
 Sci.Int.(Lahore),27(3),2209-2215,2015 ISSN 1013-5316; CODEN: SINTE 8 2209 

May-June 

 
MULTI-AGENTS BASED SOFTWARE TESTING AS A SERVICE ON CLOUD 

Sabih Jamal, Muhammad Aslam, Tauqir Ahmad
 

Department of  Computer Science & Engineering,  
University of   Engineering & Technology, Lahore 

sabih.jamal@uet.edu.pk, maslam@uet.edu.pk, tauqir_ahmad@hotmail.com 

ABSTRACT: Software testing plays an important role to make any software project reliable and successful. Owing to human 

effort and deviated results, manual testing is being replaced by automated testing tools. But the automated solution is much 

costly due to licensing and as it still requires human interaction. Hence, such a testing solution is required, in which on 

demand testing services based on „pay as you go‟ model, can be provided. This framework is intended to highlight the role of 

intelligent agents in providing such a multi-agents based testing framework, where different agents collaborate to provide 

software testing as a service on cloud. Different agents‟ groups are introduced, to support different testing types within an 

integrated framework. 
Keywords: Multi-agents, Testing as a service, Cloud, Framework 

 
1. INTRODUCTION  
In entire software development life cycle, testing plays an 

important role in assuring quality of software applications. 

SQA Engineers are responsible for making sure that the 

software which is being delivered is error free, reliable, 

robust, secure and validated against required functionality. If 

all the efforts have been done in developing, but still 

somehow lacks in testing, then it may result in software 

failure, after its deployment. Hence, due to much effort and 

chances of errors/deviated results, currently manual testing is 

being replaced by automated testing tools. 

Though automation gives rise to better results, but it is very 

costly, as tools are licensed based, also manual effort is still 

required to operate tools, which costs double and most of 

tools provide only single testing type. Hence, purchasing 

different tools for different testing types is not economical, 

especially for small and medium organizations. Thus, most 

organizations are looking for testing solutions, just like „pay 

as you go model‟. So that they only need to pay based on 

testing services they use, instead of purchasing tools / 

keeping their licensing. As cloud/ on demand services are 

evolving like (X as a service) Xaas, hence also there is need 

of „testing as a service‟.  

In order to replace manual testing by automation and 

providing in form of on demand scalable services, there is 

need of such entities which can intelligently test applications 

on behalf of testers and can negotiate for cost while providing 

testing services. Hence, intelligent agents can play a key role 

in providing such on demand testing services, as agents are 

autonomous, social, proactive, reactive and also having 

learning capabilities. 

The proposed system of Multi-agents based Software Testing 

as a Service on Cloud (MSTAS) highlights the role and 

significance of intelligent agents in providing such testing 

services. It is intended to conceptualize the multi-agents 

based framework, that emphasis that how different groups of 

agents can collaborate to provide software testing as a service 

on cloud. 

 

2. RELATED WORK 
Khalid A.M. [5] presents MARTS Multi-Agents based 

Regression Testing Suite that makes use of intelligent agents 

for test cases versioning, report and result analyzing. It 

provides interface for users to access testing history. It only 

covers regression testing and lacks in covering other testing 

types. 

Nicholas R.  et al. [7]  provides verification of the system into 

two classes. Logic gives axiom for every statement and 

semantic approach checks model for testing. But overall, it 

does not provide any concrete testing strategy.Yu Qi et al. 

[13] highlights an approach, specific test agents are generated 

from abstract classes. All the test agents test a specific type of 

web document or object. Web application testing is done by 

cooperation of a set of agents. These test agents follow the 

BDI (Belief- Desire- Intention) model agents  

Qingning Huo and Hong Zhu [8] present agent based 

environment for web applications‟ testing. The system 

consists of a light weight agent platform which supports 

agents‟ communication ontology that provides integration of 

different agents and XML represents concepts of ontology. 

The agents can be distributed to different computers.  

K. Mong Sim [19] proposes an agent-based approach to 

compose services in multi-cloud environments for different 

types of cloud services. N. Mehrotra [21] elaborates different 

aspects that how cloud testing differs from testing the cloud. 

S. Vilkomir [22] provides the review of cloud testing. Taas 

(testing as a service) or cloud testing includes testing the 

cloud and testing using the cloud. 

[14,17,23] discuss cloud computing, its uses through a 

service-oriented interface to offer on demand services, gives 

overview of intelligent agents in cloud computing, the role of 

agents in cloud computing and how the Intelligent Agent can 

help in facilitating better services to cloud computing. 

[11,15,24] specify mobile agents play vital role in 

implementation of cloud computing and network security 

testing. M Kim et al. [26] proposed an intelligent multi-agent 

model based on virtualization rules for resource virtualization 

to automatically allocate service resources suitable for mobile 

devices. 

Yin et al. [27] proposed cloud testing platform based on 

virtualization technology. This platform is capable of 

providing testing resources, and these resources are assigned 

dynamically on demand, which reduces the cost of 

development and testing. 

[12] addresses the service oriented testing, as services based 

on agents, while [28] only presents web security testing as a 

service. Impact of web 2 and cloud computing on software 

engineering and cloud computing related issues and 

implementations have been specified in [18,20]. Framework 

based on domain specific languages for software 

development and deployment on cloud, has been presented 

in[25]. 

mailto:sabih.jamal@uet.edu.pk,%20maslam@uet.edu.pk
mailto:tauqir_ahmad@hotmail.com


2210 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2209-2215,2015 

May-June 

3. MULTI-AGENTS BASED SOFTWARE 
TESTING AS A SERVICE (MSTAS) 
MSTAS is multi-agents based integrated framework which 

provides different types of on demand testing services, just as 

„pay as you go‟ model. It comprises of below specified 

modules as shown in Figure 1. 

3.1 Request Analyzer Module 

On browsing the MSTAS utility by the end user, the User 

Interface Agent (UIA) prompts the user to enter test types and 

url of the application to be tested. Then, UIA passes the user 

request to Coordinator Agent (CA). CA keeps knowledge 

base related to other agents‟ task and is responsible to send 

the input request or output data to corresponding agent. 

Then CA passes the request to Request Repository /Analyzer 

Agent (RRAA), this agent keeps the request in its DB and 

based on KB of its selected test types, it sends more input 

parameters to UIA, which need to be asked from end user. 

For example:  

 If selected test type is „Load‟, UIA asks how many virtual 

users are required to put the load.(Hence number of v-

users is such an input which is dependent on which test 

type is selected) 

 For „Functional Test‟, UIA may prompt end user to input 

some requirements document.  

Once detailed input is provided by the end user, then CA 

passes it to RRAA, which is stored in its repository. Then CA 

activates the Cost Quote Agent (CQA) to determine the cost 

for the test service.CQA determines the cost based on its KB 

and estimated number of resources as specified in 

implementation section. Through CA, the estimated cost is 

sent to UIA which is shown to end user. Now the end user is 

given option to proceed, negotiate or cancel, based on 

estimated cost. 

 Cancel Option 

On cancelling, the end user is out of system (redirected to 

home page). 

 Negotiate Option 

On selection of negotiation option, the request is passed 

again to CQA through CA.As CQA keeps on updating its 

KB, then CQA provides some more reduced costs, based 

on its available flexibility. Then end user is left with two 

options either to proceed or cancel. 

 Proceed Option 

On proceeding the UIA prompts the user to enter payment 

mode related information, along with selection of test 

result option (either by email or at run time for short 

interval  tasks).Once all inputs are given by user and kept 

in repository of RRAA, then this agent analyzes the 

request and decomposes each test request based on its test 

type. E.g. if there is test request from same user for 

performance test and organized in First in First out data 

structure then for same user, test service is broken down 

into two ids based on selected test types. Hence for above 

test, two ids are tagged against same user email. 

      Rq1_userone 

   Rq2_userone 

RRAA then creates Monitor Agents (MA) against each 

request id, for above example  

two agents MA1 and MA2  are being created and test service 

request input data is passed to monitor agents. 

3.2 Test Type Selection and Test Executor Module 

Based on requested test type kept by MA, the CA activates 

the corresponding test type agents group. MA is responsible 

for providing corresponding test related input data to Type 

Selector as well as Resource Scalability Provider module. 

On activation of any test type, the corresponding agents 

group collaborates to generate the test (test script). Based on 

generated scripts, the test is executed. 

For each test type, the corresponding agents have been 

defined in below section “Agents Groups based on Test 

Type”. 

Agents Groups based on Test Type 

Functional Testing 

The following agents collaborate to accomplish the functional 

testing: 

 Info-Extractor Agent (IEA): It receives test input from 

MA and based on inputs (urls, source code or documents) 

extracts useful information for either black box or white 

box testing [6]. 

 Test Data Generator Agent (TDGA): TDGA generates 

test data from extracted sources based on formalism [1], 

[10]. 

 Test Case Generator Agent (TCGA):It generates the 

test cases, based on test requirements determined by IEA 

 Optimized Test Case Generator Agent (OTCGA): It 

finds the optimized test sequences and based on 

sequences, it generates the optimized test cases [3]. 

 Test Executor Agent (TEA): TEA executes the test 

cases based on outputs of TDGA and OTCGA. On 

individual bases, the above defined agents perform their 

tasks based on mechanism as specified in detailed in [4], 

[9]. 

Load Testing 
The below group of agents performs the required load testing 

based on method [2]. 

 Recorder Agent: It records the user test actions by 

capturing the client side user logs. 

 Virtual Test Replay Agent (VRA): The virtual VRA 

replays the recorded actions, based on number of times of 

users specified by MA for creation of virtualized 

simulation. 

Compatibility Testing 

This group of agents collaborates to perform compatibility 

testing of web applications regarding to both browsers and 

operating systems. 

 Observer-Agent: It gets the testing input parameters 

from corresponding MAs and passes to Computability 

Run Agent. 

 



 Sci.Int.(Lahore),27(3),2209-2215,2015 ISSN 1013-5316; CODEN: SINTE 8 2211 

May-June 

                                 
                                                                         Figure 1: MSTAS Framework 

 
 Compatibility Run Agent (CRA): It makes use of 

open source tools like Cross Browser and provide 

execution mode for running applications in different 

browsers and operating systems. 

Performance Testing 

Here, the Page Timer Agent (PTA) is responsible for 

calculating the load time of web page. It makes use of 

different plug-ins available through browsers like Firefox. 

Security Testing 

The basic theme of security testing is to uncover all the risky 

areas of the web. The below agents collaborate to perform 

security testing of agents. 

 Risk Finder Agent (RFA): The RFA finds all risky 

areas of web, which need to be tested against security 

measures, embedded in its KB. 

 Authenticator Agent (AA): It makes sure about 

authority and authenticity of users, accessing the web 

based on user roles provided by MAs. 

 Injector Agent (IA): It injects different SQL injections 

to prevail unsecure areas of web. 

 Cross Site Script Checker Agent (XSCA): It performs 

cross site scripting testing by adding XSS. 

Smoke Testing 

To uncover any high level change or major show stopper 

defects, smoke testing is performed by Smoke Test Run 

Agent. It makes use of broken link checker open source tool 

by integrating to its API. 

3.3 Resource Scalability Provider Module 
As different users can demand same or different types of test 

services, hence cloud providers provide resources pool, so 

that all users are facilitated over the cloud in such a way that 

SLA violations are avoided and resources are used in 

efficient way. In RSP Module, three agents are defined. 

Whenever any MA is created, to monitor any test request, it 

passes parameters to Resource Estimator Agent (REA), for 

each request the REA sets flags by analyzing that which 

resources are required with what capacity. 

For example Load Test is based on Virtual users input by 

user. REA estimates the resources like for Load Test number 

of 50 V-users. 

         R1_CPU = 1RU (Required Resource Units) 

         R1_RAM = 4 RU 

Now the estimated resources info is passed to either Resource 

Allocator Agent (RAA) or Resource Deallocator Agent 

(RDA). RAA and RDA communicates with hypervisors of 

data centers to either allocate or deallocate the estimated 

resources.MA keeps record of resources occupied by each 

test request. 

3.4 Test Result Provider Module 
Test Execution Module‟s output serves as input to Result 

Provider Module. The module consists of two agents: Output 

Analyzer Agent (OAA) and Result Provider Agent (RPA). 

OAA extracts the inputs from executor module; it analyzes 

those based on inputs by executor and forwards to RPA, 

which adjusts the output in formatted results based on 



2212 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2209-2215,2015 

May-June 

selected test type like load testing graphs or if detailed reports 

required for functional issues. 

Once results are extracted, CA passes those to UIA and these 

are displayed to end user. Once test is done, the CA notifies 

RRAA and this agent in turn destroys the corresponding MA, 

and before destruction the MA activates the RSP Module and 

RDA is notified to release the resources held by above agent. 

4. IMPLEMENTATION 
The MSTAS is being implemented in JADE, as it is an open 

source framework that implements FIPA specifications in 

Java. As JADE provides library of classes in the form of 

packages, which are being imported during the development. 

Agents creation, communication and tasks based actions are 

being implemented. Communication messages are exchanged 

among agents by using FIPA Agent Communication 

Language, ACL. In MSTAS, SL is being used as content 

language, as it makes use of 1st and 2nd order logic along 

with Conjunction, Disjunction operators. 

Implementation details regarding some areas of framework 

have been specified as below: 

4.1 User Interaction with MSTAS 

The system user is provided testing types options for 

interaction with system, as per shown in Figure 2 

 
                    Figure 2: Test Type Selection UI 

 
4.2 Ontology and Content Language for Agents 

Communication 

In order to communicate, agents must agreed on some 

common language usage e.g. in order to perform load or any 

different type of testing, related terms must be specified and 

updated in that testing domain. For content based 

communication SL is being enabled in JADE by JSA which 

is JADE base Semantics Add On [29]. 

The below piece of code, taken from MSTAS Framework 

shows that how an agent sends messages to another one. The 

UI Agent sends information to Coordinator Agent (CA), 

updating about number of virtual users required in load 

testing. 

    { 

ACL Message msg = new ACL Message(ACL 

Message.Inform); 

msg.addReceiver(new AID (“Coordinator-Agent”, 

AID.ISLOCALNAME); 

msg.setLanguage(“ FIPA  SL”); 

msg.setOntology(“Load-Testing”); 

msg.setContent(“ 50 Virtual Users are required”); 

send (msg); 

} 

4.3 Prompt for detailed test inputs 

Based on selected test type, the RRAA infers for more 

detailed inputs based on its knowledge base KB. The 

following pseudo code shows that how system user is 

prompted for detailed inputs based on selected test type. 

 

public prompt-detailed-input(  ) 

  {   

       if test-type is Load then 

      input number of virtual-users && response-time 

      else if test-type is Compatibility then 

      input browsers-name & operating-system-name  

      else if test-type is Security then 

      input sample authorized-user-roles 

      } 

4.4 Cost determination and Negotiation 

CQA determines cost based on inputs provided by REA as 

number of estimated resources. For example if CQA has to 

determine cost for Load Testing. 

Let a web page has to be tested for Load Testing , then how 

much resources may be required, let D be the database, and S 

be the set of rules for the knowledge base and A be the 

selected action, then by using 1st order logic, predicates are 

defined: 

                Load-Testing-> LT 

   No-of-Vusers ->NU 

   Client Static Page ->CSP 

   Client Active Page -> CAP 

    Serve Static Page ->SSP 

                 Server Active Page -> SAP 

    Server Dynamic Page ->SDP  

If there is load need of 50 virtual users to be applied on a 

client static web page then it may require resources units as 

shown below transformation function of input parameters to 

resources. 

i. LT   50 U    CSP  25 CPU units  25 CU 

 10 Network Bandwidth units   10 NB 

 5 Memory Storage Units   5 SC 

Based on above set of rules for the above knowledge base, 

now REA can estimate resources units for load testing of 100 

users accessing the client server page. 

ii. LT   100 U    CSP  50 CPU units  50 CU 

 20 Network Bandwidth units   20 NB 

 10 Memory Storage Units   10 SC 

iii. Like above many more rules are available in KB of 

REA 

              LT   50 U   SSP  30 CPU units  30 CU 

 20 Network Bandwidth units   12 NB 



 Sci.Int.(Lahore),27(3),2209-2215,2015 ISSN 1013-5316; CODEN: SINTE 8 2213 

May-June 

 10 Memory Storage Units   7 SC 

Now CQA determines the cost for the testing service to 

system user. Based on inputs for estimated resources by 

REA, the CQA utilizes these inputs and transform these to 

service charges. 

E.g. if user wants to have Load Testing of 50 virtual users on 

client static page and same for static server page, then CQA 

determines total cost as shown below: 

       Let: P(x):25 CU    10 NB        200 AU  

              Q(x):30 CU    12 NB        250 AU  

Here each rule must be checked where it validates, then 

prescribes an action with predicate, these rules with next 

function (conversion of resources units to amount) generates 

required behavior of the agent. 

Hence P(x)   ( )  450 AU 

If prescribed amount is not agreed by user then negotiation 

takes place by following formalism.  The CQA has cost 

reduction parameter stored in its DB say X AU, it applies it 

on amount calculation rules. 

As per function named  new 

    New = pres-amount – reduction-param neg-amount 

 (negotiated amount is calculated by subtracting the 

reduction parameter from prescribed amount) 

4.5 User Requests Repository 

 Data Structure for requests 

RRAA keeps internal data structure to have 

repository of all user requests. The requests are 

organized in First in First out (FIFO) data structure. 

Though as cloud based pool of resources is available 

and thus there is no much time required to serve any 

request but still all requests are served in FIFO 

structure. 

 Request Control Block 

Each user request is split and monitored by MAS, as 

MA keeps information related to each request id, 

type, number of occupied resources. Like in 

operating system, all information related to any 

process is stored in Process Control Block.  Hence 

MA keeps info of each test request in Request 

Control Block. 

 MAs Destruction 

In order to destroy MA, the RRAA invokes the 

takeDown() method [29]. 

4.6   Integration with Cloud Platform 

As it is being implemented in JADE and Java based, so it is 

integrated with all those platforms that support Java Runtime 

Environments JRE and provide such APIs. 

 

5. EVALUATION 
The framework is evaluated based on below specified 

parameters: 

 

 

5.1 Avoiding SLA Violation 

Based on testing service needs, the resources are estimated by 

agents and these agents interact with hypervisors of cloud 

providers, hence whenever any request is received, the 

resources are allocated by host machine. If any host having 4 

Virtual machines (VMs), then if request arrives by agent .If 

the first three VMs are already allocated then the 4th VM is 

allocated. If all the VMs of a host are allocated, then request 

is passed to next host. VM migration detailed algorithms 

based on resources need, are specified in [16]. As, resources 

are allocated based on shared pool, hence cloud based 

resources are used efficiently without any deficiency. So, 

SLA violation is avoided in terms of availability, 

performance (maximum responses), and location independent 

access. 

Let say the number of resources required in terms of VMs 

depend on the user requests, it can be simply validated by the 

regression method. Let X is the number of test requests 

arrived simultaneously and Y represents the allocated 

resources (e.g. CPU in MIPS) scaled automatically based on 

MSTAS.  
Table 1: Allocated CPUs for user request 

Equation of regression line becomes, 

        Y= a + bX 

        Y = 178.947 + 7.895 X 

We are interested in finding the correlation coefficient. 

 

 
Hence, the correlation coefficient value is almost near about 

to 1, which shows that as per need the resources are allocated 

dynamically and SLA violation is avoided. 

5.2 Replacement of testers’ expertise 

As intelligent agents collaborate throughout the framework, 

even by taking inputs from users to process that input 

requests, testing and allocating resources on cloud, hence 

there is lesser human interaction required and testing 

expertise are not required. 

5.3 Lower costs (Economical approach)  

Currently, all the automated testing approaches are highly 

costly and licensed based. Suppose any automated testing 

tool serving any specific testing type costs   , also human 

effort in form of SQA Engineers required too which may also 

cost   too. Hence, overall it costs 2 . So, for more services 

the cost becomes number of times the services are required. 

But for MSTAS, as user only needs to pay on usage basis, so 

cost becomes even 
 

 
 Say licensed based test approach costs   

and multiple testing types required then it costs  ∑    
    

While MSTAS based testing costs  
 

 
  or 

 

 
, as it allows user 

to get services, based on pay as you use model.  

        ∑
 

   
 
        (Where r is any real number) 

Then from above equations,   

       P(x):     ∑    
     <  ∑

 

   

 
          

X  (No. of user req) 30 50 80 

Y  (Allocated CPU MIPS) 400 600 800 



2214 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(3),2209-2215,2015 

May-June 

The above equation can be proved by mathematical 

induction.  

Basis Step: P(x) holds for n=1. 

Induction Step:  If P(x) holds for k then it must hold for k+1. 

    ∑  k + (k+1) < ∑ k + (k+1) / r 
5.4 Flexibility 

One of the leading aspects of this framework is that it 

provides flexibility, both in terms of testing types and 

integration with cloud platform. 

 Flexibility w.r.t. testing types 

As framework is Java based, hence using Adapters design 

pattern allows support of introducing many more different 

test types by using polymorphism in agent classes. 

 
Figure 3: Flexibility in Test Types 

 Flexibility w.r.t. integration with cloud platform 

As already specified in implementation section that it is 

implemented in JADE, hence, the MSTAS can be integrated 

with all those platforms that supports JRE and provides APIs 

for integration. Like, Google Apps Engine, Amazon‟s Web 

Services, Open Stack and all such platforms.  

 
6. CONCLUSION 
The proposed framework MSTAS provides software testing 

as service by utilizing shared pool of resources, over the 

cloud. It makes use of multi-agents which collaborate 

intelligently on behalf of testers and interact with cloud 

providers‟ platforms for allocation of resources, required 

dynamically based on testing requests. Pay as you use model 

of testing service, makes it most useful for small and medium 

businesses, where instead of purchasing licensed based 

testing tool, users can simply pay as they use. 

Though MSTAS provides an integrated framework for testing 

different types, but in future it can be further extended for 

incorporating features like test plan development too. 

Currently, it is being implemented in JADE, so it is also 

under consideration to make framework compatible to any 

agent development framework. 

REFERENCES 
[1] Anjaneulu Pasala and Manuel R., “An Approach to 

Generate Test Input Data from UCAD Model”, in 

SetLabs Briefing, Vol. 9 No. 4, 2011 

[2] Baowen Xu and Lei Xu, “Applying Agent into Web  

Testing and Evolution” in National Natural Science 

Foundation of China (NSFC), pp794-798, 2004 

[3] D.Jeya Mala and V. Mohan, “Intelligent Tester Test 

Sequence Optimization Framework using Multi-

Agents”, in Journal of Computers. Vol 3, No. 6. 2008 

 [4] Junyi Li, Lulu Sun and Shenglan Liu, “Web Applications 

Testing Framework based on Multi-Agent” in 

International Journal of Advancements in Computing 

Technology (IJACT), Vol. 3,No. 10, 2011 

 [5] Khalid A.Muhammadi., “Multi-Agent based Regression 

Testing Suite” in Athabasca University Thesis, April 

2009. 

 [6] M.A.B Junior, F.B. de Lima Netoi and J.C.S. Fort,   

“Improving Black Box Testing By using Neuro-Fuzzy  

Classifiers And Multi-Agent Systems”, in Proceedings 

of 10th International Conference on  

Hybrid Intelligent  System 2010  

 [7] Nicholas R. Jennings and M. Wooldridge, “Agent-

Oriented Software Engineering”, in 13
th

  International 

Workshop on Agent Oriented Conference, June 2012. 

 [8] Qingning Huo and Hong Zhu, “A Multi-Agent Software 

Environment for Testing Web based Applications”, in 

Proceedings of the 27th Annual International 

Conference on Computer Software  and Applications, 

pp 210-215, 2003 

 [9] Samad Paydar and Mohsen Kahani, “An Agent-Based 

Framework for Automated Testing of Web-Based 

Systems”, in Journal of Software Engineering and 

Applications, pp 86-94, February 2011 

 [10] Siwen Yu and Jun Ai, “Software test Data Generation 

based on Multi-Agent” in International Journal of 

Software Engineering and its  Applications, Vol. 4 No. 

1, January 2010. 

 [11] Athanasios Tao Kaygianis, “Network Security  Testing 

using Mobile Agents”, in conference of Practical 

Applications of  Intelligent Agents and  Multi-Agents 

Technology, March 1998. 

 [12] Xiaoying Bai, Guilan Dai,D. Xu and W.T Tsai, “A 

Multi-Agent Based Framework for Collaborative 

Testing on Web Services”, in Proceedings of the Fourth 

IEEE Workshop on Software Technologies, 2006 

[13] Yu Qi, David Kung and Eric Wong, “An Agent based 

Testing Approach for Web Applications”, In 

Proceedings of the 29
th
 Annual international Computer 

Software and Applications Software, 2005. 

[14]Kwang. Mong Sim, “Agent based Cloud 

Computing”,IEEE Transactions on Services Computing, 

Vol. 5.pp 564-577, 2012 

[15]Aarti Singh and M. Malhotra, “Analysis for exploring 

scope of mobile agents in cloud computing”,In 

International Journal of Advancements in  

Technology,Vol.3. Issue 3., 2012. 

[16] M. A. Ayyub,Yaser and M Daragmeh “Multi-agent 

based dynamic resource provisioning in cloud 



 Sci.Int.(Lahore),27(3),2209-2215,2015 ISSN 1013-5316; CODEN: SINTE 8 2215 

May-June 

computing Systems”,  In International Journal of 

Science & Technology, 2012. 

[17] D Kumar and Ashwin R, “Multi-agent based Cloud 

Services”,International Conference on EGovernance & 

Cloud Computing Services, 2012 

 [18] Radha Guha and David Al-Dabass, “Impact of web  

2 & Cloud Computing platform on software engineering” In  

IEEE International Symposium onElectronic System 

Design,2010 

[19] J Octavio and K. Mong Sim, “Agent based cloud service 

composition”, in Intenational Journal of Artificial 

Intelligence ,Vol 22 No.2, 2012 

[20] Mladen. A. Vouk, “Cloud Computing- Issues, Research 

and Implementations”,in Proceedings of  the 30
th  

International Conference on ITI, 2008 

 [21] Neha Mehrotra, “Cloud  Testing Vs Testing a Cloud”,in 

10
th

 International Software Testing Conference, 2010 

 [22] S. Vilkomir, “Cloud Testing: A state of the art review”, 

In International journal of information & security, Vol 

28,No.2, pp 213-222, 2012 

 [23] A. K. Srivastava,V. Srivastava and Richa Bhargava, 

Towards developing an intelligent agent for cloud 

computing”,in International Conference on   Cloud,Big 

Data and Trust Nov, 2013 

 [24]A. Ali, A. Abdullah  and Okba Kazar,  “Implementation 

of cloud computing approach based On mobile 

agents”,In International Journal of Computer & IT, Vol. 

2,Issue No. 6, 2013 

 [25] Bezad Bordbar, Krzysztof S. and R. Anane“A DSL 

based approach to software development & deployment 

on cloud” In 24
th

 IEEE International Conference on 

Advanced Information Networking  & Application, 2010 

 [26] M Kim, Hanku Lee, H. Yoon, Jee-In Kim and H Seok 

Kim, “An Intelligent Multi-agent model Based on cloud 

Computing for resource   virtualization”, In 

International Conference on Information and 

Electronics Engineering, Vol . 6,    2011 

 [27] Lei Yin, Jin Zeng and Bo Li, “CTPV: A cloud testing 

platform based on virtualization” In IEEE 7
th

 

International Symposium on SOSE, pp 425-428, 2013 

[28] H Ling Shan, “Test as a service: A framework for web 

Security Taas Service in cloud environment”,In IEEE 

8
th

 International Symposium on SOSE, pp 212-217, 

2014 

 [29] Fabio B, G.C and D.Greenwood, “Developing multi- 

agent systems with JADE”. 

 


