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ABSTRACT: An eco-epidemiological model consisting of prey-predator system with disease in prey has been proposed and 

analyzed. It is assumed that the prey species exhibits herd behavior as a defensive strategy against the predation. The existence 

of all possible equilibrium points are carried out. The local stability analysis and the basin of attractions for these equilibrium 

points are discussed. The occurrences of local bifurcations as well as Hopf bifurcation are studied. Finally numerical 

simulation is used to investigate the global dynamics of the system.  
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1. INTRODUCTION      

The prey-predator system is one of the most important 

systems in ecology, which describe the nutrient interaction 

between the species. It has been studied mathematically by 

many researchers in literatures [1–5] and the references 

therein. In nature, the prey–predator systems involve different 

types of factors, such as age structure, switching, refuge, 

harvesting, group defense etc. The dynamics of these systems 

have been widely studied using mathematical models [6-8]. 

On the other hand, the mathematical modeling of epidemics 

has become a very important subject of research since the 

pioneer work of Kermac-McKendric (1927) on SIRS 

(susceptible-infected-removed-susceptible) systems. In these 

systems the evolution of a disease that gets transmitted upon 

contact is described and investigated. Number of models in 

the framework of Kermac-McKendric model has been 

proposed and studied, which are aimed to controlling the 

effects of diseases and prevent their spread [9-13] and the 

reference therein.     

Although, ecology and epidemiology are two distinct and 

major fields, in nature species do not exist alone and it is 

more reasonable to study the interaction between them 

subjected to the disease. The mathematical models that 

companied between these two fields are known as eco-

epidemiological models. In the last two decades many 

researches have been proposed and studied variety of eco-

epidemiological models [14-18] and the reference therein.   

It is well known that the mass action predation term and 

Holling family of functional responses are the most types of 

functional responses used in literatures. These types of 

functional responses have been built as a quantification of the 

relative responsiveness of the predation rate to change in prey 

density at various populations of prey. However, in nature, 

most of the species live in groups in order to help and protect 

each other. Animals demonstrating this behavior, which 

known as herd behavior, stay in very large groups and are 

often in open spaces, by sticking together in a herd, they 

reduce the chance of being singled out and becoming the one 

animal that gets killed by the predator. Consequently, Cosner 

et al. [19] made the assumption that the number of predators 

in a shape is proportional to the area of the group in two 

dimensions, and to its volume in three dimensions. Therefore, 

the encounter rate between the prey X  and its predator Y , 

say aXYYXf ),(  should change its form to 

YXaYXf ),(  in two dimension, and in three dimension 

it should be YaXYXf 3

2

),(  . Recently Ajraldi et al. [20] 

argued that when prey population exhibit herd behavior; the 

functional response should be in terms of square root of prey 

population. Number of researchers have been investigated 

this type of prey’s behavior mathematically and discussed 

there effects on the dynamical behavior of the prey-predator 

systems [21-25]. 

Keeping the above in view, in this paper, an eco-

epidemiological model consisting of prey-predator system 

with disease in prey has been proposed and studied. The 

property of prey’s herd behavior is also included in the 

model. The stability analysis and bifurcation analysis of the 

proposed model are investigated.      

2. The model formulation  

 In this section a mathematical model, which describes 

the dynamical behavior of a prey-predator system having 

infectious disease in prey and prey’s herd behavior as a 

defensive strategy, is proposed and analyzed. Consequently, 

in order to formulates this model the following hypotheses 

are considered 

1. Due to the existence of infectious disease the prey 

population is divided into two classes, susceptible that 

denotes to its population size at time T  by )(TX  and 

infected, which denotes to its population at time T  by 

)(TY . It is assumed that in the absence of the predation 

the susceptible population grows Logistically with intrinsic 

growth rate 0r  and carrying capacity 0K , while the 

infected prey can’t reproduce but it still has the capability 

to compete for the resources. 

2. The disease is of SI-type that means whenever the 

susceptible individual infected with the disease it will 

transfer to the infected class and can’t be recovering again. 

The disease transmitted from infected individual to the 

susceptible individual by contact with infected rate 0b . 

Further the infected individual facing death due to the 

disease with disease death rate 01 d . 

3. It is assumed that the susceptible prey exhibits herd 

behavior as defense strategy against the predation and 

hence the predator, which denotes to its population at time 

T  by )(TZ , will be capable to attacks only the extreme 

individual of susceptible prey that will be represented by 
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the square root of susceptible prey in the form of 

functional response. However the infected prey losses this 

strategy due to the effect of disease. Finally the predator 

consumes the prey according to Lotka-Volterra functional 

response with maximum attack rates 01 a   and 02 a  

for susceptible and infected prey respectively. 

4. The food will be converted to the predator from the 

susceptible and infected prey with conversion rates 

10 1  e  and 10 2  e  respectively. Finally in the 

absence of the prey species the predator will be decaying 

exponentially with natural death rate 02 d .Accordingly 

the dynamics of the prey-predator system having infectious 

disease in prey and prey’s herd behavior can be 

represented mathematically by the following set of 

nonlinear ordinary differential equations: 

ZdYZaeZXae
dT

dZ

YdYZabXY
dT

dY

bXYZXa
K

YX
rX
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dX
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                            (1) 

with 0)0(,0)0(,0)0(  ZYX . Clearly, due to the 

biological meaning of the variables given in system (1) then 

the system defines on the following domain 

 0,0,0:),,( 33  ZYXRZYXR  and is bounded as 

shown in the following theorem. 

Theorem (1): All the solutions of system (1) those initiate in 

the 
3
R  are uniformly bounded. 

Proof: Let  )(),(),( tZtYtX  be any solution initiate in 
3
R . 

Since we have that 

 

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K

X
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Then straightforward computation shows that KX   as 

T . Now consider the function ZYXW  , then we 

obtain that 

 W
dT

dW
21     

here K
r

r 1
1

  and  212 ,,1.min dd . So, 

straightforward computation gives that 
1

2




W  as T . 

Hence all solutions are uniformly bounded.    

             ■ 

Now in order to simplify the form of system (1) and discard 

the square root from it the following transformation is used. 

Let XP   then we obtain 
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Further simplification of system (2) is used to reduce the 

number of parameters and generalized the analytical results 

by applying the following dimensionless variables:  
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Now straightforward computation on system (2) gives the 

following dimensionless system 
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                           (3)  

with 0)0(,0)0(,0)0(  zis  and the dimensionless 

parameters are given by: 
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Clearly the interaction functions in the right hand side of 

system (3) are continuous and have continuous partial 

derivatives, and hence they are Liptchazian functions. Hence 

system (3) has a unique solution. It is also bounded due to the 

boundedness of system (1). 

3. Local stability analysis of the equilibrium points  

   In this section the existence conditions of all possible 

equilibrium point of system (3) are established and then the 

local stability analysis of each of them is discussed. There are 

at most five non-negative equilibrium points of system (3), 

these are describing as follows: 

The vanishing equilibrium point that denoted by 

)0,0,0(0 E  and the disease-predator free equilibrium point, 

say )0,0,1(1 E , which full down on the axiss are always 

exist. The predator free equilibrium point )0,,(2 isE   exists 

uniquely in the interior of planesi  ( 2
)(. siRInt  ) if and only 

if the following condition holds 

53 ww                             (5a) 

Where 
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The disease free equilibrium point )ˆ,0,ˆ(3 zsE   exists 

uniquely in the interior of planesz  ( 2
)(. szRInt  ) if and only 

if the following condition holds 
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Finally the positive equilibrium point ),,(4
 zisE  exists 

uniquely in the interior of 
3
R  provided that there is a 

positive solution to the following algebraic system of 

equations. 

0
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                            (7)                                                                       

Straightforward computation shows that system (7) has a 

unique positive solution given by 
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while *s  represents the unique positive root of the following 

third degree polynomial  
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provided that the following set of conditions are satisfied 
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Now since the general Jacobian matrix ),,( zisJDF   of 

system (3), where 
TfffF ),,( 321 , can be written as: 

33)(),,(  ijazisJ            (10) 

where iwisa 2
2

11 31  , swsa 212  , 113 wa  , 

siwa 321 2 , 54
2

322 wzwswa  , iwa 423  , 

zwa 631   zwa 732   and 87633 wiwswa  . Then the 

Jacobian matrix at )0,0,0(0E  is 
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Clearly, the )( 0EJ  has the following eigenvalues  

0;0;01 80500  ww zis                     (11b)                                      

where zisuu ,,;0   represents the eigenvalue  of )( 0EJ  in 

the u direction. Therefore the vanishing equilibrium point 

0E  is a saddle point.  

The Jacobian matrix of system (3) at the disease-predator free 

equilibrium point )0,0,1(1 E  is given by 
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Therefore the eigenvalues  of )( 1EJ  are  

8615311 ,,02 wwww zis          (12b)                               

It is easy to verify that all the above eigenvalues will be 

negative if they satisfy the following conditions 

 53 ww                                                                          (12c) 

 86 ww                         (12d) 

Hence 1E  is locally asymptotically stable in 
3
R  under the 

conditions (12c)-(12d) and it is unstable saddle point 

otherwise.   

The Jacobian matrix of system (3) at the predator free 

equilibrium point )0,,(2 isE   can be written 
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Then the characteristic equation is                                                                                                            

 0))(( 3322
2   aDT                                 (13b)                                    
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due to the existence condition (5a). Thus, the eigenvalues of 
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Clearly, is 22 and   have negative real parts, while z2  is 

negative provided that 

876 wiwsw                        (13d) 

Consequently, 2E  is locally asymptotically stable in 
3
R  

under the condition (13d) and it is saddle point otherwise.   

The Jacobian matrix of system (3) at the disease free 

equilibrium point )ˆ,0,ˆ(3 zsE   can be written as follows: 
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Hence the characteristic equation is 
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Straightforward computation shows that the above 

eigenvalues have negative real parts provided that the 

following conditions hold.  
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54
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3 ˆˆ wzwsw                        (14e)  

Accordingly, the disease free equilibrium point 3E  is locally 

asymptotically stable provided that the conditions (14d)-(14e) 

are satisfied. However, if only the condition (14d) holds, 3E  

will be unstable saddle point, while it’s an unstable point 

when both the conditions (14d)-(14e) are violated. 

Finally, The Jacobian matrix of system (3) at the positive 

equilibrium point ),,(4
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Thus the characteristic equation of )( 4EJ  can be written as:  
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Therefore, by using the Routh-Hurwitz criterion the 

following theorem can be proved directly. 

Theorem (2): The positive equilibrium point 4E  is locally 

asymptotically stable in 
3
R  provided that the following 

condition is satisfied. 
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Proof. Straightforward computation shows that 1A , 3A  and 

  are positive due to the condition (16) and hence according 

to Routh-Hurwitz criterion all the eigenvalues of the )( 4EJ  

have negative real parts . Thus 4E  is locally asymptotically 

and the proof is complete.               ■  

4. Basin of attraction 

  In this section the region of global stability, that known 

as basin of attraction, of each equilibrium point is determined 

with the help of Lyapunov method as shown in the following 

theorems. 

Theorem (3): Suppose that the disease-predator free 

equilibrium point 1E  is locally asymptotically stable, then it’s 
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 R , 
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Thus it is easy to verify that 
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dV1  is negative definite under the 
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Therefore, 1V  represents a Lyapunov function on 1  and 

hence for any initial point in the region 1  the solution of 

system (3) approaches asymptotically to 1E . Thus 1E  is 

globally asymptotically stable in 1 , which represents the 

basin of attraction of 1E .                               ■ 

Theorem (4): Suppose that the predator free equilibrium 

point )0,,(2 isE   is locally asymptotically stable, then it’s a 

globally asymptotically stable in the region 2
3
 R , where 

}0,0,:),,{(
6

783
2 


 ziissRzis

w

iww
. 

Proof: Consider the function  

zc
i

i
iiic

s

s
ssscV 3212 lnln 

































  

where 3,2,1; jc j   are positive constants to be determined, 

2V  is continuously differentiable positive definite real valued 

function with 0)0,,(2 isV  and 0)0,,(2 isV  for all 

)0,,()0,,( isis   in the 
3
R . Now by differentiate 2V  with 

respect to time and then simplifying the resulting terms we 

obtain that: 

 

 

ziwc
s

s
wcswwc

iisssswcwc

izwcwcssssc
dt

dV


















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4211683

3221
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So by choosing the constants as 1, 211
2

3 


cc
w

sw
 and 

7

4

3 w

w
c  , we obtain, after some algebraic computation, that 



 iwswwsww

ssswww
sww

z

iissswssss
w

sw

dt

dV

76824
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72

3
2

2

32
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))(())((
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
















 

Clearly, 
dt

dV2  is negative definite under the following 

sufficient conditions   

ii
w

iww
ss 


 0;

6

78  

Therefore, 2V  represents a Lyapunov function on 2  and 

hence for any initial point in the region 2  the solution of 

system (3) approaches asymptotically to 2E . Thus 2E  is 

globally asymptotically stable in 2 , which represents the 

basin of attraction of 2E .                  ■ 

Theorem (5): Suppose that the disease free equilibrium point 

)ˆ,0,ˆ(3 zsE   is locally asymptotically stable, then it’s a 

globally asymptotically stable in the region 3
3
 R , where 

}ˆ0,0,:),,{( 21
3

3 zzisRzis    , where

2,1; jj  
 are constants given in the proof. 

Proof: Define the function  































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


z

z
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s

s
ssscV

ˆ
lnˆˆˆˆ

ˆ
lnˆˆˆ

3213  

where 3,2,1;ˆ jc j   are positive constants to be determined, 

3V  is continuously differentiable positive definite real valued 

function with 0)ˆ,0,ˆ(3 zsV  and 0),0,(3 zsV  for all 

)ˆ,0,ˆ(),0,( zxzx   in the 
3
R . Again by differentiate 3V  with 

respect to time and then simplifying the resulting terms we 

obtain that: 
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w
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So by choosing the constants as 1ˆ,ˆ
2ˆ)1(

ˆ

1
2

45 



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sw

zww
 and 

7

4

3
ˆ

w

w
c  , we obtain, after some algebraic computation, that 
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Obviously, it is easy to verify that 
dt

dV3  is negative definite 

under the following sufficient conditions   












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zwwww
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s
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 with zz ˆ0   

Therefore, 3V  represents a Lyapunov function on 3  and 

hence for any initial point in the region 3  the solution of 

system (3) approaches asymptotically to 3E . Thus 3E  is 

globally asymptotically stable in 3 , which represents the 

basin of attraction of 3E .                            ■ 

Theorem (6): Suppose that the disease free equilibrium point 

),,(4
 zisE  is locally asymptotically stable, then it’s a 

globally asymptotically stable in the region 
3

4  R , where 

}0,,:),,{( **
21

3
4 zziisRzis    , where 

2,1; jj  are constants given in the proof. 

Proof: Define the function       
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where 3,2,1;* jc j   are positive constants to be determined, 

4V  is continuously differentiable positive definite real valued 

function with 0),,(4  zisV  and 0),,(4 zisV  for all 

),,(),,( *** ziszis   in the 
3
R . So by differentiate 4V  with 

respect to time and then simplifying the resulting terms we 

obtain that: 
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  ))((

))((

))(()()1(

)(

**
7

*
34

*
2

**
6

*
3

1
*
1

3
*
22

*
1

2

*

*
1*

1
4

zziiwcwc

zzsswc
s

wc

iisssswcwc

ss
ss

zw
ssc

dt

dV





































 

So by choosing the constants as 1, *
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*
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*
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
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 and 
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3 w

w
c  , we obtain, after some algebraic computation, that 
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It is easy to verify that 
dt

dV4  is negative definite in the region 

4 , where  

2*

*
1

1

s

zw
  and 
















*
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*
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2
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swww

swww
s  

Therefore, 4V  represents a Lyapunov function on 4  and 

hence for any initial point in the region 4  the solution of 

system (3) approaches asymptotically to 4E . Thus 4E  is 

globally asymptotically stable in 4 , which represents the 

basin of attraction of 4E .                 ■ 

5. Local bifurcation 

      It is well known that the bifurcation theory is interested 

by the change in the qualitative behavior of the solution of a 

system (3) as variations in the control parameter. Therefore in 

this section an application to the Sotomoyor’s theorem [26] is 

performed to study the occurrence of local bifurcation near 

the equilibrium points of system (3). It is well known that the 

existence of a non hyperbolic equilibrium point is a necessary 

but not sufficient condition for occurrence of local 

bifurcation. Therefore the parameters, which change the 

equilibrium points from hyperbolic to non hyperbolic 

equilibrium point, are considered as a candidate bifurcation 

parameters of system (3) as shown in the next theorems. 

Consider the Jacobian matrix of system (3) that is given in 

Eq.(10), then we can find that for any vector 
TvvvV ),,( 321  

 13
2 )(),)(,,(  ijuVVzisFD                                     (17a) 

13
3 )(),,)(,,(  ijVVVzisFD                      (17b) 

here 212
2
111 )1(26 vvwsvu  , 

324213
2
1321 242 vvwvsvwivwu  , 

32731631 22 vvwvvwu   

 
3
111 6v , 2

2
1321 6 vvw  and 031  . 

Theorem (7): Assume that condition (12c) holds and the 

parameter 6w  passes through the value 8
*
6 ww  , then 

system (3) near the disease-predator free equilibrium point 

1E  undergoes transcritical bifurcation but neither saddle-

node nor pitchfork bifurcation can occur. 

Proof: Clearly the Jacobian matrix of system (3) at 1E  with 

8
*
6 ww   is given by )(),(

~
1

*
61 EJwEJ   with 0~

33 a , hence 

1E  becomes non-hyperbolic equilibrium point when the 

parameter 6w  passes through the value 8
*
6 ww   with zero 

eigenvalue 0
~
 . Let 

TvvvV )~,~,~(
~

321  be the eigenvector 

corresponding to 0
~
  in J

~
. Then we get that 

T

vv
w

V 







 33

1 ~,0,~

2

~
 with Rv 3

~  and 0~
3 v  

Let 
T)~,~,~(

~
321   be the eigenvector corresponding to 

0
~
  in TJ

~
. Then we get that 
T)~,0,0(

~
3  with R3

~  and 0~
3   

Now, since 0),( *
616
 wEFw

T
, then according to 

Sotomayor’s theorem saddle-node bifurcation can’t occur. 

Further, straightforward computation shows that 

 0~~]
~

),([
~

33
*
616

 vVwEDFw
T

 

Also due to Eq. (17a) we get that 

0~~)]
~

,
~

)(,([
~

3
2

361
*
61

2  vwwVVwEFDT
 

Therefore transcritical bifurcation takes place but not 

pitchfork bifurcation and hence the proof is complete.     ■ 

Theorem (8): As the parameter 8w  passes through the value 

iwsww 76
*
8  , then system (3) near the predator free 

equilibrium point 2E  undergoes transcritical bifurcation but 

neither saddle-node nor pitchfork bifurcation can occur. 

Proof: Clearly the Jacobian matrix of system (3) at 2E  with 

iwsww 76
*
8   is given by )(),( 2

*
82 EJwEJ   with 

033 a , hence 2E  becomes non-hyperbolic equilibrium 

point when the parameter 8w  passes through the value 

iwsww 76
*
8   with zero eigenvalue 0z . Let 

TvvvV ),,( 321  be the eigenvector corresponding to 0z  

in J . Then we get that 
TvvvV ),,( 33231   with Rv 3  and 03 v  

here 0
21

23
1 

a

a
  and 0

2112

21132311
2 




aa

aaaa
   

Let 
T),,( 321   be the eigenvector corresponding to 

0z  in TJ . Then we get that 

T),0,0( 3  with R3  and 03   

Now, since 0),( *
828
 wEFw

T
, then according to 

Sotomayor’s theorem saddle-node bifurcation can’t occur. 

Further, straightforward computation shows that 

0]),([ 33
*
828

 vVwEDFw
T

 

Also due to Eq. (17a) we obtain that 

0)(2)],)(,([ 3
2
32716

*
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2   vwwVVwEFDT
 

Therefore transcritical bifurcation takes place but not 

pitchfork bifurcation and hence the proof is complete.        ■ 

Theorem (9): Assume that condition (14d) along with the 

following condition are satisfied 

6
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Then as the parameter 5w  passes through the value 

zwsww ˆˆ
4

2
3

*
5  , system (3) near the disease free 

equilibrium point 3E  has 

1. No saddle node bifurcation. 

2.  Transcritical bifurcation provided the following 

condition holds, otherwise it has pitchfork bifurcation 

)1ˆ3(ˆ2ˆ
)1( 2

61

74

6

73

1

24 


s
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s

w

ww
s

w

ww
                     (18b) 

Proof: Clearly the Jacobian matrix of system (3) at 3E  with 

zwsww ˆˆ
4

2
3

*
5  , which is positive under condition (18a), is 

given by )(),(ˆ
3

*
53 EJwEJ   with 0ˆ

22 a , hence 3E  

becomes non-hyperbolic equilibrium point when the 

parameter 5w  passes through the value zwsww ˆˆ
4

2
3

*
5   

with zero eigenvalue 0ˆ i . Let 
TvvvV )ˆ,ˆ,ˆ(ˆ

321  be the 

eigenvector corresponding to 0ˆ i  in Ĵ . Then we get that 

TvvvV )ˆˆ,ˆ,ˆˆ(ˆ
22221   with Rv 2

ˆ  and 0ˆ
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a
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Let 
T)ˆ,ˆ,ˆ(ˆ

321   be the eigenvector corresponding to 

0ˆ i  in TĴ . Then we obtain that 

T)0,ˆ,0(ˆ
2  with R2̂  and 0ˆ

2   

Now, since 0),(ˆ *
535
 wEFw

T
, then according to 

Sotomayor’s theorem saddle-node bifurcation can’t occur. 

Further, straightforward computation shows that 

 0ˆˆ]ˆ),([ˆ
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*
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 vVwEDFw
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Moreover according to Eqs. (17a)-(17b), we obtain that 

2
2
22413

*
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3 ˆˆˆ6)]ˆ,ˆ,ˆ)(,([ˆ  vwVVVwEFDT   

Therefore it is easy to verify that if condition (18b) holds then 

0)]ˆ,ˆ)(,([ˆ *
53

2  VVwEFDT
 and transcritical bifurcation 

takes place. Otherwise 0)]ˆ,ˆ)(,([ˆ *
53

2  VVwEFDT
 and 

0)]ˆ,ˆ,ˆ)(,([ˆ *
53

3  VVVwEFDT
, thus pitchfork bifurcation 

takes place and hence the proof is complete.              ■ 

Theorem (10): Assume that  
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Then as the parameter 4w  passes through the value  
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system (3) near the positive equilibrium point 4E  undergoes 

saddle-node bifurcation but neither transcritical nor pitchfork 

bifurcation can occur. 

Proof: Clearly the Jacobian matrix of system (3) at 4E  with 

*
44 ww  , which is positive under condition (19a), can be 

written as )(),( 4
*
44

* EJwEJ   with 
**

4
*
23 iwa  . Now 

straightforward computation shows that 3A  in the 

characteristic equation (15b) vanishing ( 03 A ) at 
*
44 ww   

and hence the Jacobian matrix ),( *
44

* wEJ  has zero 

eigenvalue, say 0*  . Thus 4E  is a non-hyperbolic point.  

Let 
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3
*
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*
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*   be the eigenvector corresponding to 

0*   in *J . Then we get that: 
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Let 
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Then according to Sotomayor’s theorem the first condition of 

saddle-node bifurcation is satisfied. Moreover, due to Eq. 

(17a), we have 
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Thus saddle node bifurcation occurs but neither transcritical 

nor pitchfork bifurcation can occur.                                    ■ 

6. Hopf bifurcation 

It is well known that a hopf bifurcation (also known as a 

Poincaré−Andronov−Hopf bifurcation) is a bifurcation point 

at which an equilibrium point alters stability and a limit cycle 

(period orbit) is initiated. Therefore, the occurrence of hopf 

bifurcation condition in the interior of positive octant of 

system (3) is established in the following theorem. 

Theorem (11): Assume that  
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Then system (3) undergoes a hopf bifurcation around the 

positive equilibrium point 4E  in the 
3. RInt , when the 

parameter 1w  passes through the value: 
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Proof. According to hopf bifurcation theorem, system (3) 

undergoes a hopf bifurcation around the positive equilibrium 

point 4E  if and only if the Jacobian matrix )( 4EJ  has two 

complex conjugate eigenvalues, say  

)( i)()( 12111 www    
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with the third eigenvalue real and negative such that 

0)( *
11 w  and 0)(

*
11

1
11 

ww
dw
d w , which is known 

transversality condition.  

Clearly 
*
1w  is positive under condition (19a), also we 

obtained that   in Eq. (15b) at 
*
11 ww   became 
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which are pure imaginary. 

Now since in the neighborhood of 
*
11 ww   there is a range in 

which the Jacobian matrix )( 4EJ  has two complex 

conjugate eigenvalues, say )( i)()( 12111 www   . Thus 

by substituting these eigenvalues in the characteristic 

equation and determine the derivative with respect to the 

bifurcation parameter 1w  and then comparing the two sides 

of the resulting equation with equating their real and 

imaginary parts we obtain that 
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Thus the transversality condition holds, and hence the proof 

is complete.                      ■ 

 7. Numerical simulation          

In this section, the global dynamics of system (3) is 

investigated numerically and the effects of all the parameters 

on the system’s dynamics are discussed. The purpose of this 

study is to confirm our obtained analytical results and specify 

the control set of parameters. Thus system (3) is solved 

numerically using the following set of biologically feasible 

hypothetical data and then the trajectories of the system are 

drawn as shown below in Fig. (1). 
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                         (21) 

 

 

 
Fig.(1): The trajectories of system (3) approaches to 

)22.0,26.0,79.0(4 E  asymptotically for the data (21) started 

from different initial points. (a) Phase portrait. (b) Time series 
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of phase portrait with respect to s . (c) Time series of phase portrait 

with respect to i . (d) Time series of phase portrait with respect to 

z  
It is clear from Fig. (1) that the system (3) has a globally 

asymptotically stable positive equilibrium point, which 

confirm our obtained analytical result.  
 

 
Fig. (2): The trajectory of system (3) as a function of time. (a) 

The solution approaches to )0,15.0,91.0(2 E  for the data 

(21) with 06.02 w . (b) The solution approaches to 

)0,0,1(1 E  for the data (21) with 04.02 w . 

Now to investigate the behavior of the solution of system (3) 

when the parameters values are varying, the system is solved 

numerically for the set of data (21) with varying one 

parameter at a time. It is observed that, for the data given by 

(21) with 067.005.0 2  w  the trajectories of system (3) 

approach asymptotically to the predator free equilibrium 

point 2E  as shown in the typical figure, Fig. (2a), however 

for 05.00 2  w  the trajectories of system (3) approach 

asymptotically to the disease-predator free equilibrium point 

1E  as explained in the typical figure given by Fig.(2b). 

Otherwise the solution of system (3) still approaches to the 

positive equilibrium point. 

According to Fig.(2) the parameter 2w , which stands for the 

infection rate, pass through two bifurcation points; at the first 

point 067.02 w  the solution approaches asymptotically to 

the predator free equilibrium point 2E  instead of the positive 

equilibrium point 4E , while the solution changes its stability 

again to the disease-predator free equilibrium point  1E  at the 

second bifurcation point 05.02 w . Moreover the system (3) 

losses the persistence for 067.02 w . Finally it is observed 

that the parameter 23 2ww   has similar behavior as that of 

2w .  

Now varying the parameter 5w , which stands for the infected 

species death rate, in the range 3.022.0 5  w  leads to 

destabilization of 4E  and the solution approaches to the 

predator free equilibrium point 2E  as shown in the typical 

figure, Fig.(3a). While for the range 53.0 w  the solution 

approaches to the disease-predator free equilibrium point 1E  

as shown in Fig.(3b) below. 

 
Fig. (3): The trajectory of system (3) as a function of time. (a) 

The solution approaches to )0,08.0,94.0(2 E  for the data 

(21) with 27.05 w . (b) The solution approaches to 

)0,0,1(1 E  for the data (21) with 35.05 w . 

Again Fig.(3) shows that the parameter 5w  passes through 

two bifurcation points, at which the system change its 

stability behavior qualitatively and losing its persistence.  

Now, varying the parameter 6w , which stands for conversion 

rate from susceptible species to predator, in the range 

04.06 w  leads to approaching to the predator free 

equilibrium point 2E  instead of positive equilibrium point 

4E  as shown in Fig.(4a), while the solution approaches to the 

disease free equilibrium point 3E  when 35.021.0 6  w  as 

shown in Fig.(4b). Finally for 35.05 w
 

the solution of 

system (3) approaches asymptotically to the periodic 

dynamics in the interior of sz plane as explained in Fig.(5). 

 
Fig. (4): The trajectory of system (3) as a function of time. (a) 

The solution approaches to )0,57.0,57.0(2 E  for the data 

(21) with 03.06 w . (b) The solution approaches to 

)44.1,0,8.0(3 E  for the data (21) with 25.06 w . 
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Fig. (5): The trajectory of system (3). (a) Periodic attractor in 

the interior of sz plane for the data (21) with 35.06 w . (b) 

The solution of system (3) as a function of time for the periodic 

attractor in (a). 

Clearly, figures (4)-(5) explain that the system (3) undergoes 

qualitative change in their behavior when the parameter  6w  

passes through three bifurcation points. 

It is observed that the solution of system (3) approaches 

asymptotically to predator free equilibrium point 2E  when 

the parameter 7w , which stands for the conversion rate from 

the infected species to predator, varying in the range 

19.07 w  as shown in Fig.(6). While its still approaches to 

the positive equilibrium point otherwise. 

 
Fig. (6): The trajectory of system (3). (a) Asymptotically stable 

equilibrium point )0,57.0,57.0(2 E  in the interior of sz

plane for the data (21) with 15.07 w . (b) The solution of 

system (3) as a function of time for the periodic attractor in (a). 

Finally, for the data (21) with the parameter 8w , which 

stands for the death rate of predator species, in the range 

14.08 w  the solution of system (3) approaches 

asymptotically to the disease free equilibrium point 3E  in the 

interior of sz plane as shown in Fig.(7a). However for the 

data (21) with 27.08 w  the solution approaches 

asymptotically to the predator free equilibrium point 2E  in 

the interior of si plane as shown in Fig.(7b) below. 

Moreover the system still persists at the positive equilibrium 

point otherwise. 

Clearly figures (6)-(7) show the sensitivity of the behavior of 

solution of system (3) for varying in the parameters 7w  and 

8w  respectively.  

 
Fig. (7): The trajectory of system (3) as a function of time. (a) 

The solution approaches to )85.1,0,66.0(3 E  for the data 

(21) with 1.08 w . (b) The solution approaches to 

)0,57.0,57.0(2 E  for the data (21) with 3.08 w . 

 

8. CONCLUSIONS AND DISCUSSION 

In this paper the dynamics of prey-predator model with 

disease in prey and existence of herd behavior property is 

studied analytically as well as numerically. The model is 

formulated mathematically using system of first order 

nonlinear ordinary equations. The existence and uniqueness 

of solution of the proposed model are discussed. The 

boundedness of the solution is also studied. All possible 

equilibrium points with their local and global stability are 

investigated. The possibilities of occurrence of local 

bifurcations and hopf bifurcation are studied analytically. 

Finally, for the biologically feasible set of hypothetical data 

as given in Eq. (21), system (3) is solved numerically and the 

obtained results are explained in some typical figures and we 

will summarize them as follows.     

1. Although, the linearized form of system (3) undergoes 

hopf bifurcation with respect to parameter 1w  as proved 

analytically under certain condition, the nonlinear system 

(3) has no periodic dynamics in the interior of 
3
R  for the 

data given in (21) rather than that it has periodic dynamics 

in the interior of sz plane. But still there is possibility of 

having periodic dynamics for other set of data. 

2. For the data given in Eq. (21), the trajectories of system (3) 

approached asymptotically to the global stable positive 

equilibrium point 4E  in the 
3. RInt , which indicates to the 

persistence of all the species.  

3. It is observed that decreasing the parameter related to 

infection rate 2w  destabilizing the positive equilibrium 

point and the system approaches asymptotically to predator 

free equilibrium point in the interior of si plane first for 

a specific range and then approaches to disease-predator 

free equilibrium point on the s axis for further 

decreasing in the parameter. Therefore decreasing this 

parameter prevents the persistence of the system. The 
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parameter 3w  has similar effects on the dynamics of 

system (3) as that shown with 2w . 

4.  Although, the linearized form of system (3) undergoes 

saddle node bifurcation with respect to parameter 4w  as 

proved analytically under certain condition, varying the 

parameter 4w  has no effect on the dynamical behavior of 

the nonlinear system (3) for the data given in (21). But still 

there is possibility of having bifurcation at this parameter 

for other set of data. 

5. Increasing the parameter related to death rate of infected 

species 5w  destabilizing the positive equilibrium point and 

the system approaches asymptotically to predator free 

equilibrium point in the interior of si plane first for a 

specific range and then approaches to the disease-predator 

free equilibrium point on the s axis for further increasing 

in the parameter. Therefore increasing this parameter 

prevents the persistence of the system. 

6. Decreasing the parameter related with conversion rate 

from the susceptible species 6w  causes destabilizing of the 

positive point and the solution approaches asymptotically 

to the predator free equilibrium point in the interior of si  

plane. However increasing this parameters makes the 

solution approaches asymptotically to the disease free 

equilibrium point in the interior of sz plane first and then 

to periodic dynamics in the same plane. Therefore the 

persistence of system (3) is sensitive to the varying in the 

parameter 6w .  

7. Decreasing the parameter related with conversion rate 

from the infected species 7w  causes destabilizing of the 

positive equilibrium point and the solution approaches 

asymptotically to the predator free equilibrium point in the 

interior of si  plane, which means the system will loss 

the persistence too. 

8. Decreasing the parameter related with death rate of the 

predator 8w  causes destabilizing of the positive point and 

the solution approaches asymptotically to the disease free 

equilibrium point in the interior of sz plane. However 

increasing this parameters makes the solution approaches 

asymptotically to the predator free equilibrium point in the 

interior of si plane. Therefore the persistence of system 

(3) is sensitive to the varying the parameter 8w .  

According to the above discussion, it’s observed that the 

prey-predator system with the disease in prey and existence 

of herd prey’s behavior property is very sensitive to any 

varying in the values of parameters especially those in 

predator equation.    
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