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ABSTRACT: This study focuses on forecasting of stock prices for Flying Cement Company using Time Series analysis using 

Autoregressive Integrated Moving Average (ARIMA) model,. The data for the stock prices were taken from Financial Times 

website for the period January 2016 to January 2017 (265 days).The data were split into two sets namely–in-sample and out-

sample sets where, in-sample set was used for model estimation and out-sample set for cross validation of the results. Eviews 

and Minitab softwares were used for analyzing the data Graphical representation and statistical tables are also appended. 

Based on the results of the study ARIMA (1, 2, 1) model was found to be more appropriate for forecasting the time series of the 

stock prices. The results and the methodology of the current study will assist financial/portfolio managers in forecasting the 

future trends of stock prices for   different companies.   

 
Keywords: In-sample, Out-sample, ARIMA, cross validation, Forecasting 

 

1. INTRODUCTION: 
Cement is the back bone of construction industry. Any 

country having self sufficiency in cement production has a 

key role to play in the construction industry not for that 

particular country but also for the region where that country 

is located. A case in point is Kingdom of Saudi Arabia and 

Pakistan which are surrounded by under developed states in 

dire need of cement in order to complete their infrastructure 

projects.  Like the shares of other companies the share of 

cement companies are also traded through stock exchanges. 

Of late there has been a upsurge in megaprojects throughout 

Pakistan like China Pakistan Economic Corridor (CPEC) 

which heralded enormous construction activities. Increase in 

cement purchasing automatically affects the financial position 

of the cement companies.  

Improvement in financial position directly affects the cash 

flows and in turn improves the stock prices of the 

commodity. Hence, the need to study the behavior of stock 

prices of cement industry in Pakistan.Since the prices of any 

stock are based on time therefore, studying the stock prices 

entails studying time series data coupled with forecasting. 

Forecasting involves making estimates of the future values of 

variables of interest using past and current information. There 

are a number of methods to generate prediction ranging in 

intuitive judgments through time series analysis to 

econometric models [2]. There are many methods that are 

used to model and forecast time series. The most common 

classes of time series methods are the autoregressive 

integrated moving average (ARIMA) models [3].  

Two famous econometricians formulated the strategy of 

forecasting a times series called the Box–Jenkins 

method  named after the statisticians George 

Box and Gwilym Jenkins, [11] this method 

applies autoregressive moving average (ARMA) 

or autoregressive integrated moving average (ARIMA) 

models to find the best fit of a time-series model to past 

values of a time series. The Box-Jenkins method (ARIMA) is 

one of the most widely used time series forecasting methods 

in practice [4]. One of the objectives of this study is to 

observe the behavior of stock prices of a cement company in 

Pakistan – Flying Cement and suggest an appropriate model 

for forecasting the stock prices.  

1.1 Framework of the Paper:  
The remainder of the paper is organized into four sections: 

Section 2 throws light on the methods and material used in 

the present study; Section 3 discusses the stages in the 

application of Box-Jenkins technique and presents analysis of 

data using time series model and selecting the most suitable 

model to forecast oil production; Section 4  summarizes the 

results of the current study and draws conclusions; Sections 5 

discusses future implications followed by acknowledgements. 

 

2. METHODS AND MATERIAL: 

Typically, effective fitting of Box-Jenkins models requires at 

least a moderately long series. [5] recommends at least 50 

observations. Many others would recommend at least 100 

observations. For the current study secondary data from the 

Financial Times website has been selected for analysis. The 

Flying Cement daily stock prices data were obtained from 

Financial Times [1] time varying from 1
st
 January 2016 to 

30
th

 January 2017. The data are divided into two parts –in 

sample (from 1
st
 January 2016 – 31

st
 December 2016) and out 

sample (from 1
st
 January 2107 -20

th
 January 2017). The first 

data set is used for model estimation and the second set for 

forecasting and model validation. 

3. Stages in Applying Box-Jenkins Method: 

The Box-Jenkins (B-J) methodology which calls for the 

following three steps: 

1. Identification 

2. Estimation 

3. Diagnostic Checking 

A point to be kept in mind is that the B-J methodology is 

applicable only to stationary variables.There are three 

primary stages in building a Box-Jenkins time series model: 

model identification, model estimation and model validation. 

Box-Jenkins [6] uses a statistical procedure to identify a 

model. The other two steps are quite straightforward.  

 

Stage 1: Model Identification 

The first stage involves checking the stationarity of the series 

through visual examination and formal statistical tools. A 

point to be noted at this point is that stationarity is a 

prerequisite for applying Box-Jenkins method. For the current 

study stationarity will be checked through time series plot of 

https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/George_Box
https://en.wikipedia.org/wiki/George_Box
https://en.wikipedia.org/wiki/Gwilym_Jenkins
https://en.wikipedia.org/wiki/Autoregressive_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Time_series
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the stock prices along with series Correlogram – 

Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) plots. As for the formal statistical tool 

Augmented Dickey Fuller (ADF) test is carried out.  Figure 1 

presents the time series, ACF and PACF plots for the stock 

prices of the flying cement from January 2016 to December 

2016 (245 days).Through visual inspection Figure 1 it is clear 

that the data values do not have a constant mean and 

variances.  Also autocorrelations are declining gradually as 

the number of lags such a property is common in non-

stationary processes. Formal statistical tool for checking 

stationarity of the time series data is to go for Augumented 

Dickey Fuller (ADF) test it is used to know when to 

difference time series data to make it stationary. The null 

hypothesis of the Augmented Dickey-Fuller t-test is  

H0: θ = 0(i.e. the data needs to be differenced to make it 

stationary) versus the alternative hypothesis of H1: θ < 0 (i.e. 

the data is stationary and doesn’t need to be differenced).  

.Regarding formal statistical tests the p-value for the ADF 

test is 0.532    which suggests that the hypothesis of non-

stationarity is not rejected hence the data for the stock prices 

is non-stationary at the level form 

In order to attain stationarity condition the data is subjected to 

log differencing (first log  differencing). The results are 

shown in Figure1 

.  
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Figure 1: Time Series, ACF and PACF Plots of Flying Cement Stock Shares  
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Figure 2: Time Series, ACF and PACF Plots for First Differences 
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Figure 3: Time Series, ACF and PACF Plots for Second Differences 

 
Though the p-value of the ADF test is 0.01 suggesting a 

stationary times series but he patterns of the ACF and PACF 

of the first log differences in Figure 2 are relatively small and 

mostly lie within the confidence intervals. Therefore, no 

ARIMA model can be identified from the first log differences 

of the stock prices of the flying cement as AR(1) and MA(1) 

were both insignificant with p-values > 0.05. A second order 

lagged difference from the original series is obtained and the 

visual results are shown in Figure 3 along with the 

Correlogram.  

General guidelines for selecting the appropriate model are 

given in Table 1. 

The general model introduced by Box and Jenkins (1970) 

summarized the forecasting model as ARIMA (p,d,q) where p  

refers to autoregressive parameter, d refers to differencing 

and q refers to moving average parameter. The values of the 

parameter are determined by observing the patterns in 

Correlogram i.e. ACF and PACF plots. The following table 

gives general rule for identification of the likely model. 
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Table 1: Model Identification using ACF and PACF 

Model ACF PACF 

AR () Geometric Decay Significant till p 

lags 

MA Significant till p lags Geometric Decay 

ARMA Geometric Decay Geometric Decay 

 
The p-value of the ADF test for second differences is 0.01 

indicating that there is no presence of unit root in the series 

thus suggesting that the series is now stationary and thus can 

be used for estimation the model and forecasting. The ACF 

and PACF plots in Figure 3 suggest that AR(1) and MA(1) 

will be best suited to the time series plot. Thus the p and q 

values for the ARIMA (p,2,q) model are set at 1, respectively. 

Therefore ARIMA model is set to be ARIMA (1,2,1) see 

table 2. In general the ARIMA model can be expressed as: 

yt= 3.49x10
-5

- 0.1633yt-1+ εt - 0.993εt-1 

Stage 2:Model Estimation 

The model estimation was carried using Eviews software the 

results of the analysis are shown in Table 2 

and also we see that the parameters of ARIMA(1,2,1) model 

are significant. 
 

Table2:  Estimation Equation of ARIMA (1, 2, 1) 

          
Variable Coefficient        SE t-Statistic Prob.   

C 3.49E-05 3.37E-05 1.037665 0.3005 

AR(1) -0.163363 0.063441 -2.575037 0.0106 

MA(1) -0.993944 0.004474 -222.1717 0.0000 

 

R-squared 0.584324     Akaike info criterion -3.613289 

Durbin-Watson stat 1.997421     Schwarz criterion -3.570038 

     
      

Stage 3: Model Validation and Forecasting. This stage 

entails validation using out of sample data in order to see 

whether the suggested model fits the data well and also 

forecasting the stock prices for some future days and 

comparing them with the actual prices. Both the numerical 

values and graphical methods are shown for practitioner 

purposes.
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Figure4: ACF and PACF for Residuals of second differences 
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Figure 5 : Time Series Plot for Observed and Fitted Values 

 

Table 3: Cross validation Out Sample (Closing Price) for ARIMA (1, 2, 1) 

Dates Observed Ln(Observed) Predicted Ln(Predicted) 

January 02/17 15.00 2.70805 15.05 2.711072 

January 03/17 15.26 2.725235 15.10 2.714471 

January 04/17 14.95 2.704711 15.32 2.728889 

January 05/17 14.50 2.674149 15.10 2.714748 

January06/17 14.35 2.66375 14.66 2.685393 

January 09/17 14.44 2.670002 14.46 2.671098 

January 10/17 14.40 2.667228 14.50 2.674384 

January 11/17 14.40 2.667228 14.49 2.673132 

January 12/17 14.33 2.662355 14.48 2.672569 

January 13/17 14.14 2.649008 14.42 2.668432 

January 16/17 14.45 2.670694 14.24 2.656326 

January 17/17 14.20 2.653242 14.47 2.671998 

January 18/17 14.25 2.656757 14.31 2.661264 

January 19/17 14.54 2.676903 14.31 2.660993 

January 20/17 14.30 2.66026 14.56 2.678429 

 
4. CONCLUSIONS:The present study was conducted 

to obtain a suitable forecasting model for stock prices of 

Flying Cement. ARIMA model has been selected for 

forecasting stock prices. Table 3exhibits the observed and 

fitted stock prices which show very little difference in the 

observed and fitted model.It is suggested that in future for 

forecasting the time series a Hybrid method which used. But 

for the scope of the present study ARIMA (1, 2, 1) is the 

most appropriate model for forecasting purposes.  

5. Future Implications:ARCH/GARCH models thus 

far have ignored information on the direction of returns; only 

the magnitude matters. However, there is very convincing 

evidence that the direction does affect volatility. There is now 

a variety of asymmetric GARCH models, originally 

developed and suggested by [10] and also including the 

EGARCH model of [7] the TARCH model— threshold 

ARCH—attributed to [8] and a collection and comparison by 

[9]. 
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