CERTAIN CLASS OF ANALYTIC AND UNIVALENT FUNCTIONS WITH SOME BASIC GEOMETRIC PROPERTIES

Kassim Abdulhameed Jassim ${ }^{1}$ \& Ali Abd Ali Mohammed ${ }^{2}$

${ }^{1,2}$ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq. kasimmathphd@gmail.com ${ }^{1}$ \& iraqiraq.ii50@gmail.com ${ }^{2}$

ABSTRACT:The subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ of \boldsymbol{N}, the class of analytic and univalent functions defined on unit disk of the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$,have been considered .Sharp results concerning Coefficients, Distortion and Growth theorem, Radii of starlikeness and Convexity, Hadamard product property, Convex set, Arithmetic mean , Neighborhood and convolution operator of function belonging to the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.

KEYWORDS. Univalent function, Distortion and Growth theorem, Radii of starlikeness and convexity, Hadamard product, Convex set and Arithmetic mean and Neighborhood property.

1. INTRODUCTION

Let N denotes a class of functions f of the form

$$
\begin{equation*}
f(z)=\mathrm{z}+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are univalent and analytic in open unit disk $\mathrm{U}=\{\mathrm{z} \in \mathbb{C}: \mathrm{lzl}<1\}$. Assume S denotes a subclass of N consisting of functions f of the form :

$$
\begin{equation*}
f(z)=\mathrm{z}-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0 \tag{1.2}
\end{equation*}
$$

If a function f is given by (1.2) and g defined by

$$
\begin{equation*}
g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \quad b_{n} \geq 0 \tag{1.3}
\end{equation*}
$$

hence convolution (or hadamard product) of
f and g is defined by
$(f * g)(z)=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \in U$.
We must recall that a function f is called univalent if $z_{1} \neq z_{2}$, then $f\left(z_{1}\right) \neq f\left(z_{2}\right)$, and f is said to be starlike and convex if $\operatorname{Re}\left\{\frac{z f \prime(z)}{f(z)}\right\}>\rho$ and
$\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\rho$, where $0 \leq \rho<1,[4,5]$.
Our aim of this pape is to study the subclass $S(A, B, \alpha, \beta, \gamma)$ consisting functions f of the form (1.2) which is satisfying

$$
\begin{equation*}
\left|\frac{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{(B-A) \gamma\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-\alpha)\right]+B\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]}\right|<\beta, z \in U, \tag{1.5}
\end{equation*}
$$

where $-1 \leq A<B \leq 1,0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$.
Many scholars have discussed functions which are univalent and analytic in the unit disk and getting many geometric properties like, 'Aouf' and 'Mostafa'[2], 'Darus' [3] , 'Kharnar and Meena' [6,7] and'Ruscheweyh' [10] .

2. COEFFICIENT INEQUALITY

Now,we obtain a necessary and sufficient conditions for function f to be in the class $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ as follows.
Theorem(2.1). Let the function f be defined by (1.2) .Then $f \in S(A, B, \alpha, \beta, \gamma)$ if and only if
$\sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)] a_{n} \leq$ $\beta(B-A) \gamma(1-\alpha)$
where- $1 \leq A<B \leq 1,0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$. (2.1)

The result is sharp for the function
$f(z)=Z-\frac{\beta(B-A) \gamma(1-\alpha)}{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]} z^{n}, n \geq 2$
where $-1 \leq A<B \leq 1,0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$. (2.2)
Proof.Assume that $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ and $|z|=1$. So , we want to prove
$\left|z f^{\prime \prime}(z)\right|-\beta \mid(B-A) \gamma\left[z f^{\prime \prime}(z)+(1-\alpha) f^{\prime}(z)\right]$
$-B z f^{\prime \prime}(z) \mid \geq 0$, where
$-1 \leq A<B \leq 1,0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$.
Therefore,
$\left|\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}\right|-\beta \mid-(B-A) \gamma \sum_{n=2}^{\infty} n$
$(n-1) a_{n} z^{n-1}+(B-A) \gamma(1-\alpha) z-(B-A) \gamma$
$(1-\alpha) \sum_{n=2}^{\infty} n a_{n} z^{n-1}-B \sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1} \mid$
$=\left|\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}\right|-\beta \mid(B-A) \gamma(1-\alpha) z$
$-\sum_{n=2}^{\infty} n[(B-A) \gamma(n-1)+(B-A) \gamma(1-\alpha)$
$+B(n-1)] a_{n} z^{n-1} \mid \leq$
$\sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)] a_{n}$
$-\beta(B-A) \gamma(1-\alpha) \leq 0$, by hypothesis. Therefore by principle maximum modulus, we get the result.
Conversely, suppose that the inequality (1.5) holds.
Since $\operatorname{Re}(\mathrm{z}) \leq|z|$ and letting $\mathrm{z} \rightarrow 1-$, then
$\sum_{n=2}^{\infty} n(n-1) a_{n}<\beta\left((B-A) \gamma(1-\alpha)-\sum_{n=2}^{\infty} n[(B-\right.$
A) $\gamma(n-1)+(B-A) \gamma(1-\alpha)$
$+B(n-1)]$
So, we get the condition (2.1).
Corollary (2.1). Let the function f be defined by (1.2) and $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$. Then

$$
a_{n} \leq \frac{\beta(B-A) \gamma(1-\alpha)}{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}
$$

where
$-1 \leq A<B \leq 1,0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$..
The following property has studied by 'Silverman' [11].

3. DISTORTION AND GROWTH THEOREM

Now, we present the distortion and growth theorems for functions f in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.
Theorem (3.1).Let $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$. Then
$|\mathrm{z}|-\frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}|z|^{2} \leq|f(z)|$ and
$|f(z)| \leq|z|+\frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}|z|^{2}$
The result is sharp and attained

$$
\begin{equation*}
f(z)=z+\frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]} z^{2} \tag{3.2}
\end{equation*}
$$

Proof. Assume $f(z)=\mathrm{z}+\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0$. By
taking the absolute value for f, we get
$|f(z)| \leq|z|+\sum_{n=2}^{\infty} a_{n}\left|z^{n}\right|$.
$\leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n}$.By theorem (2.1), we get

$$
|f(\mathrm{z})| \leq|z|+\frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}|z|^{2}
$$

Also ,

$$
\begin{aligned}
|f(z)| & \geq|z|-\sum_{n=2}^{\infty} a_{n}|z|^{2} \geq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq|z|-\frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}|z|^{2}
\end{aligned}
$$

Hence, we get the result.
Theorem (3.2). Let $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$. Then
$1-\frac{\beta(B-A) \gamma(1-\alpha)}{[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}|z| \leq\left|f^{\prime}(z)\right|$ and
$\left|f^{\prime}(z)\right| \leq 1+\frac{\beta(B-A) \gamma(1-\alpha)}{[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}|z|$

4. RADII OF STARLIKENESS AND CONVEXITY

In the following theorems, we obtain the radii of starlikeness and convexlity for the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.
Theorem(4.1). Let $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.Then f is univalent starlike function of order $\lambda(0 \leq \lambda<1)$ in the disk $|z|<r_{1}$ where
$r_{1}=\inf \left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)](1-\lambda)}{\beta(B-A) \gamma(1-\alpha)(n-\lambda)}\right)^{\frac{1}{n-1}}, \quad n \geq 2$ (4.1)

Proof. It is sufficient to show that
$\left|\frac{z f \prime(z)}{f(z)}-1\right| \leq 1-\lambda$,for $|z|<r_{1}$. Therefore,
$\left|\frac{z^{\prime} f(z)}{f(z)}-1\right|=\left|\frac{z f \prime(z)-f(z)}{f(z)}\right|=\left|\frac{\sum_{n=2}^{\infty} n a_{n} z^{n}-\sum_{n=2}^{\infty} a_{n} z^{n}}{z+\sum_{n=2}^{\infty} a_{n} z^{n}}\right|$
$=\frac{\left|\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}\right|}{\left|z-\sum_{n=2}^{\infty} a_{n} z^{n}\right|} \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}$
The last expression must bounded by $1-\lambda$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(n-\lambda)}{1-\lambda} a_{n}|z|^{n-1} \leq 1 \tag{4.2}
\end{equation*}
$$

The last inequality (4.2) will be true if

$$
\frac{n-\lambda}{1-\lambda}|z|^{n-1} \leq \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\beta(B-A) \gamma(1-\alpha)}
$$

Hence,

$$
|z| \leq\left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)](1-\lambda)}{\beta(B-A) \gamma(1-\alpha)(n-\lambda)}\right)^{\frac{1}{n-1}}
$$

$n \geq 2$.
Putting $|z|<r_{1}$, we get the result.
Theorem (4.2). Let $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$. Then f is univalent convex function of order $\lambda(0 \leq \lambda<1)$, where $r_{2}=\inf \left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)](1-\lambda)}{n \beta(B-A) \gamma(1-\alpha)(n-\lambda)}\right)^{\frac{1}{n-1}}$

Proof. It is enough to show that
$\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\lambda$,for $|z|<r_{1}$. Therefore,
$\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\left|\frac{\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n} z^{n-1}}\right|$
$=\frac{\left|\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}\right|}{\left|1-\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right|}$
Therefore
$\sigma \geq[\gamma \beta(B-A)(1-\alpha)][(n-1)(1+\beta B)] \gamma /$
$([(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)] *$
$[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)])$
$-[\gamma \beta(B-A)(1-\alpha) \beta(B-A)(n-\alpha) \gamma]$
$\leq \frac{\sum_{n=2}^{\infty} n(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}}$
The last expression must bounded by $1-\lambda$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n(n-\lambda)}{1-\lambda} a_{n}|z|^{n-1} \leq 1 \tag{4.4}
\end{equation*}
$$

Hence by theorem (2.1), will be true if

$$
\frac{n(n-\lambda)}{1-\lambda}|Z|^{n-1} \leq \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\beta(B-A) \gamma(1-\alpha)}
$$

which implies that

$$
|z| \leq\left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)](1-\lambda)}{n \beta(B-A) \gamma(1-\alpha)(n-\lambda)}\right)^{\frac{1}{n-1}}, n \geq 2
$$

Putting $|z|<r_{2}$, we get the result.

5. CONVOLUTION PROPERTY

In the following theorem, we obtain the convolution results for function f belonging to the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.
Theorem (5.1). Let $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}$ are in the subclass $(A, B, \alpha, \beta, \gamma)$. Then the hadamard product $f * g$ is in the class $\boldsymbol{S}(A, B, \alpha, \beta, \sigma)$, where
$\sigma \geq[\gamma \beta(B-A)(1-\alpha)][(n-1)(1+\beta B)] \gamma / \quad([(n-$

1) $(1+\beta B)+\beta(B-A) \gamma(n-\alpha)] *$
$[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)])$
$-[\gamma \beta(B-A)(1-\alpha) \beta(B-A)(n-\alpha) \gamma]$
Proof. We must find a smallest σ such that
$\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \sigma(n-\alpha)]}{\sigma \beta(B-A)(1-\alpha)} a_{n} b_{n} \leq 1$
Let $f, g \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, therefore

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)} a_{n} \leq 1 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)} b_{n} \leq 1 \tag{5.4}
\end{equation*}
$$

By using Cauchy - Schwarz inequality, we get
$\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)} \sqrt{a_{n} b_{n}} \leq 1$. (5.5)
To prove our theorem, we have to show that

$$
\begin{gather*}
\frac{n[(n-1)(1+\beta B)+\beta(B-A) \sigma(n-\alpha)]}{\sigma \beta(B-A)(1-\alpha)} a_{n} b_{n} \leq \\
\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)} \sqrt{a_{n} b_{n}} . \tag{5.6}
\end{gather*}
$$

That is
$\sqrt{a_{n} b_{n}} \leq \frac{[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)] \sigma}{[(n-1)(1+\beta B)+\beta(B-A) \sigma(n-\alpha)] \gamma}$
From (5.5), we have

$$
\begin{equation*}
\sqrt{a_{n} b_{n}} \leq \frac{\gamma \beta(B-A)(1-\alpha)}{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]} \tag{5.8}
\end{equation*}
$$

It is sufficient to show

$$
\begin{align*}
\frac{\gamma \beta(B-A)(1-\alpha)}{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]} \leq \\
\frac{[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)] \sigma}{[(n-1)(1+\beta B)+\beta(B-A) \sigma(n-\alpha)] \gamma} \tag{5.9}
\end{align*}
$$

Theorem(5.2).Let the function $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}$ be in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$. Then the function $h(z)=z-\sum_{n=2}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) z^{n}$
is in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \tau)$, where
$\tau \geq 2(\gamma \beta(B-A)(1-\alpha))^{2}(n[(n-1)(1+\beta B)) /$
$\left(n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]^{2}\right.$

$$
\begin{align*}
& (\beta(B-A)(1-\alpha))-\beta(B-A)(n-\alpha)) \\
& \left(2(\gamma \beta(B-A)(1-\alpha))^{2}\right) \tag{5.11}
\end{align*}
$$

Proof. By theorem (2.1), and $f, g \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, we have
$\sum_{n=2}^{\infty}\left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)}\right)^{2} a_{n}^{2} \leq$
$\left(\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)} a_{n}\right)^{2} \leq 1$
and
$\sum_{n=2}^{\infty}\left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)}\right)^{2} b_{n}^{2} \leq$
$\left(\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)} b_{n}\right)^{2} \leq 1$
It follows from (5.12) and (5.13) that
$\sum_{n=2}^{\infty} \frac{1}{2}\left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)}\right)^{2}\left(a_{n}^{2}+b_{n}^{2}\right) \leq 1$

But $h(z) \in \boldsymbol{S}(A, B, \alpha, \beta, \tau)$ if and only if
$\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \tau(n-\alpha)]}{\tau \beta(B-A)(1-\alpha)}\left(a_{n}^{2}+b_{n}^{2}\right) \leq 1$

The last inequality satisfied if
$\frac{n[(n-1)(1+\beta B)+\beta(B-A) \tau(n-\alpha)]}{\tau \beta(B-A)(1-\alpha)} \leq$

$$
\begin{equation*}
\frac{1}{2}\left(\frac{n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\gamma \beta(B-A)(1-\alpha)}\right)^{2} \tag{5.16}
\end{equation*}
$$

This implies the result.

6. Convex set

Theorem (6.1). The subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ is convex set.
Proof. Let functions f and g are in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, then for every $0 \leq \mathrm{t} \leq 1$, we must show that

$$
(1-t) f(z)+\operatorname{tg}(z) \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)
$$

We have

$$
(1-t) f(z)+t g(z)=z-\sum_{n=2}^{\infty}\left[(1-t) a_{n}+t b_{n}\right] z^{n} .
$$

Therefore by theorem (2.1) we get
$\sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)][(1-$
t) $\left.a_{n}+t b_{n}\right]$
$=(1-t) \sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+\beta(B-$
A) $\gamma(n-\alpha)] a_{n}+t \sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+$
$\beta(B-A) \gamma(n-\alpha)] b_{n}$
$\leq(1-t) \gamma \beta(B-A)(1-\alpha)+t \gamma \beta(B-A)(1-\alpha)$
$=\gamma \beta(B-A)(1-\alpha)$

7. ARITHMETIC MEAN

Theorem (7.1).Let $f_{1}(\mathrm{z}), f_{2}(\mathrm{z}) \ldots f_{\mathrm{k}}(\mathrm{z})$ defined by

$$
\begin{equation*}
f_{i}(z)=z-\sum_{n=2}^{\infty} a_{n . i} z^{n} \tag{7.1}
\end{equation*}
$$

where $\left(a_{n, i} \geq 0, \mathrm{i}=1, \ldots, k\right)$ be in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, then arithmetic mean of $f_{i}(z)$ $(\mathrm{i}=1, \ldots, k)$ is defined by
$h(z)=\frac{1}{k} \sum_{i=1}^{k} f_{i}(z)$
is also in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.
Proof. By using equations (7.1) and (7.2) , we can write
$h(z)=\frac{1}{k} \sum_{i=1}^{k}\left(z-\sum_{n=2}^{\infty} a_{n . i} z^{n}\right)=z-\sum_{n=2}^{\infty}\left(\frac{1}{k} \sum_{i=1}^{k} a_{n . i}\right) z^{n}$

Since $f_{i} \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ for every $(i=1, \ldots, k)$, then by using theorem(2.1) we get
$\sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]$ $\left(\frac{1}{k} \sum_{i=1}^{k} a_{n . i}\right)$
$=\frac{1}{k} \sum_{i=1}^{k}\left(\sum_{n=2}^{\infty} n[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\right.$
$\left.\alpha)] a_{n . i}\right)$
$\leq \frac{1}{k} \sum_{i=1}^{k} \gamma \beta(B-A)(1-\alpha)=\gamma \beta(B-A)(1-\alpha)$.
The following Neighborhood property has studied by Owa [9].

8. Neighborhood property

Now, we define the (n, δ)-neighborhood of a function $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ by
$N_{\mathrm{n}, \delta}(f)=\{g \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma): g(z)=z+$
$\sum_{n=2}^{\infty} b_{n} z^{n}$ and $\left.\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta, 0 \leq \delta<1\right\}(8.1)$
For the identity function $e(\mathrm{z})=\mathrm{z}$, we get
$N_{n, \delta}(e)=\left\{g \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma): g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}\right.$
and $\left.\sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \delta\right\}$.
Definition(8.1). A function $f \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ is said to be in the subclass $S^{\eta}(A, B, \alpha, \beta, \gamma)$ if there exists a function $g \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\eta,(z \in U, 0 \leq \eta<1) . \tag{8.2}
\end{equation*}
$$

Theorem(8.1). If $g \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ and

$$
\begin{equation*}
\eta=1-\frac{2 \delta[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]-\beta(B-A) \gamma(1-\alpha)} . \tag{8.3}
\end{equation*}
$$

Then $N_{n, \delta}(g) \subset S^{\eta}(A, B, \alpha, \beta, \gamma)$.
Proof:Let $f \in N_{n, \delta}(g)$. We want to find from (8.1) that

$$
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta
$$

Which implies the following coefficient inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \delta, \quad(n \in N) \tag{8.4}
\end{equation*}
$$

Since $\in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, we have from theorem(2.1)

$$
\begin{equation*}
\sum_{n=2}^{\infty} b_{n} \leq \frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]} \tag{8.5}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & \leq \frac{\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \leq \frac{\delta}{1-\frac{\beta(B-A) \gamma(1-\alpha)}{2[(1+B)+\beta(B-A) \gamma(2-\alpha)]}} \\
& \leq \frac{2 \delta[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]}{2[(1+\beta B)+\beta(B-A) \gamma(2-\alpha)]-\beta(B-A) \gamma(1-\alpha)} \\
& =1-\eta
\end{aligned}
$$

9. Convolution Operator

Definition(9.1)[8].The Gaussian hypergeometric function which is defined by
${ }_{2} F_{1}(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!},|z|<1$, where $c>b>0, c>a+b$ and
$(x)_{n}= \begin{cases}x(x-1)(x+2) \ldots \ldots(x+n-1) & \text { for } n=1,2,3, \ldots \\ 1\end{cases}$
Definition(9.2)[1]. For every $f \in C$, we define the convolution operator $W_{a, b, c}(f)(z)$ as below :

$$
\begin{align*}
& W_{a, b, c}(f)(z)= \\
& { }_{2} F_{1}(a, b, c ; z) * f(z)=z-\sum_{n=2}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} a_{n} z^{n} \tag{9.1}
\end{align*}
$$

Theorem (9.1). Let the function f is defined by (1.2) and in the subclass $\boldsymbol{S}(A, B, \alpha, \beta, \gamma)$.Then convolution operator $W_{a, b, c}(f)(z) \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$ for $|z| \leq r(\gamma, \tau)$, where
$r(\gamma, \tau)=\inf \left[\frac{\tau[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\left.\gamma n[(n-1)(1+\beta B)+\beta(B-A) \tau(n-\alpha)] \frac{(a) n(b) n}{(c) n n}\right]}\right]^{\frac{1}{n-1}}$
The result is sharp for the function

$$
\begin{equation*}
f_{n}(z)=z-\frac{\beta(B-A) \gamma(1-\alpha)}{n[(n-1)(1+\beta B)+\beta[(B-A) \gamma(n-\alpha)]} z^{n} \tag{9.2}
\end{equation*}
$$

$$
n=2,3, \ldots
$$

Proof. Since $f(z) \in \boldsymbol{S}(A, B, \alpha, \beta, \gamma)$, so we have
$\sum_{n=2}^{\infty} \frac{n[(n-1)(1+B \beta)+\beta[(B-A) \gamma(n-\alpha)]}{\beta(B-A) \gamma(1-\alpha)} a_{n} \leq 1$. It is
sufficient to show that
$\sum_{n=2}^{\infty} \frac{n[(n-1)(1+\beta B)+\beta(B-A) \tau(n-\alpha)] \frac{(a)_{n}(b)_{n}}{(c)_{n} n!}}{\beta(B-A) \tau(1-\alpha)} a_{k} \leq 1$.
Note that (9.3) is satisfied if
$\frac{[(n-1)(1+\beta B)+\beta(B-A) \tau(n-\alpha)] \frac{(a)_{n}(b)_{n}}{(c)_{n} n!}}{\beta(B-A) \tau(1-\alpha)}|z|^{n-1} \leq$
$\frac{[(n-1)(1+\beta B)+\beta(B-A) \gamma(n-\alpha)]}{\beta(B-A) \gamma(1-\alpha)}$. Therefore, we get the result.

REFERENCES

[1] G.E. Andrews, R. Askey and R. Roy, "Special Functions", Cambridge University Press, Cambridg, U.K., (1999).
[2] M. K. Aouf and A. O. Mostafa, "Certain classes of p- valent functions defined by convolution" , General Mathematics, 20(1) , 85-98 (2012).
[3] M. Darus," some subclass of analytic function", J. Math. Comp. Sei, (Math. Ser.),16(3),121-126 (2003),
[4] P.T. Duren , "Univalent functions" , Grundelhern der Mathematishen wissenchaften, 259, Springer -verlag, New York, Berlin, Heidelberg, Tokyo, (1983)
[5] "A.W. Goodman "," Univalent Functions",Vol. I,II , Mariner , Tampa ,FL,(1983) .
[6] S. M. Khairnar and Meena More, "Properties of certain classes of analytic functions defined by Srivastava-Attiya operator", Demonstratio Mathematica, XLIII(1) ,55-79 (2010).
[7] S. M. Khairnar and Meena More, "Certain family of analytic and univalent functions with normalized conditions", Acta Mathematica Academiae Paedagogicae Nyiregyh_aziensis, 24, 333-344 (2008).
[8] Y.C. Kim and F.Ronning, "Integral transforms of certain subclasses of analytic function", J. Math. Appl., 258, 466-489 (2001).
[9] S. Owa, On the distortion the theorems , IKynngpook Math.J., 18, 53-59(1978).
[10] S. Ruscheweyh", "New criteria for univalent functions" , Proc. Amer. Math., Soc.,49, 109-115 (1975).
[11] H. Silverman , "Neighborhoods of classes of analytic function", Far. East. J. Math. Sci. 3(2), 165-169 (1995).

