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ABSTRACT: In this paper, by making use of fuzzy differential subordination results of G. I. Oros and Gh. Oros [5,6], we 

study certain suitable classes of admissible functions and investigate properties of analytic functions in the open unit disk 

involving generalized differential operator. 
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1.    INTRODUCTION 
 

Let  ( ) denote the class of analytic functions 

in the open unit disk   *     | |   + and let 

 ̅  *     | |   +. 

For a positive integer number   and    , we 

denote by 

 ,    - 
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         + 

and 

    

*   ( )  ( )         
         

         +. 

Let   denote the class of functions   that are 

analytic in   and having the form: 
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   , we consider the differential operator 

      
 (   )       was introduced by 

Amourah and Darus [2], where 
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We may point out here that some of the special cases of the 

operator defined by (1.1) can be found in [1,3,7,8]. 

Definition (1.1): [4] Denote by   the set of functions   that 

are analytic and injective on    ( ), where 

 ( )  {           
   

 ( )   } 

and are such that   ( )    for        ( ). Further, let the 

subclass of   for which  ( )    be denoted by 

 ( )  ( )     and  ( )    . 

Definition (1.2): [9] Let   be a non-empty set.  An 

application      ,   - is called fuzzy subset. An alternate 

definition, more precise, would be the following: 

A pair  (    ), where       ,   - and 

  *        ( )   +      (    ) 
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is called fuzzy subset. The function    is called 

membership function of the fuzzy subset (    ). 

Definition (1.3): [5] Let two fuzzy subsets of  , 

(    ) and (    ). We say that the fuzzy subsets 

  and   are equal if and only if   ( )  

  ( )     and we denote this by (    )  

(    ). The fuzzy subset (    ) is contained in 

the fuzzy subset (    ) if and only if   ( )  

  ( )     and we denote the inclusion relation 

by (     )  (    ). 

Definition (1.4): [5] Let          be a fixed 

point, and let the functions       ( ). The 

function   is said to be fuzzy subordinate to   and 

write      or  ( )    ( ) if the following 

conditions are satisfied: 

1-   (  )   (  )  

2-   ( )( ( ))    ( )( ( ))      

where 

 ( )      ( ( )   ( )) 

            { ( )       ( )( ( ))       } 

and 

 ( )      ( ( )   ( )) 

            { ( )       ( )( ( ))       }  
Definition (1.5): [6] Let            and let 

  be univalent in  . If   is analytic in   and 

satisfies the (second-order) fuzzy differential 

subordination: 

  (    )( ( ( )    ( )      ( )  ))

   ( )( ( ))  

(   ) 

i.e. 

 ( ( )    ( )      ( )  )    ( )       

then   is called a fuzzy solution of the fuzzy 

differential subordination. The univalent function   

is called a fuzzy dominant of the fuzzy solutions of 

the fuzzy differential subordination, or more simple 

a fuzzy dominant, if  ( )    ( )     for all   

satisfying (1.3). A fuzzy dominant  ̃ that satisfies 

 ̃( )    ( )     for all fuzzy dominant   of 

(1.3) is said to be the fuzzy best dominant of (1.3). 

Definition (1.6): [6] Let   be a set in  ,     and 

  be a positive integer. The class of admissible 

functions Ψ
 
,   - consists of those functions 

          that satisfy the admissibility 

condition: 

  ( (       ))     

whenever 

   ( )          ( ) 

and 

  {
 

 
  }       , 

    ( )

  ( )
  -   

          ( )        . We write Ψ
 
,   - as 

Ψ,   -  

Lemma (1.7): [6] Let   Ψ
 
,   - with  ( )   . If 

   ,   - satisfies 

  (    ). ( ( )    ( )      ( )  )/    ( )         

then 

  ( )( ( ))    ( )( ( )) 

i.e.     ( )    ( )      

 

2.   MAIN RESULTS 
Definition (2.1): Let   be a set in   and       . The 

class of admissible functions Φ
 
,   - consists of those 

functions           that satisfy the admissibility 

condition:   ( (       ))   , whenever 

   ( )      
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where           ( )          

Theorem (2.2): Let   Φ
 
,   -. If     satisfies 
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   (   ) ( )  )/

   ( )           (   ) 

then 
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 (   ) ( )/    ( )( ( )) 
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Proof: Assume that 
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 ( )        
 (   ) ( )                       (   ) 

In view of the relation (1.2), it follows from (2.2) 

that 
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Further computations show that 
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Now define the transformations from           by 
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The proof shall make use of Lemma (1.7) Using 

equations (2.2), (2.3) and (2.4), it follows from 

(2.6) that 

 ( ( )    ( )      ( )  )

  (      
 (   ) ( )       

   (   ) ( )       
   (   ) ( )  )  

Therefore, by making use (2.1), we obtain 

  (    )( ( ( )    ( )      ( )  ))    ( )  

A computation using (2.5) yields 
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((   )    )[(   )(   )  ((   )    ) ]

  (  
   

(   )    
*  

Thus the admissibility condition for   Φ
 
,   - in 

Definition (2.1) is equivalent to the admissibility condition 

for   as given in Definition (1.6). Hence   Ψ,   - and by 

Lemma (1.7), 

  ( )( ( ))    ( )( ( ))  

or equivalently, 

 
.      

 (   ) /( )
.      

 (   ) ( )/    ( )( ( )) 

 i.e.  

      
 (   ) ( )    ( )  

We consider the special situation when     is a simply 

connected domain. In this case    ( ), where   is a 

conformal mapping of   onto   and the class Φ
 
, ( )  - is 

written as Φ
 
,   -. The following  result is an immediate 

consequence of Theorem (2.2). 

Theorem (2.3): Let   Φ
 
,   -. If    , 

 (      
 (   ) ( )       

   (   ) ( )       
   (   ) ( )  ) is 

analytic in   and 

  (    ) . (      
 (   ) ( )       

   (   ) ( )       
   (   ) ( )  )/ 

   ( )( ( ))                                                                        (   ) 

then 

 
.      

 (   ) /( )
.      

 (   ) ( )/    ( )( ( )) 

 i.e.   

      
 (   ) ( )    ( )  

By taking  (       )    
 

 
 in Theorem (2.3), we 

obtain the following corollary : 

Corollary (2.4): Let   Φ
 
,   -. If    ,   

(   )    

   
(

 (      
 (   ) ( )*

 

      
 (   ) ( )

  + is analytic in   and 
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.
 .      

 (   ) ( )/
 

      
 (   ) ( )

  /    ( )  

then 

      
 (   ) ( )    ( )  
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Our result is an extension of Theorem (2.2) to the 

case in which the behavior of   on the boundary of 

  is unknown. 

Corollary (2.5): Let     and   be univalent in   

with  ( )   . Let   Φ
 
[    ] for some  (   ) 

, where   ( )   (  ). If     satisfies 

  (    ) . (      
 (   ) ( )       

   (   ) ( )       
   (   ) ( )  )/

   ( )  

then 

 
.      

 (   ) /( )
.      

 (   ) ( )/    ( )( ( )) 

 i.e.   

      
 (   ) ( )    ( )  

Proof: From Theorem (2.1), we obtain 

 
.      

 (   ) /( )
.      

 (   ) ( )/

    ( ) .  ( )/  

Since   ( )   (  ), we have    ( ) .  ( )/  

  (  )( (  )) and   ( )   ( ). Hence, 

 
.      

 (   ) /( )
.      

 (   ) ( )/

   (  )( (  )) 

i.e. 

      
 (   ) ( )    (  )  

By letting    , we obtain  

      
 (   ) ( )    ( )  

Theorem (2.6): Let   and   be univalent in   with 

 ( )    and set   ( )   (  ) and   ( )  

 (  ). Let           satisfy one of the 

following conditions: 

1-   Φ
 
[    ] for some   (   ), 

2- there exists  
 
 (   ) such that   

Φ
 
[     ] for all   ( 

 
  ). 

If    , 

 (      
 (   ) ( )       

   (   ) ( )       
   (   ) ( )  ) 

is analytic in   and if   satisfies (2.7), then 

 
.      

 (   ) /( )
.      

 (   ) ( )/    ( )( ( )) 

 i.e.  

      
 (   ) ( )    ( )  

Proof: 

Case (1): The proof is similar to that of Corollary (2.2) and 

hence we omit it. 

Case (2): Let  ( )        
 (   ) ( ) and   ( )   (  ). 

Then 

  (    ) . (  ( )    
 ( )     

  ( )   )/

   (    )( ( (  )    (  )      (  )   ))

    ( ) .  ( )/  

By using Theorem (2.2) and the comment associated with 

  (    ) . ( ( )    ( )      ( )  ( ))/    ( )  

where   is any function mapping   into  , with  ( )    , 

we obtain   ( )     ( ) for   ( 
 
  ). By letting     , 

we get  ( )    ( ). 

Therefore 

      
 (   ) ( )    ( )  

Our next theorem yields the best dominant of the fuzzy 

differential subordination (2.7). 

Theorem (2.7): Let   be univalent in   and        

  . Suppose that the differential equation 

 ( ( ) 
   ( )  (  

   
(   )    

*  ( )

   
(   )    

  

 
     ( )  (  

 (   )
(   )    

*   ( )  (  
   

(   )    
*
 

 ( )

(
   

(   )    
*
   

)

  

  ( )                                                                        (   ) 

has a solution   with  ( )    and satisfy one of the 

following conditions: 

1-      and   Φ
 
,   -, 

2-   is univalent in   and   Φ
 
[    ] for some   

(   ), 

3-   is univalent in   and there exists  
 
 (   ) such that 

  Φ
 
[     ] for all   ( 

 
  ). 

If    , 

 (      
 (   ) ( )       

   (   ) ( )       
   (   ) ( )  ) 

is analytic in   and if   satisfies (2.7), then 

 
.      

 (   ) /( )
.      

 (   ) ( )/    ( )( ( )) 

 i.e.   

      
 (   ) ( )    ( ) 

and   is the fuzzy best dominant. 
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Proof: By using Theorem (2.3) and Theorem (2.6), 

we deduce that   is a fuzzy dominant of (2.7). 

Since   satisfies (2.8), it is also a solution of (2.7) 

and hence   will be dominated by all fuzzy 

dominants of (2.7). Therefore   is the fuzzy best 

dominant of (2.7). 

Definition (2.8): Let   be a set in   and      

 . The class of admissible functions Φ
  ,   - 

consists of those functions           that 

satisfy the admissibility condition: 

  ( (       ))   , whenever 

   ( )       ( )  
,(   )    -    ( )

(   ) ( )
 

 

and 

  ,
(   ),    (     )-

(   )[((   )    )]
-

      , 
    ( )

  ( )
  -   

where           ( )          

Theorem (2.9): Let   Φ
  ,   -. If     
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By making use of (1.2)and (2.10), we have 
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Further computations show that 
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Using equations (2.10), (2.11) and (2.12), it follows from 

(2.13) that 
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Hence (2.9) becomes 

  (    )( ( ( )    ( )      ( )  ))    ( )  

The proof is completed if it can be shown that the 

admissibility condition for   Φ
  ,   - is equivalent to the 

admissibility condition for   as given in Definition (1.6). For 

this purpose, note that 
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Hence   Ψ,   - and by Lemma (1.7), 

  ( )( ( ))    ( )( ( ))  

or equivalently, 
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     In the case     is a simply connected domain 

with    ( ) for some conformal mapping   of   

onto  , the class Φ
  , ( )  - is written as 

Φ
  ,   -. The following  result is an immediate 

consequence of Theorem (2.9). 

Theorem (2.10): Let   Φ
  ,   -. If    , 
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 (   ) ( )
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     By taking  (       )     in Theorem (2.10), 

we obtain the following corollary: 

Corollary (2.3): Let   Φ
  ,   -. If    , 
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