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ABSTRACT:The subclass S(A,B, ,β, ) of N , the class of analytic and univalent functions defined on unit disk of the 

form: 

 ( )       ∑    
  

     ,have been considered .Sharp results concerning Coefficients, Distortion and Growth theorem, 

Radii of starlikeness and Convexity, Hadamard product property, Convex set , Arithmetic mean , Neighborhood and 

convolution  operator of function belonging to the subclass  S(A,B, ,β, ). 
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1. INTRODUCTION  

Let N denotes a class of functions   of the form  

              ( )       ∑    
  

   ,                     (1.1) 

which are univalent and analytic in open unit disk 

U={z   : lzl  +. Assume S denotes a subclass of N 

consisting of functions   of the form :  

      ( )     ∑   
 
                            (1.2) 

If a function   is given by (1.2) and   defined by  

      ( )     ∑    
  

           ,                (1.3)       

hence convolution ( or hadamard product) of 

   and   is defined by  

 (   )( )    ∑     
 
                     (1.4)  

We must recall that a function   is called univalent if 

      , then  (  )   (  ), and   is said to be starlike 

and convex if   {
   ( )

 ( )
}    and 

   {  
    ( )

  ( )
}   ,where       ,   -   

Our aim of this pape is to study the subclass 

S(A,B, ,β, ) consisting functions   of the form (1.2) 

which is satisfying  

 |

    ( )

  ( )

(   ) [
    ( )

  ( )
 (   )]  ,

    ( )

  ( )
-
|              (   ) 

where   -1≤ A < B ≤1  ,0≤    <1  , 0<    ≤1 , 0< ≤1. 

Many scholars have discussed functions which are 

univalent and analytic in the unit disk and getting many 

geometric properties like, 'Aouf' and 'Mostafa'[2], 'Darus' 

[3] ,  'Kharnar and Meena' [6,7] and'Ruscheweyh' [10] . 

2. COEFFICIENT  INEQUALITY  

Now,we obtain a necessary and sufficient conditions for 

function   to be in the class S(A,B, ,β, ) as follows. 

Theorem(2.1). Let the function   be defined by (1.2) 

.Then    S(A,B, ,β, ) if and only if   

∑  ,(   )(    )   (   ) (   )- 
        

 (   )  (   ) 

where-1≤ A < B ≤ 1, 0 ≤                                                                                 

(2.1) 

The result is sharp for the function  

  ( )    
 (   ) (   )

 ,(   )(    )  (   ) (   )- 
                                    

 where -1 ≤ A < B ≤ 1 , 0 ≤                    (2.2) 

Proof.Assume that    (         )         . So , 

we want to prove  

     ( )    (   ) ,    ( )  (   )  ( )- 

      ( )     where    

 -1≤  A < B ≤ 1 ,0 ≤                    

Therefore, 

  ∑   
   (   )   

        (   ) ∑   
    

 (   )   
    (   ) (   )  (   )   

 (   )∑   
      

     ∑   
   (   )   

     

  ∑   
   (   )   

       (   ) (   )   

  ∑   
   ,(   ) (   )  (   ) (   ) 

  (   )]    
      

 ∑   
   ,(   )(    )   (   ) (   )]    

   (   ) (   )    by hypothesis. Therefore  by 

principle maximum modulus, we get the result. 

Conversely, suppose that the inequality (1.5) holds. 

Since Re(z)      and letting z     , then 

∑   
   (   )    ((   ) (   )  ∑   

   ,(  

 ) (   )  (   ) (   ) 

  (   )] 

So, we get the condition (2.1). 

Corollary(2.1).Let the function   be defined by  (1.2) 

and    (         )  Then  

     
 (   ) (   )

 ,(   )(    )  (   ) (   )- 
 ,   

where    

-1≤ A <  B  ≤1  ,0≤    <1  , 0<    ≤1 , 0<  ≤1.  

The following property has studied by 'Silverman' [11]. 

3. DISTORTION AND GROWTH THEOREM  

Now,we present the distortion  and growth theorems for 

functions    in the subclass  (         )  

Theorem (3.1).Let      (         ). Then            

     
 (   ) (   )

 ,(    )  (   ) (   )-
       ( )   and 

  ( )      
 (   ) (   )

 ,(    )  (   ) (   )- 
            (3.1)  

The result is sharp and attained  

  ( )     
 (   ) (   )

 ,(    )  (   ) (   )- 
               (3.2) 

Proof. Assume   ( )     ∑   
 
           . By 

taking the absolute value for   , we get 

  ( )       ∑    
 
       . 

             ∑   
 
   .By theorem (2.1) , we get   
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   ( )       
 (   ) (   )

 ,(    )  (   ) (   )- 
         

Also , 

   ( )      ∑   
 
                  ∑   

 
     

                 
 (   ) (   )

 ,(    )  (   ) (   )-  
      

Hence, we get the result. 

Theorem (3.2). Let      (         )  Then 

   
 (   ) (   )

,(    )  (   ) (   )- 
        ( )  and 

   ( )     
 (   ) (   )

,(    )  (   ) (   )-  
             (3.3) 

4. RADII OF STARLIKENESS AND 

CONVEXITY 

In the following theorems , we obtain the radii of 

starlikeness and convexlity for the subclass 

 (         ). 

Theorem(4.1). Let       (         ).Then   is 

univalent starlike function of order   (      ) in the 

disk       where  

       .
 ,(   )(    )  (   ) (   )-(   ) 

 (   ) (   )(   )
/

 

   
,                                                                      

(4.1) 

Proof.  It is sufficient to show that   

 |
   ( )

 ( )
   |       for        . Therefore,  

 |
   ( )

 ( )
   |  |

   ( )  ( )

 ( )
|   |

∑     
  ∑    

  
   

 
   

  ∑    
  

   
| 

  
 ∑ (   )   

   
   

   ∑    
   

   

 
∑ (   )     

    
   

  ∑      
    

   

 

The last expression must bounded by     if  

      ∑
(   )

   

 
        

                                 (4.2) 

The last inequality (4.2) will be true if  

 
   

   
         

 ,(   )(    )  (   ) (   )-

 (   ) (   )
  

Hence , 

         .
 ,(   )(    )  (   ) (   )-(   ) 

 (   ) (   )(   )
/

 

   
   

     

Putting        , we get the result. 

Theorem (4.2). Let      (         ). Then   is 

univalent convex function of order    (     ) , 

where         (
 ,(   )(    )  (   ) (   )-(   )

  (   ) (   )(   )
)

 

                                    

                                                                      (4.3) 

Proof. It is enough to show that 

|
    ( )

  ( )
 |       for        . Therefore, 

 |
    ( )

  ( )
|   |

∑  (   ) 
         

  ∑   
         | 

   
|∑  (   ) 

         |

|  ∑   
         |

 

  
∑  (   ) 
           

  ∑   
            

The last expression must bounded by 1-  if  

                  ∑
 (   )

   

 
        

                     (4.4) 

Hence by theorem (2.1) , will be true if  

 
 (   )

   
         

 ,(   )(    )  (   ) (   )-

 (   ) (   )
 

which implies that  

     (
 ,(   )(    )  (   ) (   )-(   )

  (   ) (   )(   )
)

 

          

Putting        , we get the result. 

5 . CONVOLUTION PROPERTY  

In the following  theorem , we obtain the convolution 

results for function   belonging to the subclass 

 (         )    

Theorem (5.1). Let  ( )      ∑    
   

       

  ( )    ∑    
   

    are in the subclass (         ) 

. Then the hadamard product     is in the class 

 (         )   , where  

  ,  (   ) (   )-,(   )(    )-   (,(  

 )(    )   (   ) (   )-    

,(   )(    )   (   ) (   )-) 

 ,   (   ) (   ) (   )(   ) -         (5.1) 

Proof. We must find a smallest   such that 

  ∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )
       

       (5.2) 

 Let   ,    (         )  , therefore   

  ∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )
     

           (5.3) 

and  

  ∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )
      

           (5.4) 

 By using Cauchy – Schwarz inequality , we get 

 ∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )
√       

     (5.5)  

 To prove our theorem , we have to show that 

                
 ,(   )(    )  (   ) (   )-

  (   ) (   )
     

 ,(   )(    )  (   ) (   )-

  (   ) (   )
√                        (5.6) 

 That is                          

√     
,(   )(    )  (   ) (   )- 

,(   )(    )  (   ) (   )- 
               (5.7) 

From (5.5) , we have  

  √       
  (   ) (   )

 ,(   )(    )  (   ) (   )-
 .         (5.8) 

It is sufficient to show 

 
  (   ) (   )

 ,(   )(    )  (   ) (   )-
   

                        
,(   )(    )  (   ) (   )- 

,(   )(    )  (   ) (   )- 
        (5.9) 

Therefore 

   ,  (   ) (   )-,(   )(    )-   

(,(   )(    )   (   ) (   )-    

,(   )(    )   (   ) (   )-) 

 ,   (   ) (   ) (   )(   ) - 

Theorem(5.2).Let  the function  ( )     ∑    
   

    

and   ( )    ∑    
   

    be in the subclass 

 (         ). Then the function  

   ( )    ∑ (  
  

      
 )                               (5.10) 

is in the subclass  (         ), where  

   (  (   ) (   )) ( ,(   )(    ))    
( ,(   )(    )   (   ) (   )-  
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( (   ) (   ))-  (   )(   )) 

( (  (   ) (   ))   )                                   (5.11) 

Proof. By theorem (2.1), and        (         ) , 

we have 

 ∑ .
 ,(   )(    )  (   ) (   )-

  (   ) (   )
/
 

 
     

  

.∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )

 
     /

 

          (5.12) 

and 

 ∑ .
 ,(   )(    )  (   ) (   )-

  (   ) (   )
/
 

 
     

  

.∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )

 
     /

 

           (5.13) 

It follows from (5.12) and (5.13) that  

∑
 

 
.
 ,(   )(    )  (   ) (   )-

  (   ) (   )
/
 
(  

    
 )    

                           

                                                                               (5.14) 

But  ( )   (         ) if and only if                                  

∑
 ,(   )(    )  (   ) (   )-

  (   ) (   )
(  

    
 )    

                                   

                                                                             (5.15) 

The last inequality satisfied if 
 ,(   )(    )  (   ) (   )-

  (   ) (   )
 

                  
 

 
.
 ,(   )(    )  (   ) (   )-

  (   ) (   )
/
 

         (5.16) 

This implies the result. 

6. Convex set  

Theorem (6.1). The subclass  (         ) is convex 

set.  

Proof . Let functions   and   are in the subclass 

 (         ), then for every 0≤t≤1 , we must show 

that  

(   ) ( )    ( )    (         )  

We have  

 (   ) ( )    ( )     ∑ ,(   )      - 
  

     

Therefore by theorem (2.1) we get  

 ∑  ,(   )(    )   (   ) (   )- ,(   
   

 )      - 

  (   )∑  ,(   )(    )   (   
   

 ) (   )-     ∑   
   ,(   )(    )   

 (   ) (   )-    

 (   )  (   ) (   )      (   ) (   ) 

   (   ) (   ) 

7.  ARITHMETIC MEAN  

Theorem (7.1).Let  1(z) ,  2(z) …  k(z) defined by 

      ( )    ∑      
  

    ,                               (7.1)  

where  ( an.i ≥ 0, i=1,…,k)  be  in  the  subclass 
 (         ) , then arithmetic mean of   ( ) 
(i=1,…,k) is defined by 

 ( )   
 

 
∑   ( )

 
                                              (7.2) 

is also in the subclass  (         )  
Proof.  By using equations (7.1) and (7.2)  , we can 

write 

 ( )  
 

 
∑  (  ∑      

  
   )    ∑ (

 

 
 
   ∑     ) 

  
   

 
    

Since     (         ) for every (i=1,…,k)  , then 

by using theorem(2.1) we get  

 ∑  ,(   )(    )   (   ) (   )-  
    

(
 

 
∑     )

 
    

  
 

 
∑ (∑   

   ,(   )(    )   (   ) (   
   

 )-     ) 

  
 

 
∑   (   ) (   )    (   ) (   ) 

     

The following Neighborhood property has studied by 

Owa [9]. 

8. Neighborhood property 

Now, we define the (   )-neighborhood of a function 

f  (         ) by  

     ( )  *    (         )  ( )    

∑   
 
      and∑         

 
            + (8.1)  

For the identity function e(z)=z , we get 

    ( )  *   (         )  (z)=z+∑   
 
      

      ∑        + 
   . 

Definition(8.1). A function f  (         ) is said 

to be in the subclass   (         ) if there exists a 

function     (         ) ,such that 

      |
 ( )

 ( )
  |       , (z        ).           (8.2)                           

Theorem(8.1). If    (         ) and 

     η=  
 δ,(    )  (   ) (   )-

 ,(    )  (   ) (   )-  (   ) (   )
         (8.3) 

Then     ( )    (         ). 

Proof:Let f     ( ). We want to find from (8.1) that 

∑             
     

Which implies the following coefficient inequality 

                   ∑        
 
    δ,    ( n  )             (   ) 

 Since   (         ) , we have from theorem(2.1)   

              ∑   
 
    

 (   ) (   )

 ,(    )  (   ) (   )-
              (8.5)  

Therefore,  

 |
 ( )

 ( )
  |  

∑         
   

  ∑   
 
   

 
δ

  
 (   ) (   )

 ,(   )  (   ) (   )-

 

                  
 δ,(    )  (   ) (   )-

 ,(    )  (   ) (   )-  (   ) (   )
 

                    =    

 .  Convolution Operator 
 Definition(9.1)[8].The Gaussian hypergeometric 

function which is defined by 

     (       )  ∑
( ) ( )    

( )    

 
      ,      , where 

            and 
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( )  *                                                                           
 (   )(   )   (     )                             

 

Definition(9.2)[1].For every    ,we define the 

convolution operator       ( )( ) as below : 

                   

      ( )( )  

  (       )   ( )    ∑
( ) ( )  

( )    
   

  
     .                     

                                                                               (9.1) 

 Theorem (9.1). Let the function   is defined by 

(1.2) and in the subclass  (         ) .Then 

convolution operator       ( )( )   (         ) 

for      (   ),where  

 (   )     [
 ,(   )(    )  (   ) (   )-

  ,(   )(    )  (   ) (   )- 
( ) ( )  

( )    

]

 

   

                 

                                                                             (   )  

The result is sharp for the function 

    ( )    
 (   ) (   )

 ,(   )(    )  ,(   ) (   )- 
    , 

        . 
Proof. Since   ( )   (         ) ,so we have  

∑
 ,(   )(    )  ,(   ) (   )- 

 (   ) (   )
   

 
      .It is 

sufficient to show that   

∑
 ,(   )(    )  (   ) (   )- 

( ) ( )  

( )    

 (   ) (   )
   

 
                    

                                                                            (9.3) 

Note that (9.3) is satisfied if 

 
,(   )(    )  (   ) (   )-

( ) ( )  
( )    

 (   ) (   )
          

 
,(   )(    )  (   ) (   )- 

 (   ) (   )
 . Therefore, we get the 

result. 
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