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ABSTRACT :The basic physical idea in this approximation is that the square of the local-field operator is replaced with 

its mean value.  The implication is that the true quantum-mechanical spectrum of this operator is replaced with a 

distribution around its expectation value.  In this sense, SFA is an improvement on mean-field theory. This approach  was 

used for compute the thermodynamic properties- the mean energy, pressure, entropy and heat capacity- of krypton gas in 

the temperature- range 120-200 K. SFA is based on deriving a closed set of nonlinear integral equations for the system. 

This set is solved numerically by an iteration method. The grand partition function can then be evaluated, from which 

thermodynamic properties follow. The main input in this approach is the HFD-B binary potential. The results are almost 

identical to the ideal gas and with the experimental data 

. 
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INTRODUCTION 
 SFA is an improvement on mean-field theory where the 

operator is replaced with its expectation value [1,2].  The 

two-body potential representing the Kr-Kr interaction is 

taken in the present work as the HFD-B potential [3]. The 

properties of the interatomic krypton potential are:(i) The 

repulsive term, describes Pauli repulsion at short ranges 

due to overlapping electron orbitals; (ii) The attractive 

long-range term, describes attraction at long ranges; (iii) 

The interaction energy is a minimum at the equilibrium 

position. This is the same as in other inert atomic systems – 

including helium, lithium, neon, argon, among others. 

Several theoretical and experimental methods have been 

developed to investigate the properties of Kr: An ab initio 

potential was used in computer simulations to yield 

thermodynamic properties to study the thermo physical 

properties of krypton  gas over a wide range of densities 

and temperatures1[4].  Measurements of P-V-T-data of 

krypton have been carried out in the temperature region 

from 0° to 150°C and at pressures up to 2900 atmospheres 

[5]. This work has studied the thermodynamic properties of 

krypton gas under certain conditions.                                                  

BASIC PRINCIPLES: 

 In quantum mechanics, a Hamiltonian is an operator 

corresponding to the total energy of the system in most of 

the cases. It is usually denoted by H, also Ȟ or Ĥ. Its 

spectrum is the set of possible outcomes when one 

measures the total energy of a system. Because of its close 

relation to the time-evolution of a system, it is of 

fundamental importance in most formulations of quantum 

theory. 

By analogy with classical mechanics, the Hamiltonian is 

commonly expressed as the sum of operators corresponding 

to the kinetic and potential energies of a system in the form 

: 10 ĤĤĤ  .           (1)                                                                                                                                                                         

Here, 0Ĥ is the kinetic-energy term: 

)2(),(ˆ
2

)(ˆˆ 2
2

0 r
m

rrdH










 


)r(ˆ 



and )r(ˆ  being the annihilation and creation field 

operators, respectively.                                                                                                     

1Ĥ  is the interaction term: 
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rm=4.008 Å ;  A*=1.10146811; α*=9.39490495; β*=-

2.32607647; D=1.28; C6=1.08822526; C8 = 0.53911567; 

C10 = 0.42174119;  ε/kB = 201.2K . In the usual manner of 

second quantization [6], the field operators are written as 

linear combinations of the creation and annihilation 

operators, 
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 is the single-particle wave function and )r(

k
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its complex conjugate, and the sum is over the complete set 

of compatible single-particle quantum numbers  describing 

a specific state, k


 being the linear momentum of the 

particle.   In homogeneous (infinite) systems, all physical 

properties must be invariant under spatial translations. This 

suggests periodic boundary conditions and single-particle 

wave functions that are plane waves:
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               (7),   being the 

(normalization) volume of the system. Thus,  
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Integration over the spatial coordinates gives [7] :
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being the Fourier transform of V(r) and k̂ the density 

operator: q

q

qkk bbrdrkirVkV ˆˆ1
ˆ;)..exp()()( 










    (10). 

The single-particle energy for free particles, incorporating 

the chemical potential  , is  
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This is equivalent to the particle being in a potential well 

with depth - .  It follows that
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(14)  In SFA, it is assumed that the Hamiltonian can be 

expressed as a linear combination of kÊ and the number-

of-particles operator 
kkk
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closed set of nonlinear integral equations describing any 

infinite homogeneous Bose system is obtained as follows 
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kk
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(19) The implicit assumption is that the fluctuations in this 

operator are negligible. On the other hand, in SFA, it is the 

square of the operator that is replaced with its mean value: 
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Putting 1Â   in Eq. (21) and since ,0Ê
k
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the symmetry involved, we have  kn̂ 0k


  .                                               

(24)                                                                                            

In terms of the deviations of kn̂ , defined as
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Putting qn̂Â   in this equation, one has (the index c 

denoting ‘correlations’)                                       


cqk n̂n̂ 








kp

qp

1
n̂n̂)pk(V

)k(




                                                                                                                             

                       

 
  












kp
cqp

q

nnpkV
k

nqkV
k




ˆˆ)(

)(

)ˆ(

1

21





        (27)                       

To determine the unknown value 
2

q)n̂(  appearing in 

Eq. (27), we use the identity .b̂Âb̂Âb̂)(b̂ qqqq
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)k(Êq commutes with 
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CALCULATIONS: Most of the aggregate thermodynamic 

variables of the system, such as the total energy, free 

energy, entropy, and pressure, can be expressed in terms of 

the partition function Q or its derivatives, where Q is: 
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P10 ]Ê)p(q)p(q[Qln


                  (35)                                                                  

Taking into account the symmetry of the two eigenvalues 
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In the thermodynamic limit, the summations in Eqs. (18), 

(27) and (32) can be converted to integrals.   Performing 

the angular integrals, one gets
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For central potentials, by virtue of spherical symmetry, one 

can use the familiar simple form of the relative partial-

wave expansion:                 
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where )p,k(V is the Fourier-Bessel transform of potential:                         
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 xj  being the spherical Bessel function of order ℓ and 

argument  x.This transform was calculated using a program 

originally constructed by Ghassib and coworkers for 

interhelium potentials [10]. The set of nonlinear integral 

Eqs. (43), (44) and (45) were solved numerically by 

Gaussian quadrature [11,12,13]. 

RESULTS AND DISCUSSION:  

Figures 1-8 show the thermodynamic properties of Kr gas. 

Figs.1-4showT-dependenceat n=2×10
25

atoms/m
3
,with the 

ideal gas results; Figs. 5-8  concern with n- dependence at 

different T. Temperature is an indicator of internal energy, 

U is proportional to the T, as shown  in Fig.1; This is 

because repulsive forces increase with increasing T. The 

slope of the curve (U-T) was about 12.15 J/K... The 

physical meaning of this slope is Cv/NkB ; then this value 

close to the ideal gas value 
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Figure 1: The  internal energy U   [J/mol] varies with 

temperature[K]at n= 2x1025atoms/m3. 

 In Fig.2 Plotting the pressure (P) against the absolute 

temperature (T) gives a straight line. This shows the 

pressure of the gas is directly proportional to the 

absolute temperature of the gas; as the temperature 

increases, the molecules in the gas move faster, so the 

kinetic energy increase the pressure.   

 

Figure 2: The pressure P[MPa] varies with temperature T 

[K]at n=2  ×1025atoms/m3. 

Entropy is a measure of how much the energy of atoms 

and molecules become more spread out in a process. 

Fig.3 shows changes in temperature will lead to 

changes in entropy. The higher the temperature the 

more thermal energy the system has; the more thermal 

energy the system has, the more ways there are to 

distribute that energy; the more ways there are to 

distribute that energy, the higher the entropy. 

Increasing the temperature will increase the entropy. 

  

Figure 3:  The entropy S [J/mol K] varies with 

temperature T [K] at n= 2×1025 atoms/m3. 

Further, in Fig. 4 Cv remains constant with 

increasing T,( Cv~ 12.5 J/mole K) and the gas 

behave qualitatively like an ideal gas, as expected on 

physical grounds.                                                       

Figure 4:The heat capacity CV [J/mol K] varies with 

temperature T [K] at n= 2×1025 atoms/m3. 

The functional dependence on T of the above 

thermodynamic quantities can be straightforwardly 

obtained by fitting procedures. The results are: 

1.  U  T 
0.9

;   

2.  P   T
1.00008

; 

3.  ST 
0.085

; 

4. Cv is nearly constant. 

This T-dependence is the same as for the ideal system; the 

small deviation arises from the weak interactions in Kr gas. 

Also, P and U both increased with increasing n, as shown 

in Figs. 5 and 6, respectively. When density is higher, the 

gas contains more gas atoms. The repulsive forces increase; 

therefore the increase in n will result in the increase of U 

and P. 
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Figure 5: The internal energy U [J/mol] varies    with 

temperatures T [K] at different n . 

Figure 6:The pressure P [MPa] as a function of number 

density n×1025 [atoms/m3] at different temperatures T [K]. 

If we increased density then we increased the number of 

atoms, which causes an increase in the randomness/disorder 

of the system; therefore the increase in n will result in the 

increase S as shown in Fig. 7. 

On the other hand, Cv almost is  independent on n.     

 

Figure 7:The entropy S [J/mol K] varies with number density 

n×1025 [atoms/m3] at different temperatures [K]. 

 

Figure 8: The heat capacity Cv [J/mol K] as a function of 

number density n × 1025 [atoms/m3] at different temperatures 

T [K]. 

Tables 1,2 show our work for  P and Cv values  respectively 

and the experimental values [14] at the same conditions, 

i.e., there was very good agreement.  

 
Table 1:Comparison of our work and experimental pressure 

values [MPa] for different number densities n[atoms.m−3]   

and temperatures T. 

T[K] n Pexp. Our work ∆P% 

124 8.5×1025 0.13966 0.146 4 

128 10×1025 0.18487 0.181 2 

132 10×1025 0.24037 0.198 17.6 

  

Table 2:Comparison of our work and experimental heat 

capacity values[J/moleK] for different number densities 

n[atoms.m−3] and temperatures T. 

T[K] n Cvexp  Our work ∆Cv% 

124 8.5×1025 13.6 12.72 6 

128 10×1025 13.86 12.88 4 

132 10×1025 14.09 12.89 8.5 

 

CONCLUSION 
In this paper the internal energy, pressure, entropy and heat 

capacity of the Kr gas were calculated within the SFA 

framework at temperature range (120-200)K using the 

HFD-B potential. The results were compared with those of 

an ideal gas the small deviation arises from the weak 

interactions in Kr gas. Our results are compared in Table 12 

to previous experimental results. U, P and S are 

proportional to T and n.  This is because repulsive forces 

increase with increasing T and increasing n, On the other 

hand the dependence of the specific heat on the temperature 

and density is weak and the gas becomes more and more 

ideal with decreasing n. As expected on physical grounds, 

the noble gases such as Kr gas are nearly ideal gases. Our 

results are compared in Table 1,2 to previous experimental 

results, the results of  our work are in good agreement with 

the experimental data.  
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