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ABSTRACT: In this paper  an optimal control problem for a discrete time model is applied to minimize the tumor density 

and drug side effects . A  generalization of Gompertz growth model is introduced and used  for the proposed model. The 

necessary conditions  and the characterization of the  optimal solution are given through the use of  Pontryagin’s 

Maximum Principle . Numerical results are provided to illustrate the theoritical results. 
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1 -INTRODUCTION 

Many strategies to modelling chemotherapeutic  induced 

killing of tumor cells have been widely investigated in the 

literature [2,3,7,8,9].  The paper of Schable, Skipper and 

Wilcox[14] is one of the early approaches in cell-Kill, their 

assumption is that a chemotherapeutic drug was 

proportional to the tumor size, while Norton and 

Siman[10,11] considered the cell-kill is proportinoal to the 

growth rate of the tumor. However the hypothesis that 

describes the cell-kill in terms of a saturable function  of 

Michaelies-Menton  form  was developed by Holford and 

Sheiner[5]. In an optimal control problem one needs to 

achieve a goal by adjusting controls, so that some 

mathematical works have been done to understand, how  

tumor develops as well as  the tumor growths [ 13,16]. 

Some of  these works are to treat and optimize or to predict 

the activitey of new treatments or to give more common 

sense into the improvement and implementation of tumor 

treatment . In this work we will consider a kind of 

generalization to Gompertz model  which it describes the 

tumor growth . We will also apply an optimal control 

stratigy to minimize the  the tumor density and drug side 

effects over a given time interval. To achieve this goal  the 

standrad terminology of  optimal control  of  a single  

discrete time  difference equation with a single control 

variable will be applied. For that we consider  the  

following  first order difference equation: 

xk+1 = f(k, xk, uk ),     k=0,1,…T                     (1) 

With a given initial condition  x0.  Equation (1) is called the 

state equation, where f(k,xk,uk) is a given continuously 

differentiable function of three real variables k, x, u, The 

vectors x= (x0, x1, …., xT)  and  u=(u0, u1, …, uT-1)  are 

called the state and the control variable respectively. The 

control has one component less than the state and the first 

state component or the initial condition is given by x0. The 

terminal time T is well known as the time horizon, here we 

assume that T is finite.  The general case of infinite horizon 

is rather challanging and complicated. The objective 

function is defined by :  

J(uk) = Φ(xT)+ ∑          
   
                     (2) 

The problem is to optimal  maximize or minimize J(u) over 

vectors u in R
T-1
. The term  function Φ(xT) is the payoff 

term or salvage term , the population may be wanted to be 

large at the final time [6].  Such maximization or 

minimization vector u
*
 and the corresponding state x* must 

satisfy the necessary conditions of the pontryagins 

maximum principle 
, 
For more details about derivation of 

the necessary conditions can be found in the book of 

Lenhart and workman [6]. The Maximum Principle is most 

conveniently formulated in terms by the Hamiltonian 

expression which is given at each time step  k =0,1,..T-1,  

by: 

Hk= g(k,xk,uk) + k+1f(k,xk,uk)                              (3) 

Here  = (0, 1, …, T)  is an additional unknwon function 

which is called the adjoint function or shadow price [1]. 

Note that the indexing on the adjoint in (3) is one step 

ahead of the indexing for the others. 

 For more details about interpolation the Hamiltonian and  

the adjoint function for biological models we refer to [1,6]. 

According to Pontryagins Maximum principle the optimal 

control vector u* with corresponding state  variable x
*
 must 

optimize the value of Hamiltonian expression at each time 

step k over all admissible vectors u R
T-1

. Then the 

necessary conditions for the optimality are: 

                                          
   

   
   

     ̇    
   and        

   

    
   at u

*    
 

Note that the state function x* must satisfy the initial 

conditions while the adjoint function must satisfy the final 

times conditions . It is also well known that if the objective 

functional is linear for control variable  then the optimal 

solution is called  a bang-bang solution. There are many 

applications to the above formulation in control biological 

system as well as in control of speard deaseases and 

epidemics. We refer to the excellent book of  Lenhart. [6] 

and one can also see the survey of R. F. Hartl, S. P. Sethi 

[4] and book of S.P. Sethi and G.L. Thomson [15] about 

the discrete  optimal control theory.   

2-Mathematical model and control problem: 

In this section a generalization of  the Gompertzian growth 

model is introduced  and used to describe the growth of 

tumor.The model under investigation is described by the  

following difference equation. 

             (
 

  
 )              (4)  

n is a constant  greater than 1,    is the tumor volume, r  is 

the growth rate of the tumor, and     is the control variable, 

which describes the pharmacohinetics of the drug, that 

means the drug effect will only be presented when   
    . Otherwise there is no drug effect. Where M is the 

maximum amount of drug and     is the magnitude of the 

amount of dose.In this control optimal control the goal is to 

minimize tumor density and drug side effects. The 

objective functional that represents our aim is then given by  

J(uk) =        ∑    
    

    
                                    (5)     

Where     is a positive weight parameter. The optimal 

control problem is to find the function u
* 

  and the 

corresponding state such that minimize the  objective 

functional i.e 

J(u
*
) = min J(u)     for all  u belong to  U where   

U ={uk :       , k-0,2,…,T-1 },  is the set of controls 

. To perform this the extension version of  Pontryagin's 

maximum principle will be applied  [12]. The exitence of 

such optimal is guarantee due to the finite dimension. The 
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characterization of the optimal solution is given by the next 

theorem. 

Theorem1: 

Given an optimal solution u
*
   with corresponding state 

solution  N
*
   that minimizes the objective functional J(uk)   

then there exists adjoint function      which  satisfies: 

    =2              (
 

  
 )           with         

Furthermore the characterization of the optimal control  is    
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Proof: The Hamiltonian for k=0,1,……T-1, is  

      
    

             (
 

  
 )              (6)   

By using the extension of Pontry’s Maximum principle 

[6,12,15].  Then the  necessary conditions  are for 

k=1,2,…T     

   
   

   
=2              (

 

  
 )            (7) 

And the optimality condition is 
   

    
                    Therefore the 

characterization of the optimal control becomes 
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        (8) 

 

3-Numerical resutls:- 

The numerical solutions for the optimal control variable 

and the corresponding  variable are obtained for n=2. An 

iterative method is used to solve the optimality which is 

found in  the book of lenhart in [6], for details of this 

method.  The initial condition for the state variables is 

given  at k = 0 , while the initial condition for the 

covariable is stated at k = T. This numerical procedure  

begins to guess an initial solution for the control variable  

so that with the initial condition of state variable, one can 

solve the  state equation   forward and  the adjoint equation  

backward. The control variable is updated by using a 

convex combination between the previous control values 

and values which are given by the current iterations. This 

procedure continues until successive iterates are close 

enough  and the optimal solutions are obtained.   

We choose  r=0.5, a=3,  δ=0.45  and the initial value 

N0=0.368. In Figure 1, the tumor density without treatment 

is plotted in dotted line that means the uk=0 for all k, while 

the solid line shows the tumor density with optimal 

treatment. The plot also shows that the optimal treatment 

begins with a high drug which followed by reduction then 

no drug at all on day 30. In Figure 2  ,the numerical optimal 

control is plotted as a function of time. 

 The different values of the parameter    are used in Figure 

3, and it  shows also  the effect of the varying this 

parameter , so one can able to push the tumor density to a 

much lower level when minimizing side-effects has less 

importance by using a much higher value of        Another 

intersesting parameter is the magnitude δ. Figure 4 shows 

the effects of this parameter. It clear that the higher value of 

δ the more reduction in  tumor density. 

 

 
Figure 1:The plot shows the tumor density with optimal 

treatment  soild  line and without control in dashed line 

 
Figure 2:The optimal solition as a funtion of time 

 
Figure 3 The plot illustrates the tumor density with different 

values of  . 

 
Figure 4: The plot shows the effect of the parameter δ  on the 

tumor density. 
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4-CONCLUSIONS:- 
This work presents  generalization of Gompertz growth   is 

used  to obtain  an optimal strategy for  reducing  the tumor 

mass   over the treatment interval .  The  Ponryagins 

Maximum Principle  have been used to  derive the 

necessary conditions. We have been seen The effects of the  

important parameters a  and δ  so that for increasing value 

of  a we are able to push the tumor density to a much level  

when minimizing side-effects has less importance. A 

varying values of the magnuited value δ is also 

investigated. So one can note that a higher magnuite drives 

the tumor density down. Numerical analysis illustrates and 

conforms the analytic results .  
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