FUZZY DIFFERENTIAL SUBORDINATION PROPERTIES OF ANALYTIC FUNCTIONS INVOLVING GENERALIZED DIFFERENTIAL OPERATOR

Abbas Kareem Wanas¹ & Abdulrahman H. Majeed²

^{1,2}Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

abbas.kareem.w@qu.edu.iq¹ & <u>ahmajeed6@yahoo.com²</u>

ABSTRACT: In this paper, by making use of fuzzy differential subordination results of G. I. Oros and Gh. Oros [5,6], we study certain suitable classes of admissible functions and investigate properties of analytic functions in the open unit disk involving generalized differential operator.

KEYWORDS. Fuzzy set, Fuzzy differential subordination, Analytic functions, Admissible functions, Fuzzy best dominant.

1. INTRODUCTION

Let $\mathcal{H}(U)$ denote the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and let $\overline{U} = \{z \in \mathbb{C} : |z| \le 1\}.$

For a positive integer number n and $a \in \mathbb{C}$, we denote by

 $\mathcal{H}[a,n]$

 $= \{ f \in \mathcal{H}(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots, z \in U \}$

and

$$\begin{aligned} \mathcal{A}_n &= \\ \{f \in \mathcal{H}(U): f(z) = z + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \cdots, z \in U\}. \end{aligned}$$

Let \mathcal{A} denote the class of functions f that are analytic in U and having the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n , \quad (z \in U).$$

For $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \ \alpha, \delta \ge 0, \mu, \lambda, \beta > 0$ and $\alpha \ne \lambda$, we consider the differential operator $A^m_{\mu,\lambda,\delta}(\alpha,\beta) : \mathcal{A} \longrightarrow \mathcal{A}$ was introduced by Amourah and Darus [2], where

$$A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)$$

= $z + \sum_{n=2}^{\infty} \left[1 + \frac{(n-1)[(\lambda-\alpha)\beta + n\delta]}{\mu+\lambda}\right]^{m} a_{n}z^{n}$. (1.1)

It is readily verified from (1.1) that

$$\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta} A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right) A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) = z + \sum_{n=2}^{\infty} \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta} \times$$

$$\begin{aligned} & \times \left[1 + \frac{(n-1)[(\lambda-\alpha)\beta + n\delta]}{\mu + \lambda} \right]^{m+1} a_n z^n \\ & + \sum_{n=2}^{\infty} \left(1 - \frac{\mu + \lambda}{(\lambda-\alpha)\beta + n\delta} \right) \times \\ & \times \left[1 + \frac{(n-1)[(\lambda-\alpha)\beta + n\delta]}{\mu + \lambda} \right]^m a_n z^n \\ & = z + \sum_{n=2}^{\infty} \left(\frac{\mu + \lambda}{(\lambda-\alpha)\beta + n\delta} \frac{\mu + \lambda + (n-1)[(\lambda-\alpha)\beta + n\delta]}{\mu + \lambda} \right] \\ & + \frac{(\lambda-\alpha)\beta + n\delta - \mu - \lambda}{(\lambda-\alpha)\beta + n\delta} \left[1 + \frac{(n-1)[(\lambda-\alpha)\beta + n\delta]}{\mu + \lambda} \right]^m a_n z^n \\ & = z + \sum_{n=2}^{\infty} n \left[1 + \frac{(n-1)[(\lambda-\alpha)\beta + n\delta]}{\mu + \lambda} \right]^m a_n z^n . \end{aligned}$$

Thus, we get

$$z\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right)' = \frac{\mu+\lambda}{(\lambda-\alpha)\beta+n\delta}A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) - \left(1-\frac{\mu+\lambda}{(\lambda-\alpha)\beta+n\delta}\right)A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z).$$
(1.2)

We may point out here that some of the special cases of the operator defined by (1.1) can be found in [1,3,7,8].

Definition (1.1): [4] Denote by Q the set of functions q that are analytic and injective on $\overline{U} \setminus E(q)$, where

$$E(q) = \left\{ \xi \in \partial U : \lim_{z \to \xi} q(z) = \infty \right\}$$

and are such that $q'(\xi) \neq 0$ for $\xi \in \partial U \setminus E(q)$. Further, let the subclass of Q for which q(0) = a be denoted by $Q(a), Q(0) = Q_0$ and $Q(1) = Q_1$.

Definition (1.2): [9] Let *X* be a non-empty set. An application $F : X \rightarrow [0,1]$ is called fuzzy subset. An alternate definition, more precise, would be the following:

A pair
$$(A, F_A)$$
, where $F_A : X \to [0,1]$ and

$$A = \{x \in X : 0 < F_A(x) \le 1\} = supp(A, F_A)$$

is called fuzzy subset. The function F_A is called membership function of the fuzzy subset (A, F_A) .

Definition (1.3): [5] Let two fuzzy subsets of *X*, (*M*, *F*_{*M*}) and (*N*, *F*_{*N*}). We say that the fuzzy subsets *M* and *N* are equal if and only if *F*_{*M*}(*x*) = *F*_{*N*}(*x*), *x* \in *X* and we denote this by (*M*, *F*_{*M*}) = (*N*, *F*_{*N*}). The fuzzy subset (*M*, *F*_{*M*}) is contained in the fuzzy subset (*N*, *F*_{*N*}) if and only if *F*_{*M*}(*x*) \leq *F*_{*N*}(*x*), *x* \in *X* and we denote the inclusion relation by (*M*, *F*_{*M*}) \subseteq (*N*, *F*_{*N*}).

Definition (1.4): [5] Let $D \subseteq \mathbb{C}$, $z_0 \in D$ be a fixed point, and let the functions $f, g \in \mathcal{H}(D)$. The function f is said to be fuzzy subordinate to g and write $f \prec_F g$ or $f(z) \prec_F g(z)$ if the following conditions are satisfied:

$$\begin{array}{ll} 1 & f(z_0) = g(z_0), \\ 2 & F_{f(D)}\big(f(z)\big) \leq F_{g(D)}\big(g(z)\big), z \in D. \end{array}$$

where

$$f(D) = supp(f(D), F_{f(D)})$$

= { $f(z) : 0 < F_{f(D)}(f(z)) \le 1, z \in D$ }

and

$$g(D) = supp(g(D), F_{g(D)})$$

 $= \{g(z): 0 < F_{g(D)}(g(z)) \le 1, z \in D\}.$ **Definition** (1.5): [6] Let $\psi : \mathbb{C}^3 \times U \longrightarrow \mathbb{C}$ and let *h* be univalent in *U*. If *p* is analytic in *U* and satisfies the (second-order) fuzzy differential subordination:

$$F_{\psi(\mathbb{C}^3 \times U)}(\psi(p(z), zp'(z), z^2 p''(z); z))$$

$$\leq F_{h(U)}(h(z)),$$

i.e.

$$\psi(p(z), zp'(z), z^2p''(z); z) \prec_F h(z), z \in U,$$

then *p* is called a fuzzy solution of the fuzzy differential subordination. The univalent function *q* is called a fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more simple a fuzzy dominant, if $p(z) \prec_F q(z), z \in U$ for all *p* satisfying (1.3). A fuzzy dominant \tilde{q} that satisfies $\tilde{q}(z) \prec_F q(z), z \in U$ for all fuzzy dominant *q* of (1.3) is said to be the fuzzy best dominant of (1.3).

Definition (1.6): [6] Let Ω be a set in \mathbb{C} , $q \in Q$ and n be a positive integer. The class of admissible functions $\Psi_n[\Omega, q]$ consists of those functions $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition:

$$F_{\Omega}(\psi(r,s,t;z)) = 0$$

and

$$\operatorname{Re}\left\{\frac{t}{s}+1\right\} \geq k \operatorname{Re}\left\{\frac{\xi q^{\prime\prime}(\xi)}{q^{\prime}(\xi)}+1\right\},$$

 $r = q(\xi), s = k\xi q'(\xi)$

 $z \in U, \xi \in \partial U \setminus E(q)$ and $k \ge n$. We write $\Psi_1[\Omega, q]$ as $\Psi[\Omega, q]$.

Lemma (1.7): [6] Let $\psi \in \Psi_n[\Omega, q]$ with q(0) = a. If $p \in \mathcal{H}[a, n]$ satisfies

$$F_{\psi(\mathbb{C}^3 \times U)}\left(\psi(p(z), zp'(z), z^2p''(z); z)\right) \le F_{\Omega}(z), \ z \in U,$$

then

$$F_{p(U)}(p(z)) \le F_{q(U)}(q(z))$$

i.e. $p(z) \prec_F q(z), z \in U.$

2. MAIN RESULTS

Definition (2.1): Let Ω be a set in \mathbb{C} and $q \in Q_0 \cap \mathcal{H}$. The class of admissible functions $\Phi_A[\Omega, q]$ consists of those functions $\phi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition: $F_{\Omega}(\phi(u, v, w; z)) = 0$, whenever

$$u = q(\xi), \quad v = \frac{k\xi q'(\xi) - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)q(\xi)}{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}}$$

and

(1.3)

$$Re\left\{\frac{(\mu+\lambda)^2w + ((\lambda-\alpha)\beta + n\delta - \mu - \lambda)^2u}{((\lambda-\alpha)\beta + n\delta)[(\mu+\lambda)(v-u) + ((\lambda-\alpha)\beta + n\delta)u]} + 2\left(1 - \frac{\mu+\lambda}{(\lambda-\alpha)\beta + n\delta}\right)\right\}$$
$$\geq k Re\left\{\frac{\xi q''(\xi)}{q'(\xi)} + 1\right\},$$

where $z \in U, \xi \in \partial U \setminus E(q)$ and $k \ge 1$.

Theorem (2.2): Let $\phi \in \Phi_A[\Omega, q]$. If $f \in \mathcal{A}$ satisfies

$$F_{\phi(\mathbb{C}^{3}\times U)}\left(\phi\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z),A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z),A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z);z\right)\right) \leq F_{\Omega}(z), \qquad (2.1)$$

then

$$F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) \leq F_{q(U)}\left(q(z)\right)$$

i.e.

 $A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\prec_F q(z).$

Proof: Assume that

Sci.Int.(Lahore),30(2),297-302 2018

$$p(z) = A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)$$

ISSN 1013-5316;CO (2.2)

In view of the relation (1.2), it follows from (2.2)that

$$A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z) = \frac{zp'(z) - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)p(z)}{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}}.$$
(2.3)

Further computations show that

$$A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z) = \frac{z^2p^{\prime\prime}(z) - \left(1 - \frac{2(\mu+\lambda)}{(\lambda-\alpha)\beta + n\delta}\right)zp^{\prime}(z) - \left(1 - \frac{\mu+\lambda}{(\lambda-\alpha)\beta + n\delta}\right)^2p(z)}{\left(\frac{\mu+\lambda}{(\lambda-\alpha)\beta + n\delta}\right)^2}$$
(2.4) i.e.

Now define the transformations from \mathbb{C}^3 to \mathbb{C} by

$$u = r$$
, $v = \frac{s - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)r}{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}}$,

w

$$=\frac{t-\left(1-\frac{2(\mu+\lambda)}{(\lambda-\alpha)\beta+n\delta}\right)s-\left(1-\frac{\mu+\lambda}{(\lambda-\alpha)\beta+n\delta}\right)^{2}r}{\left(\frac{\mu+\lambda}{(\lambda-\alpha)\beta+n\delta}\right)^{2}}$$

(2.5)

Let

``

$$\psi(r, s, t; z) = \phi(u, v, w; z)$$

$$= \phi\left(r, \frac{s - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)r}{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}}, \frac{t - \left(1 - \frac{2(\mu + \lambda)}{(\lambda - \alpha)\beta + n\delta}\right)s - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)^{2}r}{\left(\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)^{2}}; z\right)$$

$$(2.6)$$

The proof shall make use of Lemma (1.7) Using equations (2.2), (2.3) and (2.4), it follows from (2.6) that

$$\psi(p(z), zp'(z), z^2p''(z); z) = \phi(A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z), A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z), A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z); z)$$

Therefore, by making use (2.1), we obtain

DEN: SINTE 8 299

$$F_{\psi(\mathbb{C}^3 \times U)}(\psi(p(z), zp'(z), z^2p''(z); z)) \leq F_{\Omega}(z).$$

A computation using (2.5) yields

$$\frac{t}{s} + 1 = \frac{(\mu + \lambda)^2 w + ((\lambda - \alpha)\beta + n\delta - \mu - \lambda)^2 u}{((\lambda - \alpha)\beta + n\delta)[(\mu + \lambda)(v - u) + ((\lambda - \alpha)\beta + n\delta)u]} + 2\left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right).$$

Thus the admissibility condition for $\phi \in \Phi_A[\Omega, q]$ in Definition (2.1) is equivalent to the admissibility condition for ψ as given in Definition (1.6). Hence $\psi \in \Psi[\Omega, q]$ and by Lemma (1.7),

$$F_{p(U)}(p(z)) \le F_{q(U)}(q(z)),$$

ivalently,

$$F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) \leq F_{q(U)}\left(q(z)\right)$$
$$\cdot A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) \prec_{F} q(z).$$

We consider the special situation when $\Omega \neq \mathbb{C}$ is a simply connected domain. In this case $\Omega = h(U)$, where h is a conformal mapping of U onto Ω and the class $\Phi_{A}[h(U), q]$ is written as $\Phi_A[h,q]$. The following result is an immediate consequence of Theorem (2.2).

Let $\phi \in \Phi_A[h,q].$ Theorem (2.3): If $f \in \mathcal{A}$, $\phi\left(A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z),A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z),A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z);z\right) \quad \text{is}$ analytic in U and

$$F_{\phi(\mathbb{C}^{3}\times U)}\left(\phi\left(A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z),A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z),A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z);z\right)\right)$$

$$\leq F_{h(U)}(h(z)), \qquad (2.7)$$

then

$$F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) \leq F_{q(U)}\left(q(z)\right)$$

i.e.
$$A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) \prec_{F} q(z).$$

By taking $\phi(u, v, w; z) = 1 + \frac{v}{u}$ in Theorem (2.3), we obtain the following corollary :

Corollary (2.4): Let
$$\phi \in \Phi_A[h,q]$$
. If $f \in \mathcal{A}$, $2 + \frac{(\lambda - \alpha)\beta + n\delta}{\mu + \lambda} \left(\frac{z \left(A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z) \right)'}{A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z)} - 1 \right)$ is analytic in U and
 $2 + \frac{(\lambda - \alpha)\beta + n\delta}{\mu + \lambda} \left(\frac{z \left(A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z) \right)'}{A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z)} - 1 \right) \prec_F h(z),$

then

$$A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\prec_F q(z)$$

March-April;

300

Our result is an extension of Theorem (2.2) to the case in which the behavior of q on the boundary of U is unknown.

Corollary (2.5): Let $\Omega \in \mathbb{C}$ and q be univalent in Uwith q(0) = 0. Let $\phi \in \Phi_A[h, q_\rho]$ for some $\in (0,1)$, where $q_\rho(z) = q(\rho z)$. If $f \in \mathcal{A}$ satisfies

$$F_{\phi(\mathbb{C}^{3}\times U)}\left(\phi\left(A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z),A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z),A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z);z\right)\right) \leq F_{\Omega}(z),$$

then

$$\begin{split} F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) &\leq F_{q(U)}\left(q(z)\right)\\ \text{i.e.}\\ A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) \prec_{F} q(z). \end{split}$$

Proof: From Theorem (2.1), we obtain

$$F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right)$$
$$\leq F_{q_{\rho}(U)}\left(q_{\rho}(z)\right).$$

Since $q_{\rho}(z) = q(\rho z)$, we have $F_{q_{\rho}(U)}(q_{\rho}(z)) = F_{q(\rho U)}(q(\rho z))$ and $q_{\rho}(0) = q(0)$. Hence,

$$F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) \leq F_{q(\rho U)}\left(q(\rho z)\right)$$

i.e.

$$A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z) \prec_F q(\rho z).$$

By letting $\rho \to 1$, we obtain $A^m_{\mu\lambda\delta}(\alpha,\beta)f(z) \prec_F q(z)$.

Theorem (2.6): Let *h* and *q* be univalent in *U* with q(0) = 0 and set $h_{\rho}(z) = h(\rho z)$ and $q_{\rho}(z) = q(\rho z)$. Let $\phi : \mathbb{C}^3 \times U \longrightarrow \mathbb{C}$ satisfy one of the following conditions:

- 1- $\phi \in \Phi_{A}[h, q_{\rho}]$ for some $\rho \in (0, 1)$,
- 2- there exists $\rho_0 \in (0,1)$ such that $\phi \in \Phi_A[h_{\rho}, q_{\rho}]$ for all $\rho \in (\rho_0, 1)$.

If $f \in \mathcal{A}$,

$$\phi\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z),A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z),A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z);z\right)$$

is analytic in U and if f satisfies (2.7), then

$$F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) \leq F_{q(U)}(q(z))$$

i.e.
$$A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) \prec_{F} q(z).$$

Proof:

Case (1): The proof is similar to that of Corollary (2.2) and hence we omit it.

Sci.Int.(Lahore),30(2),297-302 2018

Case (2): Let $p(z) = A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z)$ and $p_{\rho}(z) = p(\rho z)$. Then

$$\begin{split} &F_{\phi\left(\mathbb{C}^{3}\times U\right)}\left(\phi\left(p_{\rho}(z),zp_{\rho}'(z),z^{2}p_{\rho}''(z);\rho z\right)\right)\\ &=F_{\phi\left(\mathbb{C}^{3}\times U\right)}\left(\phi(p(\rho z),zp'(\rho z),z^{2}p''(\rho z);\rho z)\right)\\ &\leq F_{h_{\rho}(U)}\left(h_{\rho}(z)\right). \end{split}$$

By using Theorem (2.2) and the comment associated with

$$F_{\phi(\mathbb{C}^3 \times U)}\left(\phi(p(z), zp'(z), z^2p''(z); w(z))\right) \leq F_{\Omega}(z),$$

where *w* is any function mapping *U* into *U*, with $w(z) = \rho z$, we obtain $p_{\rho}(z) \prec_F q_{\rho}(z)$ for $\rho \in (\rho_0, 1)$. By letting $\rho \to 1$, we get $p(z) \prec_F q(z)$.

Therefore

$$A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\prec_F q(z).$$

Our next theorem yields the best dominant of the fuzzy differential subordination (2.7).

Theorem (2.7): Let *h* be univalent in *U* and $\phi : \mathbb{C}^3 \times U \longrightarrow \mathbb{C}$. Suppose that the differential equation

$$\phi\left(q(z), \frac{zq'(z) - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)q(z)}{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}}, \frac{z^2q''(z) - \left(1 - \frac{2(\mu + \lambda)}{(\lambda - \alpha)\beta + n\delta}\right)zq'(z) - \left(1 - \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)^2q(z)}{\left(\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)^2}; z\right)$$
$$= h(z) \qquad (2.8)$$

has a solution q with q(0) = 0 and satisfy one of the following conditions:

- 1- $q \in Q_0$ and $\phi \in \Phi_A[h, q]$,
- 2- q is univalent in U and $\phi \in \Phi_A[h, q_\rho]$ for some $\rho \in (0,1)$,
- 3- q is univalent in U and there exists $\rho_0 \in (0,1)$ such that $\phi \in \Phi_A[h_o, q_o]$ for all $\rho \in (\rho_0, 1)$.

If $f \in \mathcal{A}$,

$$\phi\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z),A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z),A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z);z\right)$$

is analytic in U and if f satisfies (2.7), then

$$\begin{split} F_{\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f\right)(U)}\left(A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)\right) &\leq F_{q(U)}\left(q(z)\right)\\ \text{i.e.} \\ A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z) \prec_{F} q(z) \end{split}$$

and q is the fuzzy best dominant.

Sci.Int.(Lahore),30(2),297-302 2018

Proof: By using Theorem (2.3) and Theorem (2.6), we deduce that q is a fuzzy dominant of (2.7). Since q satisfies (2.8), it is also a solution of (2.7) and hence q will be dominated by all fuzzy dominants of (2.7). Therefore q is the fuzzy best dominant of (2.7).

Definition (2.8): Let Ω be a set in \mathbb{C} and $q \in Q_1 \cap \mathcal{H}$. The class of admissible functions $\Phi_{A^*}[\Omega, q]$ consists of those functions $\phi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition: $F_{\Omega}(\phi(u, v, w; z)) = 0$, whenever

$$u = q(\xi), \quad v = q(\xi) + \frac{[(\lambda - \alpha)\beta + n\delta]k\xi q'(\xi)}{(\mu + \lambda)q(\xi)}$$

and

$$Re\left\{\frac{(\mu+\lambda)[vw-u(3v-2u)]}{(v-u)[((\lambda-\alpha)\beta+n\delta)]}\right\}$$
$$\geq k Re\left\{\frac{\xi q''(\xi)}{q'(\xi)}+1\right\},$$

where $z \in U, \xi \in \partial U \setminus E(q)$ and $k \ge 1$.

Theorem (2.9): Let $\phi \in \Phi_{A^*}[\Omega, q]$. If $f \in \mathcal{A}$ satisfies

$$F_{\phi(\mathbb{C}^{3}\times U)}\left(\phi\left(\frac{A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)},\frac{A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)},\frac{A^{m+3}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)};z\right)\right)$$

$$\leq F_{\Omega}(z), \qquad (2.9)$$

then

$$F_{\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f}\right)(U)}\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)}\right) \leq F_{q(U)}(q(z))$$

i.e.

$$\frac{A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z)} \prec_F q(z).$$

Proof: Assume that

$$p(z) = \frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z)}.$$
 (2.10)

By making use of (1.2)and (2.10), we have

$$= p(z) + \frac{(\lambda - \alpha)\beta + n\delta}{\mu + \lambda} \frac{zp'(z)}{p(z)}.$$
 (2.11)

Further computations show that

ISSN 1013-5316;CODEN: SINTE 8
(2.6),
(2.7).
f (2.7).
f (2.7)
fuzzy
y best

$$\times \left[\frac{zp'(z)}{p(z)} + \frac{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}zp'(z) + \frac{zp'(z)}{p(z)} + \frac{z^2p''(z)}{p(z)} - \left(\frac{zp'(z)}{p(z)}\right)^2}{\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}p(z) + \frac{zp'(z)}{p(z)}} \right].$$
(2.12)

Now define the transformations from \mathbb{C}^3 to \mathbb{C} by

$$u = r, \qquad v = r + \frac{[(\lambda - \alpha)\beta + n\delta]s}{(\mu + \lambda)r},$$
$$w = r + \frac{(\lambda - \alpha)\beta + n\delta}{\mu + \lambda} \times$$
$$\times \left[\frac{s}{r} + \frac{\frac{(\mu + \lambda)s}{(\lambda - \alpha)\beta + n\delta} + \frac{s + t}{r} - \left(\frac{s}{r}\right)^2}{\frac{(\mu + \lambda)r}{(\lambda - \alpha)\beta + n\delta} + \frac{s}{r}} \right].$$

Let

$$\psi(r,s,t;z) = \phi(u,v,w;z)$$

$$= \phi\left(r,r + \frac{[(\lambda - \alpha)\beta + n\delta]s}{(\mu + \lambda)r}, r + \frac{(\lambda - \alpha)\beta + n\delta}{\mu + \lambda} \times \left[\frac{s}{r} + \frac{\frac{(\mu + \lambda)s}{(\lambda - \alpha)\beta + n\delta} + \frac{s + t}{r} - \left(\frac{s}{r}\right)^{2}}{\frac{(\mu + \lambda)r}{(\lambda - \alpha)\beta + n\delta} + \frac{s}{r}}\right];z\right). (2.13)$$

Using equations (2.10), (2.11) and (2.12), it follows from (2.13) that

Hence (2.9) becomes

$$F_{\psi(\mathbb{C}^3 \times U)}(\psi(p(z), zp'(z), z^2p''(z); z)) \leq F_{\Omega}(z).$$

The proof is completed if it can be shown that the admissibility condition for $\phi \in \Phi_{A^*}[\Omega, q]$ is equivalent to the admissibility condition for ψ as given in Definition (1.6). For this purpose, note that

$$\frac{s}{r} = \frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta} (v - u),$$
$$\frac{t}{r} = v(w - v) \left(\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta}\right)^{2}$$
$$-\frac{s}{r} \left(\frac{\mu + \lambda}{(\lambda - \alpha)\beta + n\delta} v - \frac{2s}{r} + 1\right)$$

March-April;

302

and
$$\frac{t}{s} + 1 = \frac{(\mu + \lambda)[vw - u(3v - 2u)]}{(v - u)[((\lambda - \alpha)\beta + n\delta)]}.$$

Hence $\psi \in \Psi[\Omega, q]$ and by Lemma (1.7),

$$F_{p(U)}(p(z)) \le F_{q(U)}(q(z)),$$

or equivalently,

$$F_{\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f}\right)(U)}\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)}\right) \leq F_{q(U)}(q(z))$$

i.e.

$$\frac{A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)} \prec_F q(z)$$

In the case $\Omega \neq \mathbb{C}$ is a simply connected domain with $\Omega = h(U)$ for some conformal mapping *h* of *U* onto Ω , the class $\Phi_{A^*}[h(U), q]$ is written as $\Phi_{A^*}[h, q]$. The following result is an immediate consequence of Theorem (2.9).

Theorem (2.10): Let $\phi \in \Phi_{A^*}[h, q]$. If $f \in \mathcal{A}$, $\phi \left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z)}, \frac{A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}, \frac{A_{\mu,\lambda,\delta}^{m+3}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z)}; z \right)$ is analytic in U and

$$\begin{split} F_{\phi(\mathbb{C}^{3}\times U)}\left(\phi\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)},\frac{A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)},\frac{A_{\mu,\lambda,\delta}^{m+3}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z)};z\right)\right) \\ &\leq F_{h(U)}(h(z)), \end{split}$$

then

$$F_{\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f}\right)(U)}\left(\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)}\right) \leq F_{q(U)}(q(z))$$

i.e.
$$\frac{A_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{\frac{M_{\mu,\lambda,\delta}^{m+1}(\alpha,\beta)f(z)}{M_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)} \leq_{E} q(z).$$

$$\frac{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^{m}(\alpha,\beta)f(z)} \prec_{F} q(z).$$

By taking $\phi(u, v, w; z) = uv$ in Theorem (2.10), we obtain the following corollary:

Corollary (2.3): Let $\phi \in \Phi_{A^*}[h, q]$. If $f \in \mathcal{A}$, $\frac{A_{\mu,\lambda,\delta}^{m+2}(\alpha,\beta)f(z)}{A_{\mu,\lambda,\delta}^m(\alpha,\beta)f(z)}$ is analytic in U and

$$\frac{A^{m+2}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^{m}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)} <_F h(z),$$

then

$$\frac{A^{m+1}_{\mu,\lambda,\delta}(\alpha,\beta)f(z)}{A^m_{\mu,\lambda,\delta}(\alpha,\beta)f(z)} \prec_F q(z).$$

REFERENCES

 F. M. Al-Oboudi, "On univalent functions defined by a generalized Salagean operator", Int. J. Math. Math. Sci., 27, 1429–1436 (2004).

- [2] A. Amourah and M. Darus, "Some properties of a new class of univalent functions involving a new generalized differential operator with negative coefficients", Indian J. Sci. Tech., 9(36), 1–7 (2016).
- [3] M. Darus and R. W. Ibrahim, "On subclasses for generalized operators of complex order", Far East J. Math. Sci., 33(3), 299–308 (2009).
- [4] S. S. Miller and P. T. Mocanu, "Differential Subordinations: Theory and Applications", Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [5] G. I. Oros and Gh. Oros, "The notion of subordination in fuzzy set theory", General Mathematics, 19(4), 97-103 (2011).
- [6] G. I. Oros and Gh. Oros, "Fuzzy differential subordination", Acta Universitatis Apulensis, 30, 55-64 (2012).
- [7] G. S. Salagean, "Subclasses of univalent functions", Lecture Notes in Math., Springer Verlag, Berlin, 1013, 362-372 (1983).
- [8] S. R. Swamy, "Inclusion properties of certain subclasses of analytic functions", Int. Math. Forum Universitatis Apulensis, 7(36), 1751–1760 (2012).
- [9] L. A. Zadeh, "Fuzzy sets", Information and control, 8, 338-353 (1965).