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ABSTRACT: In this paper, an epidemic model consisting of susceptible, carriers, infected and removal is formulated 

mathematically. It’s assumed that the disease is transmitted between the individuals according to the nonlinear incidence rate 

represented by Beddington-DeAngelis type of function. However the treatment that given to the infected individuals follows the 

saturated treatment function. The proposed model has at most two equilibrium points disease-free equilibrium and endemic 

equilibrium. The local and global stability conditions of all possible equilibrium points are established. The local bifurcation 

analysis is carried out. Finally, numerical simulations are given to illustrate our obtained analytical results. It’s observed that 

the system has only one type of attractors that represented by point attractor and undergoes backward bifurcation due to 

existence of saturated treatment function.  
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1. INTRODUCTION 

Epidemiological models have been known as valuable 

tools in analyzing the spread and control of infectious 

diseases. In epidemiological models, for some 

infectious diseases, there are individuals who are able 

to transmit their disease but do not exhibit any 

symptoms. These individuals are called carriers, and 

they play an important role in the transmission of the 

disease. The incidence rate type as well as the 

treatment rate type play an important role too on the 

dynamics of the transmission of diseases. There are 

different types of incidence rate, which represented the 

number of individuals who become infected per unit of 

time in epidemiology. The authors in [1-9] have been 

used classical linear type of incidence rate in their 

models that given by the form     where    is stand for 

infection rate. On the other hand several authors [10-

18] suggested different types of nonlinear incidence 

rates. The saturated incidence rate 
   

    
, where   is 

stand for saturation factor, was first introduced by [10] 

and later on used by many authors [11, 12, 19, 20] and 

the references therein. However, Li et al [12,13] 

suggested an SIR epidemic model with nonlinear 

incidence rate given by 
   

    
. They assumed in this type 

of an incidence rate that the number of effective 

contacts between infected and susceptible individuals 

may saturate at high infected levels due to crowding of 

infected individuals or due to the protection measures 

by the susceptible individuals. On the other hand 

Beddington and DeAngelisz [21-22] introduced 

independently nonlinear incidence rate known after that 

as Beddington-DeAngelis type incidence rate 
   

        
, 

which adopted both the saturation factor and the effect 

of crowding of infected individuals. Later on, some 

authors [23-27] used this incidence rate to describe the 

transmission of disease in their epidemiological 

models.   

It is well known that the treatment is an important 

method to control the spread of diseases. In classical 

epidemic models, the treatment rate of infected 

individuals is assumed to be either constant or 

proportional to the number of the infected individuals. 

Therefore, it is very important to choose a proper 

treatment rate of a disease. [28] considered an SIR 

epidemic model with constant treatment rate  as 

given ( )  2
         
         

 

where   is a positive constant and    is the number of 

infected individuals. They studied stability analysis and 

showed that this model exhibits various types of local 

bifurcations. Further,  [29] modified the treatment rate 

to Holling type II   

 ( )  
  

    
                    

They have shown that, with varying amount of medical 

resources and their supply efficiency, then the epidemic 

model may have both backward bifurcation and Hopf 

bifurcation. Finally [30] have also used Holling type II, 

III and IV as treatment rates to study their model. 

Keeping the above in view, in this paper  we  proposed  

and  analyzed a mathematical model describing 

epidemiological system having       (susceptible, 

carriers, infected and removal) model with Beddington-

DeAngelis type of incidence rate and saturated 

treatment rate simultaneously.  

2. PROBLEM FORMULATION 
In this section an epidemic problem involving carrier 

individuals, which defined as those individuals who 

harbor the specific  organisms of a disease without 

manifest symptoms and is capable of transmitting the 

infection, is proposed for study. To formulate the 

problem mathematically , its assumed that the entire 

population is divided into four classes: susceptible 

class, carrier class ,symptomatically infectious class or 

simply infectious class and removal or recovered class, 

where the number of individuals at time   in each class 

represented by  ( ),   ( ),  ( ) and  ( ) 
respectively.Furthermore the following two main 

hypotheses are adopted in formulating the dynamical 

equations of the model: 

mailto:rknaji@gmail.com
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1. A susceptible individual can be contracts the 

disease through direct contact with an 

infectious individual or a carrier individual 

with Beddington-DeAngelis type of incidence 

rate and transfers to carrier class or an 

infectious class with probabilities   and 

(   ) respectively. 

2. The infected individuals may be recovered and 

transfer to removal class in two methodology: 

auto recovery due to the immune response of 

the body or by treatment using the saturated 

treatment rate. 

Accordingly the dynamical behavior of the model can 

can be described by the following set of nonlinear first 

order differential equations  

  

  
                                                     

   
  
                                                         

  

  
 (   )            

  

    
        

  

  
        

  

    
                                   

       ( ) 

Where      .
        

              
/ 

Here  ( )       ( )      ( )          ( )   , while 

the other parameters can be describe in the following table. 

 
Table 1: Parameters description in the system (1) 

The parameter Description 

    Represents the susceptible be influx at a constant rate 

           Represent natural death rate of the susceptible and removal respectively 

           
Represent death rates for    and    individuals, respectively including both natural and 

because disease 

     Represents transmission rate for carrier individual into infected individual. 

     Represents natural recovery rate 

    Represents vaccination rate 

           Represent contact rate between the individuals of    with     and    respectively 

             
Represent a measure of inhibition effect due to contact between the individuals of the 

same class for  ,    and   respectively 

    Represents the maximum treatment rate 

    
Represents the measure of inhibition recovered rate due to the long time responded of 

infected individual to the treatment 

 

According to the form of system (1) it’s clear that once the 

dynamic of  (      ) are understood, then the dynamics of   

can be then determined from the equation  

       
  

  
        

  

    
                                    (2)

                                                      

Therefore from now onward we will consider the 

following reduced system  

  

  
                                               

   

  
                                                 

  

  
 (   )            

  

    
     

              (3) 

It is easy to verify that the solution of system (3) is bounded 

in the sub region of the first octant as shown in the following 

theorem 

 

Theorem (1): All solutions of system (3), which initiate in 

the first octant are uniformly bounded in the region   

   2(      )   
   ( )  

 

    
            

 

 ̅
3. 

Proof.  From the first equation of (3) we have  

  

  
                (    ) 

Which gives that 

        
 (    )  

 

    
(    (    ) ) 

Hence as     it is observed that  

  ( )  
 

    
 

Now let         , then 

  

  
   (    )        (     )  

  

    
 

Thus for  ̅      *             + we obtain that 

 
  

  
     ̅  

So solving this linear differential inequality gives for     

  ( )   
 

 ̅
 

Hence all the solutions of system (3) are uniformly bounded 

in the region    and the proof is complete. ■ 
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3.Equilibrium points and their stability 

It is observed that, system (3) has at most two 

biologically feasible equilibrium points the existence 

conditions for each of these equilibrium points are discussed 

in the following: 

1. The disease free equilibrium point, which is denoted by 

   .
 

    
    /always exists  

2. The endemic equilibrium point, say    ( 
    

    ), 
of the system (3) exists if there is a positive solution 

that denoted by (     
    ) to the following set of 

equations 

                                                      (4a) 

                                                            (4b)                                 

     (   )           
  

    
                 (4c)

      

 Obviously form equation (4a) we get that 

    
           

where       (    )    

   (    )(          )  (        )      

     (          )    

Therefore the unique positive real root is given by 

  
    √  

       
   

                                           (  ) 

Now, substituting the value of  into Eq. (4b)-(4c) give us the 

following two isoclines equations. Keeping the above in view 

the positive intersection point of these two isoclines (if such 

point exist), which denoted by(  
    ), together with    that 

results from (  ) after substituting (  
    ) in it represents an 

endemic equilibrium point. 

 (    )  
 (        )  

   (          )    
   (     )         (4e)                               

 (    )  
(   )(        ) 

   (          )    
  .      

 

    
/  

                                                                               (4f)

        

Clearly as     the first isoclines (4e) intersects the 

horizontal          at a unique point, say   . While as 

     in the second isoclines (4f), it will intersect the 

horizontal         at a unique point, say   . 

Moreover, by using implicit differentiation we obtain that

  

  

   
   

  

   

  

  
⁄                 

  

   
   

  

   

  

  
⁄  

Thus it is easy to verify that the two isoclines (4e) and (4f) 

intersect at a unique positive intersection point, namely 

(  
    ), provided that 

                                                                  (4g)

  

     
  

   
       

  

  
          

  

   
    

  

  
                (4h)                                             

     
  

   
       

  

  
           

  

   
    

  

  
                (4i)

                                          

Consequently system (3) will have a unique endemic 

equilibrium point    ( 
    

    ) provided that the above 

sufficient conditions (4g)-(4i) are satisfied.   ■                                           

It is well known that the basic reproduction number that is 

denoted by    , represents the mean number of secondary 

infections caused by a single infective introduced into a 

susceptible population, can be determined using the next 

generation matrix method ,  - 

Therefore in order to compute     , we set    (      )
 , 

then system (3) can be rewritten as 

 
  

  
  ( )   ( ) 

Here  ( )is the matrix of new infection terms, while  ( )  is 

the matrix of transfer terms into compartment and out of 

compartment, which can be written as 

 ( )  [
   

(   )  
 

];  

 ( )  [

         

        
  

    
     

            

] 

Therefore the Jacobian of matrices  ( ) and  ( ) at the 

disease free equilibrium    can be written as: 

  (  )  

[
 
 
 
 

    
  

    
  

 

(   )   
  

(   )   
  

 

   ]
 
 
 
 

 

  (  )  

[
 
 
 
    
      
   
  

   
  

    ]
 
 
 
 

Where                           
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Thus we obtain that 

  
 

  
0

      
(   )  (   )  

1 

  [
   
     

] 

According to the next generation matrix method, the basic 

reproduction number is the maximum eigenvalues of the 

matrix      . Now since 

      
 

      
                                                                                

[
                

(   )     (   )    (   )    
]

 

Therefore the eigenvalues of        are given by  

                 

   
 ( ,         -  (   )    )

      
 

 

From which it is clear that the reproduction number  

                                                      (5)

              

In the following the local stability analysis of each 

equilibrium points is studied with the help of basic 

reproduction number as shown in the next two 

theorems. First the Jacobian matrices at the equilibrium 

points    and    are given below respectively. 

 (  )  

[
 
 
 
  (    )

    

  

    

  

 
    

  
   

    

  

 
(   )   

  
   

(   )   

  
   ]

 
 
 
 

 

,   -                                                                              (6) 

 While 

  (  )  ,   -                                               (7)        

where  

        
    

  
              

 4
          

 

  
 5 

      
 4
           

 

  
 5        4

    

  
 5 

       
 4
          

 

  
 5     

      
 4
           

 

  
 5      (   ) 4

    

  
 5 

     (   ) 
 4
          

 

  
 5     

    (   ) 
 4
           

 

  
 5     

Here    (      
     

 )   

            (     
     

 )  

            (     
      

 );  

           (     
      

     
 )      

                 
 

(     )
 

  and     (    
     

 ) 

Thus the  local  stability  results  near  the  above  equilibrium  

points  can  be  presented  in  the  following  theorems. 

Theorem (2):The disease-free equilibrium    .
 

    
    / 

is locally asymptotically stable when       and unstable 

for      . 

Proof.   Accordingly to the Jacobian matrix  (  ), given by 

Eq. (6), the characteristic equation can be written as: 

 (     )( 
      )                                         (8) 

where             and                . Clearly the 

first eigenvalue that given by         (    )   , 

while the other two eigenvalues, which represent the roots of 

second order polynomial part of (8), have negative real parts 

if and only if       and     . 

Straightforward computation shows that      guarantees 

that       and       and hence     . On the other 

hand, direct calculation shows that 

   
              (   )     

  
        ( ) 

It is easy to verify that      provided that      and 

    provided that     . Thus    is locally 

asymptotically stable under the condition       and 

unstable saddle point for      . Hence the proof is 

complete.       ■  

Theorem (3):The endemic equilibrium point   of system (3) 

is locally asymptotically stable if the following sufficient 

conditions hold 

      (          
 )      

                       (10a)

        



Sci.Int.(Lahore),29(6),1223-1236,2017 ISSN 1013-5316;CODEN: SINTE 8 1227 

November-December 

  (   )  (           
 )    

          (10b)

        

  [    
      (          

 )]  

  (           
 )((   )     )

                (10c)

                                         

                                    (10d) 

Proof. According to the Jacobian matrix given in (7), the 

characteristic equation can be written as: 

      
                                           (11) 

                    

 where      (           ) 

                                             

    ,   (             )     (             )
    (             )- 

while       

           

  (       )(             )

 (       )(             )

 (       )(             )
                               

 

Now according to Routh-Hurwitz criterion ,  - the endemic 

equilibrium point   is locally asymptotically stable, provided 

that           and            . 

Straightforward computation shows that conditions (10a)-

(10b) guarantee that       ,      ,      ,      , 

      and      . Hence     , further the conditions 

(10a)-(10c) lead to     . Finally its easy to verify that the 

given conditions guarantee that    . Thus the proof is 

complete. 

Now the global stability analysis of each equilibrium points 

of system (3) is studied analytically with the help of 

Lyapunov method ,  -as shown in the following theorems. 

Theorem (4):Assume that the equilibrium point    is a 

locally asymptotically stable in   
 , then it is a globally 

asymptotically stable provided that 

      (    )
     (      )                      (12a)

          

    (     )(    )
     (      )           (12b)

        

Proof. Consider the following positive definite real valued 

function 

   
(    )

 

 
      

Clearly,    
     that is continuously differentiable 

function so that   (      )     and   (      )  
    (      )  (      ). Therefore by differentiating this 

function with respect to the time, we get: 

   
  

 
   
  
 
  

  
 
   
   

 
   
  
 
   
  
 
  

  
 

Substituting the value of  
  

   
  
   

  
 and  

  

  
 from system (3) in 

the above equation gives 

   

  
 (    ),           -

 ,             -

 0(   )           
  

    
     1

  

Now, by doing some algebraic manipulation 

   

  
   (    )(    )

   ,       - 

       0(     )  
 

    
1

  

Consequently, we obtain that 

   

  
   (    )(    )

  (    ) (        )

      .      
 

    
/  

  

Now, since  ( )  
 

    
  and     

 

    
 then we obtain that 

   

  
   (    )(    )

  0     
 (      )

(    )
 1   

 0      
 

    
   

 (      )

(    )
 1  

  

Therefore due to the conditions (12a)-(12b) we obtain that 
   

  
  . Hence     is a locally asymptotically stable and the 

proof is complete   

Theorem (5): Assume that the endemic equilibrium point 

  is a locally asymptotically stable, then it is a globally 

asymptotically stable in the region that satisfy the following 

conditions: 

          ̅    
                                                   (13a) 

    (     )   ̅     (   ) 
                     (13b)         

        
                                                            (13c) 

       
                                  (13d) 

       
                                                             (13e) 

where     will be given in the proof. 

Proof. Consider the following positive definite real valued 

function 
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(    ) 

 
 
(     

 ) 

 
 
(    ) 

 
 

Clearly     
    be a continuously differentiable function 

so that   ( 
    

    )     and   (      )        (      )  
(     

    ). Therefore by differentiating this function with 

respect to the time, we get: 

   
  

 
   
  

 
  

  
 
   
   

 
   
  
 
   
  
 
  

  
 

Substituting the value of  
  

  
 
   

  
 and  

  

  
 from system (3) in 

the above equation and doing some algebraic manipulation 

gives that 

   
  

  6
(    )   ̅     ̅ 

   ̅ 
7 (    )                          

 6
     ̅    

   

   ̅ 
7 (     

 )                                               

 6
(     )   ̅     (   ) 

   

   ̅ 
7 (    )               

 6
    ̅   

   

   ̅ 
7 (    )(     

 )                                     

 6
(   )   ̅   

   

   ̅ 
7 (    )(    )                            

 6
      (   ) 

         ̅ 

   ̅ 
7 (     

 )(    )    

 

Here          (         
 )       

    

     (          
 )        

 ;  

   
    ̅ 

(     )(    )
 

 ̅                ; 

 ̅          ; 

Clearly the coefficient of (     
 )  and (    )  are 

negative due to the conditions (13a) and (13b) respectively. 

However the other conditions guarantee that 

   
  

  
 

   ̅ 
[√
   
 
(    )  √

   
 
(     

 )]

 

          
 

   ̅ 
[√
   
 
(    )  √

   
 
(    )]

 

            
 

   ̅ 
[√
   
 
(     

 )  √
   
 
(    )]

 

 

Here 

    (    )   ̅     ̅                             

         ̅    
                                         

     (     )   ̅     (   ) 
      

        ̅   
                                              

    (   )   ̅   
                                  

      
    (   ) 

         ̅          

 

Obviously due to the given condition the value of   
   

  
    is 

negative definite and hence the endemic equilibrium point 

  is a globallyasymptotically stable.                                                                               

■ 

4. BIFURCATION ANALYSIS: 
In this section, the possibility of occurrence of local 

bifurcation (such as transcritical, pitchfork and saddle-node) 

around equilibrium points is studied by applying the 

Sotomayor's theorem [34]. Consider system (3), which can be 

rewritten as  

 
  

  
  ( )                                          (14)     

where   (      )
   and  ( )  (        )

  represents 

the vector of interaction functions in system (3). Recall that, 

the general Jacobian matrix of system (3) can be represented 

by 

          
  

  
  (      )                            (15) 

Then straightforward computation shows that for any non-

zero vector    (        )
  the second derivative of the 

vector  ( ) with respect to   can be written as the 

following:  

         (   )  (   )                                             (16) 

where 

        
  (     )     (     )         

 

 (     )         
  

     ,     
  (     )     (     )         

 

 (     )         
 - 

    (   ) 0     
  (     )     (     )    

     
  (     )     (  

 
  

(    ) 
)  

 1 

Here  

   
    ̅  ̅ 

 ̅ 
   

   
 ̅ ,   ̅       -      (   ̅       )

 ̅ 
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 ̅ ,   ̅        -      (   ̅        )

 ̅ 
  

   
 ̅ ,   ̅        -      ̅  ̅ 

 ̅ 
  

       4
   ̅       

 ̅ 
 5 

   
 (         ) ̅      (   ̅        )

 ̅ 
  

   
 ̅ ,          ̅ -     ( ̅  ̅ )

 ̅ 
  

     4
(         ) ̅     (   ̅       )

 ̅ 
 5 

       4
(   ̅        )

 ̅ 
 5 

With  ̅  (          ); ̅  (         ); 
 ̅  (          ), ̅  (              ) 

 ̅        
 

(    )
,   ̅  (        ) 

 ̅  (          ), ̅  (           ),  ̅  
(           ),  ̅  (           ) 

Theorem (6): If the following condition holds 

                     (17)      

Then system (3) near the free disease equilibrium point    

has 

1. No saddle node bifurcation 

2. A transcritical  bifurcation  

Proof. It is easy to verify that the Jacobain matrix of system 

(3) at    that given by matrix[   ]    in Eq. (6) has zero 

eigenvalue (       
   )provided that       or 

equivalently at 

  ̃       
          

   (    (   )  )
                           (  ) 

Clearly    is positive by construction and it considered as a 

candidate parameter bifurcation (similarly      is 

equivalent to any other parameter).  

Now by substituting the value of (      ̃)in the Eq. (6), its 

obtain that: 

 ̌   (     ̃)  

[
 
 
 
  (    )

    

  

    ̃

  

  
    

  
   

    ̃

  

 
(   )   

  
   

(    )   ̃

  
   ]

 
 
 
 

  

Let   (        )
  be the eigenvector corresponding to 

the eigenvalue    
     of    ̌. Then straightforward 

computation to solve   ̌   , gives that 

   (                 )
                        (19a) 

Where                   

    
     

(    )(    (   )  )
   

    
   

      (   )  
   

and    be any non-zero real number. On the other hand let 

  (        )
  be the eigenvector corresponding to the 

eigenvalue   
     of the matrix  ̌ . Then straightforward 

computation to solve  ̌      gives that 

                (           )
             (19b) 

where                                

    
 ((   )        )

         
 

and   be any non-zero real number, also its clear that 

            due to the condition (17) and hence   

     .  

Now since  

  

   
    (    )  4

   

 ̅ 
 
   

 ̅ 
 
(   )  

 ̅ 
5

 

 

Then       (      ̃)  (     )
   

Hence          (      ̃)    

Thus, according to Sotomayor's theorem [34] the saddle-node 

bifurcation cannot occur. Furthermore the derivative of 

   (    ) with respect to   can be written 

    (    )

 
 

 ̅ 
 [

   ̅        ̅ 
    ̅           ̅ 

(   )  ̅  (   )    (   )  ̅ 

] 

Hence 

    (      ̃)  

[
 
 
 
   

  

  

   
 

  

  (   )
 

  ]
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Therefore, it’s easy to get that 

   [    (    ) ]        (    (   )  )    

Moreover, by substituting the values of (      ̃) and the 

eigenvector   in Eq. (16) it’s obtain that 

   (      ̃)  [                       
 

           ]  
  

   (      ̃)   [                       
 

           -  
 

 

   (      ̃)  (   ),                

                   
         (      )-  

  

Where 

         
  

 ̿ 
     

  

 ̿ 
      

      

 ̿ 
   

     (
         

 ̿ 
 )         (

  

 ̿ 
 ) 

Here   ̿   ̅ (   )  (      ). Consequently,  

   ,   (      ̃)(   )-       
 [(     (   ))

(                    
       )  (   )

  

 
]
 

Clearly, due to the sign of    ,     and    , the value of 

   ,   (      ̃)(   )-    . Indeed it has negative sign 

and hence according to Sotomayor's theorem system (3) has a 

transcritical bifurcation at     provided that     
                ̃.                   ■ 

Theorem (7):Assume that conditions (10a)-(10b) hold, then 

system (3) undergoes a saddle node bifurcation near the 

endemic equilibrium point, as the parameter     passing the 

following value 

 ̃   

(    ) 
   ,    (   )  -

       (    ) ̅
 (   

 

(     )
)  

………………(20) 

Provided that the following conditions are hold. 

   
(    ) 

   ,    (   )  -

       (    ) ̅
                    (   ) 

  
      {

(   
          )

  
 
(   

          )

  
} 

…………………(12b) 

Here    (          
 );     (           

 ) 

and    ̅      
         

Proof. According to the parameter value  ̃  given by Eq. 

(20), which is positive under the condition (21a), it is easy to 

verify that the value of the determinant of  (  ), that given 

by    in the Eq. (11), is   ( ̃ )    .  

Therefore the Jacobian matrix  ̿   (    ̃ )  (  ̿ )    has 

zero eigenvalue, say  ̿    , where   ̿                  

that given in Eq. (7) while   ̿     ( ̃ ).  Hence    is a non-

hyperbolic point. 

Recall that conditions (10a)-(10b) specify the sign of     as 

mentioned in theorem (3). While condition (21a)-(21b) 

guarantees the positivity of   ̃  in addition to possibility of 

having zero determinant of   (  ). 

Let   (        )
  be the eigenvector that corresponding to 

the eigenvalue  ̿    of the matrix  .̿ Thus    ̿    , which 

gives: 

   (            )
                           (22a)

                 

Here 

   
     (       (    )    

 )

(     (    )  
 )(       (    ) ̅)

 

   
 (    ) 

   

       (    ) ̅
 

While    be any nonzero real number. Clearly due to 

condition (10a) then      and     . 

Let   (        )
  be the eigenvector associated with the 

eigenvalue  ̿    of the matrix   ̿. Then solving    ̿   ,  

gives 

   (            )
             (22b) 

Here                   

   
    ,    (   )  -

       (    ) ̅
 

   
       (    ),(   ) 

        
 -

(       (    ) ̅)
 

While    be any nonzero real number. Again due to condition 

(10a) then      and     . 

Now according to the Sotomayor's theorem system (3) 

undergoes a saddle node bifurcation near the endemic 

equilibrium point if and only if    (    ̃ )    and 

     (    ̃ )(   )   . Since 

  

   
    (    )  (

   
   

 
   
   

 
   
   

)
 

 (     )  
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Then      (    ̃ )  (     
 ) , and hence   

     (     
  )          

Further, by substituting the values of (    ̃ ) and the 

eigenvector   in Eq. (16) and doing some algebraic 

manipulations gives that 

      
 [    

  (     )     (     )        
 

 (     )     ] 

       
 [     

  (     )     (     )        
 

 (     )     ] 

    (   )  
 [     

  (     )     (     )  

      
  (     )   (   

  

(     ) 
)1

 

Here   

   
       

  
       

         
   

  
   

   
         

   

  
     

            

  
   

      
 4
  

  
 5      

 4
(         )        

  
 5 

   
        (    )

  
     

    
 4
(         )        

  
 5        

 4
  

  
 5 

 With    (      
     

 );   (     
     

 )  

   (     
      

 ), 

   (     
      

     
 )  

         
 

(     )
 

   (    
     

 ) 

   (      
     

 ) 

    (      
      

 )  

   (       
     

 ) 

    (      
      

 ) 

while              
                   

   

             
                 

   

                                 Clearly here conditions (10a)-(10b) 

guarantee that       and     . Consequently 

straightforward computation gives that 
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Now, since  
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Obviously the sufficient condition (21b) ensures the 

positivity of (     ) and (     ). Therefore 

     (     
  )(   )    and hence saddle node 

bifurcation takes place, which complete the proof.       

                                   ■ 

5. NUMERICAL SIMULATIONS AND DISCUSSION 
In this section, the global dynamical behavior of system (1) is 

investigated numerically in order to detect about the 

occurrence of bifurcation and confirm our obtained analytical 

results. 

 For the following biologically reasonable set of parameter 

values system (1) is solved numerically starting from 

different sets of initial conditions using six order Runge-

Kutta method together with Predector-Corrector method and 

then the trajectories of the system are drawn in the form of 

time series as shown below 

It is observed that for the following set Eq. (23) of parameter 

values system (1) is solved numerically starting from 

different sets of initial conditions and then the trajectories are 

drawn in Fig. (1), which is clearly shows the global 

convergence of the solution of system (1) to the endemic 

equilibrium point. Moreover the trajectory of system (1) 

starting from a specific initial set is drawn in Fig. (2) as a 

function of time. 
                                  
                                   
                                

        (23) 
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Figure 1: Globally asymptotically stable an endemic equilibrium 

point    (                       ) of system (1) for the 

parameters set (23), started from different sets of initial point. 

(a) Trajectory of susceptible population. (b) Trajectory of 

carrier population. (c) Trajectory of infected population.  

(d) Trajectory of removal population. 

 

Figure 2: The trajectory of system (1) for the data (23) 

approaches asymptotically to the endemic equilibrium point, 

started from sets of initial point (30, 5, 10, 20). 

Obviously, the above two figures confirm our obtained 

analytical results regarding to the destabilizing of the disease 

free equilibrium point when the basic reproduction number 

becomes       , which can be easily verified,  and the 

existence of an unique endemic equilibrium point.   

Now in order to determine the effects of varying the 

parameters values on the dynamics of system (1) and specify 

the control set of parameter values in system (1), the system 

is solved numerically for the parameter set (23) with varying 

one parameter each time. Consequently, system (1) is solved 

numerically for data (23) with varying the influx rate of 

susceptible individuals at      and          respectively, 

and then the trajectory of the system is drawn in Fig. (3). 
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Figure 3: The trajectory of system (1) for the data (23) with 

different values of A. (a) The system approaches asymptotically 

to a stable endemic equilibrium point     for     . (b) The 

system approaches asymptotically to stable disease free 

equilibrium point       for       . 
 

It’s observed that for the values        we have    
  and hence the solution converges asymptotically to    as 

shown in the typical figure given by Fig. (3a) in which the 

value of the basic reproduction number is        . 

However for the values of        it’s observed that 

     and then the solution converges asymptotically to   , 

as in the typical figure given by Fig. (3b) which has the basic 

reproduction number given by          . 

Now, varying the contact rate between the susceptible 

individuals and carrier individuals represented by     at 

                     with the rest of parameters given 

by (23) and then the resulting trajectories  

of system (1) are drawn in Fig.(4) and Fig.(5) respectively. 

According to the last two figures, the trajectory of system (1) 

approaches asymptotically to the endemic equilibrium point 

for different values of contact rates. In fact, it’s observed that 

for the data used in Fig. (4), the value of the basic 

reproduction number is            , while its     
        for the data used in Fig. (5). 

 

Figure 4: The trajectory of system (1) for the data (23) with 

       . 

 

Figure 5: The trajectory of system (1) for the data (23) 

with         

Further, it’s observed that, although for the values    
     the value of the basic reproduction number is in the 

range     , the solution of system (1) still approaches 

asymptotically to the endemic equilibrium point   . 

This is due to the existence of endemic equilibrium point 

simultaneously with the disease free equilibrium point, which 

may leads to occurrence of backward bifurcation,  -. Indeed 

this is due to the use of saturated treatment function in the 

form of system (1) that leads at most to special case called bi-

stable and hence the backward bifurcation take place. 

Now in order to explain the role of using the saturated 

treatment function in the occurrence of backward bifurcation, 

system (1) is solved numerically for the same data used in 

Fig. (5), treating     and then the resulting trajectory is 

drawn in Fig. (6) below. 
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Figure 6: The trajectory of system (1) for the data (23) with 

                . 

Although the parameter   is not included in the form of basic 

reproduction number and their value still fixed at    
       , the trajectory of the system (1) approaches 

asymptotically to the disease free     equilibrium point 

instead of endemic equilibrium point    as in Fig. (5).  

This is mean that replacing the saturated treatment function 

by the classical linear treatment function, which occurs by 

setting    , prevent the occurrence of bi-stable (existence 

of disease free equilibrium point and the endemic equilibrium 

point simultaneously) hence backward bifurcation doesn’t 

occur and the trajectory of system (1) approaches 

asymptotically to disease free equilibrium point when 

      as proved analytically. 

Further investigation for the effect of varying other 

parameters on the dynamical behavior of system (1) is carried 

out and the results are summarized in the following table. 

According to the given table, all the obtained numerical 

results are coincide with those obtained analytically except 

the death rate parameter of the carrier compartment. That is 

because the occurrence of backward bifurcation as that shown 

in Fig. (5) for the varying of the contact rate between the 

susceptible individuals and carrier individuals. 

 

 

Table (2): Dynamical behavior of system (1) as a function of a specific parameter with the rest of parameters  

for data (23) 
parameter Range    Behavior 

                     is asymptotically stable. 

                 is asymptotically stable. 

                    is asymptotically stable 

                 is asymptotically stable. 

                is asymptotically stable. 

              is asymptotically stable. 

                   is asymptotically stable. 

              

   is asymptotically stable. 

                 

                is asymptotically stable. 

                   is asymptotically stable. 

                is asymptotically stable. 

                 is asymptotically stable. 

               is asymptotically stable. 

                  is asymptotically stable. 

               is asymptotically stable. 

             is asymptotically stable 

               is asymptotically stable 

             is asymptotically stable 

               is asymptotically stable 

               is asymptotically stable 

               is asymptotically stable 

 

Finally, from the above analysis, it’s observed that the 

system (1) approaches asymptotically either to the 

disease free equilibrium point or to the endemic 

equilibrium point, depending on the value of basic 

reproduction number except for the parameters     and 

  , in which the backward bifurcation occurs. Further 
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it’s observed too that the system (1) for the data given 

by (23) has no periodic dynamics rather than that it has 

one type of attractors (point attractor) represented by 

disease free equilibrium point or endemic equilibrium 

point as shown above. 
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