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ABSTRACT: In this paper the dynamism of a harvested prey-predator model with the same disease inthe prey and 

predator is projected and analyze. We will say that each population, which are divided in to two classes, which are 

susceptible population and infected population because of exposure to the infectious disease. We will say that the 

susceptible predator which is only attack the prey (susceptible and infected) and the susceptible predator which are only 

feed on the susceptible prey and infected prey. we will say the prey (susceptible and infected) are the only one that will be 

affected by harvest. All analyzed local and global stability. All equilibria biological points accepted for the system we 

studied have dynamic behavior. with be of assistance of appropriate Lyapunov functions The global ynamics of the model 

are explore. Conditions Persists of the  model are recognized. 
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 1. INTRODUCTION 

There has been going up concern in the revision of diseases 

in prey-predator models. It  is well made out so as to, in 

usual world species does not stay alive alone. In truth, any 

firm habitat might contain dozens or hundreds of species, 

from time to time thousands. in view of the fact that any 

species has  smallest amount the impending to act together 

species in its habitat, the possibility of partition of the 

disease in a society hurriedly becomes enormous as the 

number of infected species in the habitation increases. It is     

more of biological consequence to schoolwork the achieve 

of disease on the dynamicalactions of interacting species. 

In the last decades, some prey-predator models by wayof 

infectious disease have been painstaking 

[1,2,4,5,6,10,11,12,13]. Every one of these studies, reached 

by the winding up that disease may reason vital changes in 

the  dynamics of an ecological unit. On the other offer, 

harvesting has in general a strappingcontact on the 

population dynamics of a harvested class. The severity of 

this contactdepends on the character of the implemented 

harvesting tactic, which in revolve mayseries from the 

express reduction to the complete perpetuation of a 

population.The study of inhabitants dynamics with  

harvesting is a issue of mathematical bio- economics, and it 

is related to the most favorable administration of 

renewablepossessions [8]. The effect of even charge of 

harvesting on the dynamical performance of interacting 

species has been measured by countless researchers [3,8,9 

]. these studies   reached to  conclusions of canister be alive 

summarize as follows: 

Harvesting may well be worn as a biological manage pro 

the coexistence of the species, but unfettered harvesting 

strength go ahead to destruction in one or extra species. 

Keeping the above in sight, the outcome of disease on the 

dynamical conduct of the harvested prey-predator models, 

is important from economical position. Little thought has 

been salaried so future in this path.\ 

Recently,"Chattopadhyay et al"[7], projected and  analyze a 

model in mathematical on the a harvested prey-predator 

model with disease in prey population. They unsaid that, 

the predator feeds on top of the susceptible prey inhabitants 

according to "Holling type-II" functional response, at the 

same time as it feeds on infected prey inhabitants according 

to "Lotka-Voltera" predation type. They reached to the 

subsequent answer, harvesting of infected prey may well be 

used as biological organize for the persistence in an 

infected prey-predator model.In this paper, " 

Chattopadhyay et al"[7] modified by assuming that only the 

susceptible  predator feeds on the prey (susceptible and 

infected) according to Lotka-Voltera functional response 

type. In this paper, a prey-predator model relating both a 

harvesting and infectious disease is projected and analyzed. 

The effects of the harvest  and infectious  disease on the 

dynamical behavior of prey-predator model are well 

thought-out analytically as well as numerically 

2. "Mathematical model" 
In this paper, an eco-epidemiological model is proposal 

used for study. The model onsists of a prey, whose entirety 

population density is denote by )(tX , interacting with 

predator whose entirety population density is denoted by 

)(tY .It is assumed that the prey population are subjected 

to infection by a disease and a harvested while the predator 

population are subjected to infection by a disease only. 

Further, the following assumptions of the dynamics of a 

harvested prey-predator model with the same disease in the 

prey and predator    are made in formulating the basic eco 

epidemiological model: 

1.  epidemic disease of form    survive in prey population 

divides the population prey in       to two classes that is 

      which represents at time   the density of susceptible 

prey species and       which represents the density of 

infected prey species at time  . then at any    ,we have  

                . additional susceptible prey 

becomes  infected by a  disease at a specific infection rate 

of )0( 11 cc . 

2.  epidemic disease of form SI  survive in predator 

population divides the population       predator in to two  

classes that is )(2 TS  which represents the density of 

susceptible      Predator species at time T  and )(2 TI  

which represents the density of infected  predator species at 

time T .Therefore at any T ,we have 

)()()( 22 TITStY  .   added susceptible prey 

becomes infected by a disease at a specific infection rate of 
      

)0( 22 cc  .3.  It is unsaid that the  susceptible prey are 

alone able of reproducing logistically   by carrying capacity 

)0( KK  and an inherent birth pace constant  )0( rr

, and that the infected prey population dies, by specific 

death pace constant )0( 11 dd ,  before having the 

chance to reproduce. However, the infected prey population 
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still  contributes along with susceptible prey population to 

population growth towards   the carrying capacity .Then the 

evolution equations of the prey can represented as: 
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4.   It is unsaid that as the population of predator attack the 

population of prey  the same disease which exist in the prey 

population separate in predator  population. 

5.   In the nonexistence of the prey, the predator 

(susceptible and infected) decay  exponentially with  

natural death rates )0( 22 dd  and )0( 33 dd  

correspondingly. 

6. we will study the effect of a harvesting only on the prey 

with its susceptible and  infected, non-negative constants    

and    are represent the harvesting efforts for the  

susceptible and infected prey correspondingly.   

7.  To finish, it is unsaid that only the predator susceptible 

consume the prey (without  make different between 

infected  1I and well 1S  prey) according to Lotka Voltera  

form of functional response at constant consumption rates 

01 a  (from  susceptible prey ) and  02 a  (from 

infected prey). 

Consequently, the dynamics of a harvested prey-predator 

model with the same  disease in the prey and predator be 

able to represented in the next set of equations: 

),,,(

),,,(

),,,()(

),,,(1

22114223222
2

2211322222221222111
2

221121121212111
1

22111121111111
11

1
1

ISISfIIdISc
dT

dI

ISISfSSdIScSIaeSSae
dT

dS

ISISfIIhdSIaISc
dT

dI

ISISfSSSaShISc
k

IS
rS

dT

dS














 


    

                                                                                         (2)    

in the region  

 oISISRISISR  2211
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 we will tacked any point to used the initial condition for 

system (2)  .clearly, the relations functions in the right hand 

part of system (2) are continuously  differentiable functions 

on 
4
R , and so they are Lipschitizian. as a result the 

solution   of system (2) exists and is unique.  Further, all 

the solutions of system   (2)   with   non- negative initial   

condition   are   uniformly bounded as exposed in the next 

theorem.  

Theorem 1.  All solutions for the system (2), which start in 

4
R   are uniformly bounded. 

Proof:    assume that  ))(),(),(),(( 2211 TITSTITS  be 

any solution of the system (2) through non negative  initial 

condition ),,,( 20201010 ISIS .given that we have  

)1( 1
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 next according to the theory of differential inequality 

["Birkhoof and Rota "(1982)], we  

 have 

0,)(1  TMTSSup ,  

where    },max{ 10 kSM    

Define the function: 

)()()()()( 2211 TITSTITSTW   

 The derivative time of  )(TW  along the solution of the 

system (2) is: 

.)
1
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therefore we get: 
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where  },),(,{min 32211 ddhdhm  .  

Again, suitable to the theory of differential inequalities we 

get  

mTmT e

W

me

rM

m

rM
TW 0)(  ,  where  

 ))0(),0(),0(),0(( 22110 ISISW  . 

Thus, 0T  we have that 
m

rM
TW  )(0  

So every part of solutions of system (2) are uniformly 

bounded, hence the proof is  

3. "Stability analysis of 2D predator liberated 

subsystem" 

It is famous that according to the prey-predator relations, 

the prey species can stay alive in the nonexistence of 

predator, and as the prey population  is separated  into two 

classes that is susceptible prey population    and the 

infected prey population.    Hence, the follow 2D predator 

liberated subsystem is obtained: 

 
   

  
    * (  

     

 
)         +                  

 
    

  
   [          ]                           

The study of local and global subsystem (3) is discuss and 

give the following results:  

1. The vanishing equilibrium point          all the time 

exist and its locally asymptotically stable under the 

following condition: 

             1hr 
                                                   (4) 

2.The axial equilibrium point on the     axis is  

given by      ̂    , where  

             ̂  
       

 
                                            (5) 

Which exists under the next condition:  

                  1hr 
                                             (6a) 

And it is locally asymptotically stable in the         
  if and 

only if the following condition hold: 

                                  
        

   
                (6b) 

3.The interior stability point      ̃   ̃   exists  

in the             
  under  the following 
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the equilibrium point    is an unstable saddle point. 

4. "Stability analysis of 2D prey - predator disease 

librated subsystem" 

In this subsystem the disease is not exist which makes that 

the population (prey and predator) contains only 

susceptible individuals respectively and the next 2D 

disease librated subsystem of system (2) come into view: 
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The analysis of subsystem (9) gave the following result: 

1.  The vanishing equilibrium point          always exist 

and it is locally asymptotically stable under condition (4) 

holds, while it is unstable saddle point under condition (6a) 

holds.   

2.  The axial equilibrium point      ̂    , exist under 

condition (6a) and is given in equation (5) which it is 

locally asymptotically stable under following  condition  

                            
   

     
                                (10)  

3. The interior equilibrium point      ̈    ̈  , where  
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     Which exist in the             
   under the following 

condition : 
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                                          (12) 

the equilibrium point    is locally asymptotically stable at 

any time  it exists, additional the global dynamics of     is 

approved t in the subsequently theorem.  

Theorem 3.  The interior equilibrium point      ̈    ̈  is 

globally asymptotically  stable  in the  
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   function in the             
   and it is positive for 
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 make a note of that          does not change sign plus it 

is not identically zero in the             
  of     _ plane . 

So there is no periodic solution in the             
  of       

_  

plane, according to Bendixon-Dulic criteria.  

Now, since all the solutions of the subsystem (9) are 

uniformly bounded and      is  

unique positive equilibrium point in the             
 .Hence 

by Poincare- Bendixon 

theorem    is a globally asymptotically stable and hence 

the proof is complete.                  ■  

5. "Stability analysis of 3D prey-predator with disease 

subsystem" 

In this part the disease exist only in the prey population 

which divided in to two classes Susceptible     and infected 

   and the predator attacked  only the susceptible prey 

which makes the predator only susceptible ,therefore the 

following 3D subsystem of system (2) appears:  
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The analysis of subsystem (13) show in the following 

results: 

1. The vanishing equilibrium point            always 

exist and it is locally asymptotically stable under condition 

(4) holds , while it is unstable saddle point under condition 

(6a) holds. 2. The axial equilibrium point      ̂     ), 

exist under condition (6a) and  ̂  isgiven in equation (5) 

which it is locally asymptotically stable under given 

conditions in (6b) and (10). 

3.  The interior equilibrium point      ̅    ̅  ̅    , where  
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Which exist in the  
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condition (6a) and the following conditions : 
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                         (15a) 

             ,
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                                  ̅                     (15c) 

In adding together it is locally asymptotically stable in the 

               
   if the following 

conditions hold: 
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global stability of     is investigated in the next theorem . 

Theorem 4. Assume that      ̅    ̅  ̅    is locally 

asymptotically stable with  

                    21 ee 
                                                   (17) 

Then      is globally asymptotically stable in the sub 

region of    
  which can define  

as:   {               ̅       ̅     ̅ } 

Proof: 
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regard as the following function:  

              *    ̅   ̅   
  

 ̅ 
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Note that             
   , and is a     positive definite 

function, where         

       are nonnegative constants to be firm. Now, the 

derivative of    along 

the trajectory of subsystem (13) be able to  written as: 
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Now by choosing a suitable positive constants         

and       ⁄  , yield that 
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Clearly  
  

  
   in    under condition (17), hence   is a 

strictly Lyapunov function .as a result    is globally 

asymptotically stable in the region   .  

6." Local stability analysis of system (2)" 

In this section , we studied the existence and the local 

stability analysis of all equilibrium points of system (2) and 

obtained the following results: 

1. the vanishing equilibrium point               always 

exist. 

2. the axial equilibrium point      ̂          exist under 

condition (6a) ;where  ̂ given in equation (5). 

3.The predator librated equilibrium point      ̃   ̃       

exist under condition (7); where  ̃  and    ̃   are given in 

equation (8). 

4. The disease librated equilibrium point      ̈     ̈       

exist under condition (12) where  ̈   and  ̈  are given in 

equation (11). 

5. The equilibrium point      ̅    ̅  ̅     exist under 

conditions (6a) and (15a-15c); where   ̅    ̅ and  ̅  are 

given in equation (14). 

6. The positive equilibrium point       
    

    
    

   exist 

uniquely in the       
  under the following conditions : 

        
    

  
 

                 

     
                         (18a) 

         
                                                              (18b) 

; where 

  
  

              

    
    

 

 
             (              )         

           
 

  
  

  

  
         

  
  

    (              )            
     

    
                         (19) 

In adding together, it is observed that, the eigenvalues of 

the Jacobian matrix of  

system (2) at    , say        , are: 

       
                             

       
           

                         (20) 

hence ,     is unstable saddle point with locally stable 

manifold in the            
  (i.e.dim    =3) and with locally 

unstable manifold in the    direction (i.e.dim    

  provided that condition (6a) holds. on the other hand, it 

is locally asymptotically stable provided that condition (4) 

holds.the eigenvalues of the Jacobian matrix of system (2) 

at    , say        , satisfy the following relations: 
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                                       (21d) 

make a note of , all the eigenvalues of        have negative 

real parts according to Eqs.  

(21a-21d)  and so     is locally asymptotically stable in the  

  
  if and only if conditions (6b) and (10) hold. However, 

   is an unstable saddle point in the   
  with locally 

unstable manifold of dimension less than or equal two (i.e. 

dim    ) and with locally stable manifold of dimension 

greater than or equal two (i.e. dim    ) if the  

one of the conditions (6b) or (10) hold. 

Further, the eigenvalues of  Jacobian matrix at the predator 

librated equilibrium point  

     ̃   ̃       satisfy the following relations: 
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           ̃       ̃                       (22c) 

    
                   ̃       ̃                    (22d) 

Note that, it is simple to confirm that, according to Eq. 

(22b) the equilibrium point     is an unstable saddle point 

in the   
  with locally unstable manifold of dimension 

greater than or equal two (i.e. dim    ) and with locally 

stable manifold of dimension less than or equal two (i.e. 

dim    ) . 

Now,  we can write  the Jacobian matrix at the equilibrium 

point       ̈     ̈     as  

the following: 
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                                                (23) 

Where      
   

     
              

         

      
              

  

  
 

                                ̈     ̈                   

                          ̈    

         ̈                                      

       ̈     

So we can write the characteristic equation of the Jacobian 

matrix          as thefollowing form 

               
                             (24a) So, either 
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gives 

            ̈                                              (24b) Or 

          
                                              (24c) Where   

                                                         

              
                     

    (24d) 

 It is observed that eq. (24b) represent the eigenvalue of  

      that describe the dynamics in the    direction which is 

negative under the following condition holds: 

                          ̈  
  

  
                                              (25a) 

However, the roots of eq.(24c), which represent the 

eigenvalues of        that describe the dynamics in the  

         
 , which have negative real parts if and only if the 

following condition holds:  

                      ̈  
   ̈         

  
                                  (25b)  

As a result     is locally asymptotically stable in the   
  

provided that conditions (25a) And (25b) are hold 

otherwise it is unstable saddle point.  

However, we can write the Jacobian matrix at the 

equilibrium point      ̅    ̅  ̅    as the following: 
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Form 
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It is observed that eq.(27b) represent eigenvalue of        

that describe the dynamics in the    direction which is 

negative under the following condition holds: 

                    ̈  
  

  
                                                 (28a) on 

the other hand, the roots of eq.(27c), which represent the 

eigenvalues of        that describe the dynamics in the  

         
 , which have negative real parts if and only if the  

following condition holds: 

  
  

 
 ̅   

 

 
      ̅                                   (28b) 

         

   
    

  

   ̅ 
      ̅                                 (28c) 

hence     is locally asymptotically stable in the   
  

provided that conditions (28a)- (28c)are hold otherwise it is 

unstable saddle point. 

Finally, we can write the Jacobian matrix of system (2) at 

the positive equilibrium point       
    

    
    

   as the 

following : 
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Where       
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According to the characteristic equation of        is given 

by: 
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Where                                                 
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 And 
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Therefore, the local stability conditions of the positive 

equilibrium point     is conventional in the following 

theorem : 

Theorem 5. The positive equilibrium point    

   
    

    
    

   of the system (2) is locally asymptotically 

stable in the       
  under the following conditions: 

       
     

     
                                                  (31a) 

     
     ,
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   )  

    

  
   

  
  

  
                       (31c)  

                                                            (31d) 

Proof:  

According to the Routh-Hurwtiz criterion for dimension 

four, the  proof is follow, if and only if                

and     . Now, straight onward computations and 

elements of        due to the coefficients of equation (30) 

we get that              under conditions (31a)-(31c), 

and visibly as of the sign of coefficients of        we have  

      (always). 
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Thus, all the eigenvalues of the        contain negative real 

parts.as a result    is locally asymptotically stable in the 

      
  so as the proof is whole . 

7."Global dynamical behavior of system (2)" 

In this part we l using Lyapunov method to prove the 

global stability for the equilibrium 

points of system (2) as shown in the next theorems.  

Theorem 6. Assume that the vanishing equilibrium point  

    of system (2) is locally  

asymptotically stable in the    
  . then     is globally 

asymptotically stable in the   
 , and let the following 

condition holds: 

                                                                          (32) 

Proof:  

Consider the following positive definite function 

                                    

Clearly      
     is     , where       

         nonnegative constants to be gritty are. Now, as the 

derivative of     along the path of system (2) canister be 

written as: 
   

  
              

   

 
  
  (

   

 
          )     

                                                       

                                   

By choosing the positive constants as:            
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 Clearly   
   

  
   under the local stability condition (4) and 

given condition (32), hence  

   is strictly Lyapunov function. Therefore     is globally 

asymptotically stable in the   
 . 

Theorem 7. Assume that the axial equilibrium point      of 

system (2) is locally  

asymptotically stable in the    
  . then     is globally 

asymptotically stable in the   
 , and let the following 

condition holds: 
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Proof: 

Consider the following positive definite function 
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Clearly   
   

  
    under the local stability condition (6b) 

and conditions (32) ,(33).  

Hence    is strictly Lyapunov function. Therefore    is 

globally asymptotically stable in 

the    
 . 

Theorem 8. Assume that the  equilibrium point    of 

system (2) is locally asymptotically stable in the    
  , with 

the  following condition holds  

(
 

 
   )  ̈        

  

  
   ̈                   (34) 

Then     is globally asymptotically stable in the   
  

Proof: 

Consider the following positive definite function 
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Clearly   
   

  
    under the local stability condition (24b) 

and conditions (32),(34)   

Hence    is strictly Lyapunov function. Therefore    is 

globally asymptotically stable in 

the    
 . 

Theorem 9. Assume that the  equilibrium point      of 

system (2) is locally asymptotically stable in the    
  , Then  

   is globally asymptotically stable in the sub region of    
   

which can define as the following  

  {                  ̅       ̅     ̅      } 

Proof: Consider the following positive definite function 

                [    ̅   ̅   
  

 ̅ 

]  [     ̅    ̅  
  

  ̅
] 

                              
 

  
*    ̅   ̅   

  

 ̈ 
+  

 

  
                    

Clearly      
     is     . Now we have  

   

  
  

 

 
     ̅  

  
 

 
     ̅        ̅  

                       (  
  

  
)         ̅      ̅                         ̅  

   
 

  
   

Clearly   
   

  
    under the local stability condition (28a) 

and condition (32)   

Hence    is strictly Lyapunov function. Therefore    is 

globally asymptotically stable in 

the region    . 

Theorem 10. Assume that the  equilibrium point      of 

system (2) is locally asymptotically stable in the       
   , 

Then     is globally asymptotically stable in the sub region 

of  region of        
   which can define as the following   

  {                   
       

       
      } 

Proof: Consider the following positive definite function 



Sci.Int.(Lahore),29(6),1343-1350,2017 ISSN 1013-5316;CODEN: SINTE 8 1349 

Novmber-December 

                [     
    

   
  

  
 ]  [     

    
   

  
  
 ] 

          
 

  

[     
    

   
  

  
 ]  

 

  

[     
    

   
  
  
 ]               

Clearly      
     is     . Now since   

   

  
  

 

 
      

    
 

 
      

        
           

        
   

          
        

           
        

           
        

   

         
        

   
  

  
        

        
   

  

  
      

      

  
    

  

  
      

        
   

Hence,  we can easy to verify that: 
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  Clearly   

   

  
    under the condition (32) , hence    is 

strictly Lyapunov function Therefore    is globally 

asymptotically stable in The sub region   of        
 . 

In the following  part, we will study the persistence 

condition of system (2). 

8."Persistence Analysis of system (2)" 

In this part we studied the persistence of system (2). It is 

famous that ,we say that the system is persists if and only if 

each of species is persists. Mathematically, that means, we 

say that system (2) is persists if the solution of the system 

with positive initial condition does not have omega limit set 

on the boundary of its domain [see Xiao and Chen (2003)]. 

Now, we can establish the persistence condition of system 

(2) in the next  

theorem.  

Theorem 11. Suppose that the equilibrium point    and     

of system (2) are globally  

asymptotically stable in the Interior of         
  and 

          
  respectively. adding together , if condition (6a) 

hold with the following set of conditions : 

         
        

   
                                             (35a) 

        
   

     
                                                  (35b) 

       ̈                                                            (35c) 

      ̅                                                             (35d) 

Then system (2) is persists 

Proof: Assume that    is a position in the       
  and        

is the path during  . Let      is the omega limit set of the  

     Note that        is bounded, due to the boundedness 

of the system (2). 

We first claim that         . Assume the contrary. 

Since      is a saddle point due to condition (6a),    cannot 

be the only point in      , and hence by Butler-McGhee 

lemma there is at least one other point     such that 

             , where         is the stable manifold 

of     . 

Now, since        is the           
  and the entire orbit 

through     , say      , is contained in     .  

Then, if    is on either boundary axis of           
 , we 

obtain that the positive specific axis (that containing   ) is 

contained in     .  contradicting its boundedness. 

 Now, let                  
  . Since there is no equilibrium 

point in the               
   , the orbit through    which is 

contained in         must be unbounded. Giving a 

contradiction too, this shows that         .   

Now, we show that                  cannot be in  

    . Since     is saddle point under condition (35a) or 

(35b) holds . Then again by Butler-McGhee lemma there 

exist                 , Also, since         could be 

either(         
          

          
            

           
            

           
 )   

Suppose that         is the          
   (similar proof for 

others). 

Not that, if     is on either boundary axis of         
 , then 

we get contradiction as in the first part of  proof. 

Let now,               
 . Since there is no equilibrium 

point in the             
 , then the           , is 

unbounded, which gives a contradiction to the boundedness 

of      ,.Thus        . 

For the points        and    , by argument completely 

analogous to the above we have          and     cannot 

contained in      . Thus      must be       
  , which 

proves persistence.                                                          ■ 
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