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ABSTRACT: Volatility is an inherent characteristic of stock prices data. The modeling of stock prices requires 
specialized models which can capture the volatile behavior of this phenomenon. In this study forecast model for 
capturing volatility has been studied. Initially conventional ARIMA (p, d, q) model was fitted and found that ARIMA (1, 
2, 1) seems adequate model to capture average of stock price. The diagnostics of ARIMA (1, 2, 1) provided sufficient 
information about presence of volatility in the stock prices. In the current study to model volatility General Auto-
regressive Conditional Heteroscedasticity GARCH (m,k) model was fitted and empirical findings showed that 
GARCH(1,1) model is an adequate choice to capture volatility of the data. Eviews and R software were used to analyze 
the time series data. Two information criteria: Akaike Information Criterion (AIC), Schwarz Bayesian Criterion (SBC) 
was used for comparing the proposed GARCH (1, 1) model with the ARIMA (1.2.1) model. The findings of the current 
study will guide investors’ choice of stock portfolio. Incorporating the proposed volatility model of this study with real-
life models can significantly improve the precision of financial valuations and thus open doors for future studies on the 
said topic. 
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1. INTRODUCTION: 

Cement is the lynch pin of construction industry.  Work 
on any development project for improving the physical 
infrastructure of an institution, town, city or country 
cannot be accomplished without cement. In developing 
countries like Pakistan and Saudi Arabia demand of 
cement always exceeds the supply. With the increase in 
the demand of any commodity we always witness a 
spiral effect on the price of a commodity and cement is 
no exception to it.   With the increase in the price of the 
commodity the profits of the companies swell and 
consequently the earning per share (EPS) of the share 
holders for the company increases. Stock prices i.e. the 
share prices are positively affected by an increase in 
EPS which is an innate phenomenon witnessed in most 
Stock Exchanges throughout the world. Since the stock 
markets of Pakistan and Saudi Arabia both are in the 
developing phase, a comprehensive analysis with a 
microstructure approach on stock return volatility 
process will not only make a contribution to academic 
literature of microstructure theory, but will also benefit 
investors and policy makers. This gives a raison d’être to 
study the behavior of stock prices of cement industry in 
the two countries. Since the data of stock prices are 
recorded chronologically therefore  it is called a time 
series data and an appropriate statistical tool to be used  
for analyzing such a series data is Time series analysis 
.Forecasting involves making estimates of the future 
values of variables of interest using past and current 
information. The most common classes of time series 
forecasting methods are the autoregressive integrated 
moving average (ARIMA) models [3]. ARIMA model 
was used by [1] to forecast the stock prices of Flying 
cement they suggested that ARIMA (1, 2, 1) is a suitable 
model for forecasting the prices of the stocks. The 
conceptual framework and the data has been adopted 
by [1] where the authors have used ARIMA model for 
prediction of stock prices for Flying cement industry. 
The fact that authors overlooked was the presence of 

volatility clustering in the time series data and addressing the 

said issue. Secondary data from [1] was used for further 

modelling the volatility of the stock prices using 

ARCH/GARCH techniques. [6] was the first to introduce the 

concept of conditional heteroscedasticity. GARCH model 

was introduced by [2] which is among the oldest and most 

widely used models for capturing volatility i.e. changing 

variances, in financial time series that exhibit time- varying 

volatility clustering. [5] stated that GARCH are tailor-made 

for volatility clustering and it produces returns with fatter 

than normal tails even if the innovations and the random 

shocks are normally distributed. GARCH approach also 

involves model identification, model estimation and 

forecasting.  Hence, a GARCH model is used to capture 

volatility clustering in stock prices time series. The current 

paper has two-fold objectives, (i) examine the nature of 

volatility of stock prices present in the Flying cement shares 

and (ii) determine the best fitting model using the AIC and 

SBC criterion. 

The rest of the paper proceeds as follows: In Section 2 

methods and materials and statistical framework of 

ARCH/GARCH theories are elaborated: results and 

discussion are presented in Section 3; Section 4 and 5 briefly 

conclude the study with some future implications followed by 

acknowledgements. 

 

2. METHODS AND MATERIALS: 

2.1 Data and  ARIMA results 

For the current study secondary data from Financial Times 

website has been selected for analysis. [4] has recommended 

that at least 50 observations in order to apply time series tools 

to a set of data. Many others have recommended at least 100 

observations. The Flying Cement daily stock prices data have 

been obtained from Financial Times (1) time varying from 1
st
 

January 2016 to 30
th

 January 2017. The data are divided into 

two parts –in sample (from 1
st
 January 2016 – 31

st
 December 

2016) and out sample (from 1
st
 January 2107 -20

th
 January 

2017). [1] used the first data set for model estimation and the 

second set for forecasting and model validation. 

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm#Chatfield,
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Table 1: ARIMA (1, 2, 1) Parameter Estimates 

          
Variable Coefficient        SE t-Statistic Prob.   

C 3.49E-05 3.37E-05 1.037665 0.3005 

AR(1) -0.163363 0.063441 -2.575037 0.0106 

MA(1) -0.993944 0.004474 -222.1717 0.0000 

          
R-squared 0.584324     Akaike info criterion -3.613289 

Durbin-Watson stat 1.997421     Schwarz criterion -3.570038 

          
2 2

1 10.0000349 0.1633 0.9939t t tY Y u       

 
The ARIMA (1, 2, 1) model has been fitted by [1]. After 

fitting the model the diagnostics for ARIMA (1, 2, 1) were 

shown in Figure 1. The authors also calculated forecasted 

values using the fitted ARIMA (1,2,1) model  on the out- 

sample of 15 days , the results are shown in Table 2. 
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Figure 1: Showing Residuals, ACF and PACF for ARIMA(1,2,1) model 

  



Sci.Int.(Lahore),30(1),89-94,2018  ISSN 1013-5316;CODEN: SINTE 8 91 

January-February 

Table 2: Cross validation Out Sample (Closing Price) for ARIMA (1, 2, 1) 

Dates Observed Ln(Observed) Predicted Ln(Predicted) 

January 02 15.00 2.70805 15.05 2.711072 

January 03 15.26 2.725235 15.10 2.714471 

January 04 14.95 2.704711 15.32 2.728889 

January 05 14.50 2.674149 15.10 2.714748 

January06 14.35 2.66375 14.66 2.685393 

January 09 14.44 2.670002 14.46 2.671098 

January 10 14.40 2.667228 14.50 2.674384 

January 11 14.40 2.667228 14.49 2.673132 

January 12 14.33 2.662355 14.48 2.672569 

January 13 14.14 2.649008 14.42 2.668432 

January 16 14.45 2.670694 14.24 2.656326 

January 17 14.20 2.653242 14.47 2.671998 

January 18 14.25 2.656757 14.31 2.661264 

January 19 14.54 2.676903 14.31 2.660993 

January 20 14.30 2.66026 14.56 2.678429 

 

2.2 Statistical Framework of ARCH/GARCH Models 
There are two distinct specifications required for every 
ARCH/GARCH model: the mean and variance 
equations. 
General GARCH (p,q) model can be expressed as : 

  
            

          
        

           
  

 where,     the  is the coefficient of the intercept; 
    are the coefficients of the ARCH component; and 
      are the coefficient of the GARCH component.  

The three parameters are restricted to be positive and  
+β <1 to achieve stationarity. Residuals plot in Figure1 
exhibited wide swings, or volatility, suggesting that the 
variance of the series varies over time. The ARCH (m) 
and GARCH (m, k) models are designed to deal with 
just this set of issues. ARCH and GARCH models treat 
heteroscedasticity as a variance to be modeled. The goal 
of such models is to provide a volatility measure –like a 
standard deviation–that can be used in financial 
decisions. The GARCH model that has been described is 
typically called the GARCH (1,1) model. The (1,1) in 
parentheses is a standard notation in which the first 
number refers to how many autoregressive lags, or 
ARCH terms, appear in the equation, while the second 
number refers to how many moving average lags are 
specified, which here is often called the number of 
GARCH terms. The GARCH models are mean reverting 

and conditionally heteroscedasticity, but have a 
constant unconditional variance.  
The simplest GARCH model is the GARCH (1, 1) model, 
which can be written as: 

  
            

        
  

which says that the conditional variance of u at time t 
depends not only on the squared error term in the 
previous time but also on its conditional variance in the 
previous time period.  
GARCH (1, 1) model is equivalent to an ARCH (2) 
model. A GARCH (1, 1) specification would suffice since 
it has been shown to be a parsimonious representation 
of conditional variance that adequately fits many high-
frequency time series [7]. 
 
3. RESULTS AND DISCUSSION: 

The results of GARCH (1, 1) are given in Table 3. The 
three coefficients in the variance equation are listed as 
C, the intercept; RESID (-1) ^2 (ARCH (1)), the first lag 
of the squared return; and GARCH (-1), the first lag of 
the conditional variance. Notice that the coefficients 
sum up to a number less than one, which is required to 
have a mean reverting variance process. Since the sum 
is very close to one, this process mean reverts slowly. 
Standard errors, Z-statistics and p-values complete the 
table. 
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Table 3: GARCH (1, 1) estimates with ARIMA (1,2,1) for Mean Equation and Variance Equation 

     
 Mean  Equation   

Variable Coefficient Std. Error z-Statistic Prob.   

     
C -3.38E-05 3.51E-05 -0.965212 0.3344 

AR(1) -0.238284 0.069441 -3.431470 0.0006 

MA(1) -0.990008 0.004093 -241.8736 0.0000 

     
     
 Variance Equation   

     
C 0.000332 0.000101 3.306298 0.0009 

RESID(-1)^2 0.323345 0.078266 4.131353 0.0000 

GARCH(-1) 0.475905 0.083109 5.726277 0.0000 

     
     

R-squared 0.575528     Akaike info criterion -3.757397 

Durbin-Watson stat 1.82735     Schwarz criterion -3.670895 

     
     

 

The fitted GARCH model is discussed as under: 
Mean Equation 

   

2 2

1 1

1 2 1 2 3 1

1 2 3 1

0.0000338 0.2383 0.9900

2 0.0000338 0.2383 2 0.9900

0.0000338 1.7617 1.4766 0.2383 0.9900 .

t t t

t t t t t t t

t t t t t

Y Y u

or Y Y Y Y Y Y u

or Y Y Y Y u

 

     

   

     

       

     

 

                     
The upper portion of Table 3 shows the results of 
ARIMA (1, 2, 1) model. Since the probability of both the 
AR(1) and MA(1) terms is zero or approximately equal 
to zero, that is in both the cases p < 0.01,  suggesting the 
fact that ARIMA (1,2,1) is good for forecasting the 
average stock prices for Flying cement but without 
taking into consideration the volatility.  But by 
examining the residual plot in Figure 1 we see that 
swings in the time-series points towards the presence of 
volatility clustering in the time series of stock prices. 
Thus the raison d’être to use the ARCH/ GARCH model 
arises. 
Variance Equation 

 2 2 2

1 10.000332 0.323345 0.475905 .t t tu    

Now coming to lower portion the variance equation in 
Table 3, probability of RESID (-1) ^2 [ARCH Term] is 
equal to 0.000, that is p <0.01, therefore volatility can 
be predicted by ARCH term as its probability is 
significant.  This means that previous day’s returns 
affect the present day’s return. Also we see that, the 
probability of the [GARCH Term] GARCH (-1) is equal 
to 0.000, that is p<0.01, therefore GARCH term 
significantly predicts volatility in this model, which 
points to the fact that conditional variance of present 
day is affected by previous day’s variance. Also 
comparing the values of two information criteria: 
Akaike Information Criterion (AIC), Schwarz Bayesian 
Criterion (SBC) from Table 1 and Table 3 it is witnessed 

that the values of the two criteria decrease as a result of 
using GARCH(1,1) thus suggesting that the said model 
is more suitable for modeling the volatility of the stock 
prices for Flying cement. Similar to [8], our results 
indicated that the GARCH (1, 1) model best describes 
the volatility of intraday returns. In a nutshell we can 
say that previous day volatility has strong explanatory 
power for the present day volatility. 
Persistence 
The persistence of a GARCH model has to do with how 
fast large volatilities decay after a shock. For  
the GARCH (1,1) model the key statistic is the sum of 
the two main parameters (           of the variance 
equation (i.e. 0.32334 + 0.475905 = 0.799   ). Large 
GARCH error coefficients, α1, mean that volatility reacts 
intensely to market movements. Large GARCH lag 
coefficients, β1, indicate that shocks to conditional 
variance take a long time die out, so volatility is 
‘persistent’. If α1 is relatively high and β1 is relatively low 
then volatilities tend to be more ‘spiky’ if vice versa then 
volatilities are less spiky. The sum of the two 
parameters should be less than 1. If the sum is greater 
than 1, then the predictions of volatility are explosive. If 
the sum is equal to 1 then we have an exponential decay 
model. Since the sum of the parameters is 
approximately 0.80 this means than the volatility dies 
down slowly i.e. it reverts to mean slowly. 
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Figure 2: Graph of Actual and Fitted Values 

 
The graphical test of volatility clustering in Figure 1 clearly 

points towards the fact that period of high volatility is 

accompanied by periods of low volatility. This feature of 

incessant period of high volatility and low volatility signifies 

volatility clustering, a stylized fact of financial time series 

often exhibits this which gives credence to the application of 

the GARCH model. The top graph in Figure 2 depicts the 

actual and the fitted values closeness of the actual and fitted 

values gives credence to the point that GARCH (1, 1) is 

quite effective in capturing volatility of the stock prices for 

the in-sample and out-samples data. 
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Series: Standardized Residuals

Sample 4 245

Observations 242

Mean       0.013740

Median   0.001153

Maximum  3.192804

Minimum -2.596624

Std. Dev.   1.000690

Skewness   0.250419

Kurtosis   3.576786

Jarque-Bera  5.883841

Probability  0.052764

 
 

Figure 3 : Normality Test of Residuals after GARCH(1,1) with ARIMA(1,2,1) for Mean 

 

 Two important statistics when examining financial time 

series are the kurtosis and skewness. Table shows positive 

mean daily stock returns of 0.0137 and the standard 

deviation which measures the riskiness of the underlying 

assets is 1.000. The higher the S.D the higher the volatility 

of the market and the riskier the equity traded. Likewise if 

we look at the difference between the minimum and 

maximum value of stock returns we see wide variability in 

equity traded in the KSE. Coming to skewness = 0.250 

which is greater than zero it means that the rate of return is 

not much symmetric. The positive skewness points towards 

a probability of making profit from trading in the stocks of 

Flying cement. A test of normality used for the current study 

is the Jarque-Bera test, the null hypothesis of the Jarque-

Bera test is a joint hypothesis of the skewness being zero and 

the excess kurtosis being zero 

 (H0: normal distribution, skewness is zero and excess 

kurtosis is zero against the alternative hypothesis: H1: non-

normal distribution.). With a p-value >0.05, one would 

usually say that the data are consistent with having skewness 
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and excess kurtosis zero The kurtosis is 3.57 which is quite 

greater than the cut-off point for being a normal which is 

indicative of a fat tail curve but the value of Jarque-Bera = 

5.88 with p-value > 0.05 suggests that the hypothesis of 

normality is not rejected and that the series is close to being 

normal. 

 

4. CONCLUSIONS:  

The present study aims at obtaining a suitable forecasting 

volatility present in the stock prices of Flying Cement. 

ARCH/ GARCH model was used to capture the volatility. In 

this paper, the volatility in the stock prices for Flying cement 

industry was measured and forecasted using ARCH/GARCH 

models. Results indicate that a GARCH (1,1) model with 

conditional mean function of ARIMA (1,2,1) can properly 

model the conditional volatilities in the price of stocks. Also 

GARCH performed better than the ARIMA model because 

the values for AIC and SBC using GARCH model were 

smaller than those calculated using ARIMA model. It is 

suggested that in future for forecasting the time series a 

Hybrid method which blends both ARIMA and GARCH 

models should be used for modeling volatility. Present study 

confirms the findings of the   previous studies that GARCH 

model used with regular time-series models   significantly 

enhance predictability. Overall, the GARCH (1,1) model is 

quite successful in taking into account the autocorrelation in 

the volatility in return series. 

5. LIMITATIONS and FUTURE IMPLICATIONS: 

a. Current research tried to capture symmetric effect of 

volatility through GARCH model but in real –life the 

assumption of symmetric effect of volatility is frequently 

violated. To overcome this issue asymmetric GARCH-

family models (EGARCH, PGARCH, TGARCH and 

BGARCH) may be employed on the same data set to have 

a clearer view of volatility. 

b. Augmentation of the trading volumes with GARCH-

family models should be carried out to study the decrease 

in volatility persistence. 

c. Behavior of the stock prices for only one cement 

company is studied for generalizing the results forecasting 

and volatility for different cement stock prices should be 

carried out. 
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