asymptotically to the positive equilibrium 

point. However increasing this parameter in the range 

        leads to approaching of the system to    
         as shown in the typical figure given by Fig. (7) 

when        . 

For the parameters set (26) with             , it’s 

observed that the system approaches asymptotically to the 

positive equilibrium point, however increasing this 

parameter as         the solution will approaches 

asymptotically to the periodic dynamics and the Hopf 

bifurcation take place as shown in Fig. (8) when    
          respectively.  Now decreasing the parameter    

in the range         leads to approaching of the solution 

to the predator free point             as in Fig. (9) when 

      .  

 
Fig. 7: (a) System (3) approaches to             for 

       with other parameters fixed as in (26). (b) Time 

series of the solution given by (a). 
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Fig. 8: (a) System (3) approaches to periodic attractor for 

        with other parameters fixed as in (26). (b) Time 

series of the solution given by (a). (c) System (3) approaches to 

large periodic attractor for         with other parameters 

fixed as in (26). (d) Time series of the solution given by (c). 

 

 
Fig. 9: (a) System (3) approaches to             for 

       with other parameters fixed as in (26). (b) Time 

series of the solution given by (a). 

 

Finally, an investigation for the effect of other parameters 

on the dynamical behavior of system (3) is also studied and 

the obtained results were similar to those given above and 

hence they summarized in the following table.  

 

 

 
Table 2: The dynamical behavior of system (3) as a parameter 

varying 

Parameter varying Dynamical behavior 

   

           is asymptotically stable 

       

      
   is asymptotically stable 

        Periodic dynamic 

   

           is asymptotically stable 

       

      
   is asymptotically stable 

        Periodic dynamic 

   

       Periodic dynamic 

               is asymptotically stable 

           is asymptotically stable 

  

          is asymptotically stable 

               is asymptotically stable 

       Periodic dynamic 

 

6. DISCUSSION AND CONCLUSIONS 

  In this paper, an ecological system consisting of 

Holling type-II prey-predator model with a Michaelis–

Menten type of harvesting function is proposed and study. 

The model is assumed to be considering the effect of prey 

refuge on the dynamics of the prey-predator system. The 

existence, uniqueness and boundedness of the solution of 

the proposed model are discussed. All possible equilibrium 

points with their local stability conditions are obtained. 

Suitable Lyapunov functions are used to investigate the 

global dynamics of the equilibrium points. The persistence 

of the system is investigated with the help of average 

Lyapunov method. The Local bifurcation analysis around 

these equilibrium points is carried out depending on the 

Sotomayor’s theorem. Finally the occurrence of Hopf 

bifurcation around the positive equilibrium point is also 

investigated. For the suitable set of biologically feasible 

hypothetical data, the proposed system is solved 

numerically in order to verify the obtained analytical results  

and specify the control set of parameters too. The obtained 

numerical results depending on the data given by (26) can 

be summarized as follows. 

1. Increasing the parameter    that related to the half 

saturation constant above a critical value (bifurcation 

point) leads to destabilizing the positive equilibrium 

point and the system approaches asymptotically to the 

predator free equilibrium point. However decreasing 

this parameter leads to persistence of the system in the 

form of periodic dynamics and a Hopf bifurcation takes 

place. 

2. Increasing the parameter related to the hunting effort 

(  ) above a specific value (bifurcation point) 

destabilize the positive equilibrium point, but the 

system still persist in the form of periodic dynamics 

representing by occurrence of Hopf bifurcation. 

However decreasing this parameter under a specific 

value leads to losing the persistence of the system and 

the system approaches asymptotically to the predator 

free equilibrium point. Further decreasing this 

parameter so that it becomes below the parameter 

related to product of catchability coefficient of prey and 

hunting effort (  ) cases extinction in both the species 

and the system approaches to the trivial point.   

3. Increasing the natural death rate of the predator species 

(  ) leads to losing the persistence of the system and 
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the solution approaches asymptotically to the predator 

free equilibrium point. 

4. Increasing the parameter related to the conversion rate 

(  ) above a specific value (bifurcation point) 

destabilize the positive equilibrium point, but the 

system still persist in the form of periodic dynamics 

representing by occurrence of Hopf bifurcation. 

However decreasing this parameter under a specific 

value leads to losing the persistence of the system and 

the system approaches asymptotically to the predator 

free equilibrium point. 

5. Finally it’s observed that the parameters       and   

have similar effect on the dynamics of the system (3) as 

that shown by the parameter   . While the effect of the 

varying the parameter    on the dynamics of system (3) 

is similar to that given by   . 

According to the numerical results described above all the 

obtained analytical results are verified and they coincide 

with the real life in the environment. 
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