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ABSTRACT: Cancers account for the major deadliest noncommunicable diseases across all segments of the population and 

responsible for around 13% of all deaths world-wide. Cancer prevalence rate has noticeably quickened its pace in Malaysia 

and the world as we know it. Conventional diagnostic imaging and invasive biopsy examinations are still the gold standard for 

the diagnosis of cancer. However, these conventional methods suffer from low diagnosis sensitivity compounded by work-

intensive analysis. There have indeed been a number of miRNA studies to tackle the challenges associated with cancer 

biomarker discovery. However, the existing diagnosis techniques using miRNA suffer from low diagnosis accuracy, sensitivity, 

and specificity. The low diagnosis accuracy and sensitivity of the existing techniques stems from the fact that there is extremely 

low miRNA count in body fluids and the presence of a huge number of irrelevant miRNAs in the expression data. There is also 

an inevitable problem of cross contamination between cells and exosomes in sample preparation steps. This paper describes 

the state-of-the-art miRNA-based classifiers for cancer miRNA expression classification. To lower the computational 

complexity, we employ a heuristic-based miRNA selection approach to select relevant miRNAs that are directly responsible for 

cancer diagnosis. Among the classifiers, Random Forest (RF) has achieved an average accuracy of 97% over 11 independent 

datasets. The experimental results are quite encouraging and the predictive framework managed to classify cancer accurately 

even with much noise contaminated in the datasets. 
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1. INTRODUCTION 
Cancer is a major deadliest noncommunicable disease that 

involves rapid and uncontrolled cell growth with too little 

apoptosis wherein cells divide and grow exponentially, 

generating malignant tumors that it may not only spread to 

the neighboring tissues but may also spread to the whole 

body through different circulatory routes. Cancer prevalence 

rate has noticeably quickened its pace in Malaysia and the 

world as we know it. Despite the fact that cancer is 

preventable and curable in early stages, the vast majority of 

patients are diagnosed with cancer very late. Some cancers 

have a predictable and distinguishable pattern which can be 

picked up by pattern recognition and machine learning 

techniques. Therefore, a computerized cancer recognition 

system is required to prevent people from dying as a 

consequence of this unfortunate disease. Currently, in actual 

clinical practice, conventional diagnostic imaging, invasive 

biopsy examinations are still the gold standard for the 

diagnosis of cancer and protein biomarkers such as 

carcinoembryonic antigen (CEA), alpha-foetoprotein (AFP), 

prostate specific antigen (PSA) have been widely used in 

cancer management [1] . However, these conventional 

methods suffer from low diagnosis sensitivity compounded 

by work-intensive analysis.  Recently, there has been a 

tremendous increase in interest concerning circulating 

microRNAs (miRNAs) as a potent cancer biomarker to 

improve cancer management [2]. Because of higher 

sensitivity and specificity and with minimally invasive 

sampling procedures, miRNA has gained great interest in 

medical field. In fact, miRNAs are small non coding 

extracellular  RNAs, approximately 18 to 22 nucleotides 

long, which are produced through a series of complex 

biogenesis pathway [3, 4] .  Up to now, over two thousand 

human miRNA have been identified [5, 6] . miRNA can be 

found in the form of free circulating miRNA, encapsulated 

inside carrier vesicles like exosomes, microsomes and 

lipoproteins such as HDL and LDL or co-fractionated with 

protein complex Ago2 [7] . Therefore, miRNAs can be 

identified in body fluid such as blood, plasma, serum, urine 

and saliva. Interestingly, these miRNAs are found to regulate 

many cellular processes such as post-transcriptional gene 

expression, cell development, proliferation, differentiation, 

metabolism, aging, apoptosis and angiogenesis [8] . Ectopic 

microRNA expression and disturbed signaling pathways have 

been associated with tumorigenesis, progression, and 

angiogenesis as well as local recurrence and distant 

metastases [9] .  

There have been some attempts to recognize cancer using 

machine learning techniques. [10]  came up with a rule-based 

distance measure to diagnose hereditary breast cancer from 

miRNA expression data. Perell, Vincent et al. [11]  adduced 

an innovative logistic regression technique based on 

multinomial logistic regression and lasso (least absolute 

shrinkage and selection operator) method. The log likelihood 

of each cancer class is determined in accordance with the 

weighted sum of the input vectors. Their technique showed 

the potential to eradicate the spectrum bias of logistic 

regression and boost the prediction accuracy. [12]  originated 

an avant-garde SVM classifier with a recursive feature 

elimination technique called SVM-RFE in order to ascertain 

cancer-related miRNAs biomarkers. Their system was shown 

to be capable of distinguishing different cancer types. From 

their findings, we can draw conclusion that the correct 

combination of marker selection and classifier is important to 

obtain a good classification accuracy. [13]  came up with 

innovative hypergraph-based ANN model which can identify 

the higher-order correlation among different variables 

involved in a particular cancer stage. They employed 

hypergraph method to regularize the classifier which can 

penalize over fitting and improve the classification accuracy.  

However, the existing diagnosis techniques using miRNA 

suffer from low diagnosis accuracy, sensitivity, and 

specificity.  The low diagnosis accuracy and sensitivity of the 

existing techniques stems from the fact that there is high-

level of noise in miRNA expression data (resulting from low 

miRNA sample count in body fluids and contamination in 
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sample preparation and the presence of a huge number of 

irrelevant miRNAs in the expression data). This paper 

describes the state-of-the-art miRNA-based classifiers for 

cancer miRNA expression classification. To lower the 

computational complexity, we employ a heuristic-based 

miRNA selection approach to select relevant miRNAs that 

are directly responsible for cancer diagnosis. 

 

2. MATERIAL AND METHODS 
In this section, we describe the data sets and the methodology 

to model predictive framework with different classifiers. This 

study proposes a two-layered framework that consists of 

marker selection, and classification. Figure1 describes the 

overall predictive framework. In addition, we explain the 

performance metrics used to evaluate the generalization 

ability of the five different classifiers.  

 
Fig. 1: Predictive framework 

 

Data Set 

The proposed framework has been tested on eleven publicly 

available datasets as listed in Table I. Each dataset contains 

more than 20 samples with more than 300 miRNAs. 

Marker Selection 

This section deals with the first layer of the cancer 

classification framework which is the marker selection 

process. Ideally, the best subset that contains the least number 

of miRNA markers that most contribute to the classification 

accuracy should be chosen, while discarding the rest of the 

miRNA. The aim of marker selection is to pick a subset of 

miRNA markers,     , that can sufficiently discriminate 

cancer type  , given | |    where      . Information 

gain (IG) of a miRNA to the class label   is defined as: 

 

           |     (     { })   (1) 

 

The gain ratio (GR) between Y and s is defined to be: 
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For each iteration, the miRNA   that maximizes GR is chosen 

according to Equation 3. 
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The cut-off condition can be set either based on | | 

or 
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Classification 

Classifiers perform statistical inferences on the miRNA 

expression vector and estimate the likelihood of the vector 

belonging to each cancer class. This study employed five 

different miRNA based classifiers which are Random Forest 

(RF), Hoeffding Tree, KStar (K*), JRip, and AdaBoostM1. 

Random Forest 

Random forests (RF) is a one of the most prominent decision 

tree (DT) algorithms in the literature. It is formulated as a 

recursive partitioning scheme of the expression vector space. 

Finally, input expression vectors are classified by traversing 

the top of the tree down to a leaf in accordance with the 

decisions along the route. Random Forest classifier is not 

sensitive to outliers and noise [14], it is very suitable for 

classification of miRNA expression data. Random Forest 

classifier able to reduce bias in supervised classification [15] . 

The Random Forest algorithm will be used to perform final 

inference on miRNA expression vectors and produce their 

corresponding cancer types as output.  

Hoeffding Tree 

Hoeffding Tree also known as very fast decision tree (VFDT) 

is a type of decision tree algorithm which can be used to 

perform miRNA expression data classification [16] . It 

utilizes the Hoeffding bound to measure error rates in terms 

of some distance metric which is absolute distance and to 

build nodes and branches [17] . Initially, there is only one 

node at the top, which is branched into a few sub-nodes, 

which are then branched further into lower-level sub-nodes. 

Each node divides the expression vector space from the 

parent node into two or more sub-spaces in accordance with a 

definite discrete function of expression values. As the name 

suggests, this algorithm is fast, efficient and produces 

accurate classification outputs. 

KStar (K*) 

KStar (K*) classifier is a popular strain of instance-based 

classifier. Instance-based cancer classification is arguably one 

of the easiest ways to classify cancer. Instance-based learning 

is also called memory-based learning or “lazy” learning 

because there is no training phase. In the prediction phase, 

given an expression vector       , an instance-based cancer 

classifier sequentially loops through all the samples and 

chooses the class label of the sample that is most similar to   

in terms of some distance metric, which is entropy distance, 

as output [18] . A (K*) simply chooses the majority of the 

class labels of the ƙ samples that are nearest to  . 

Ripper 

Repeated Incremental Pruning to produce error reduction 

(Ripper) is a direct method that extracts the rules directly 

from the data. Classes are determined through grow and 

pruning phases [19] . Initially, the rule set   {} , and the 

grow phase continuously adds markers   to the rule set using 

learn-one-rule function until the stop threshold has reached. 

Following the growth phase, pruning phase performs repeated 

incremental pruning resulting in error reduction [20] . Finally, 
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the best rule is produced that can sufficiently discriminate 

classes of cancer, given an expression vector       . 

AdaBoostM1 

Adaptive boosting (AdaBoost) is an ensemble meta-algorithm 

armed with multiple weak classifiers to classify cancer. 

Ensemble learning is a process by which weak classifiers are 

purposefully commingled to craft a single strong classifier 

[21] . The weak classifiers are called „base learners‟. 

Committee voting, which simply lets the base learners „vote‟ 

for the cancer class   given expression vector   and chooses 

the majority. A weighted voting scheme, where weights are 

gradually incremented for consistently accurate base learners, 

causes both bias and variance reduction [22] . 
 

 

Table 1: Datasets 

Datasets #miRNAs #Samples 

Meningioma (MG) 331 34 

Breast Cancer (BC) 851 53 

Gastric Cancer (GC) 704 41 

DLBCL 174 55 

Hepatocellular carcinoma 

(HCC) 
856 146 

Pancreatic Cancer (PaC) 1205 31 

Malignant schwannoma (MS) 339 24 

Prostate Cancer (PS) 373 142 

Ovarian Cancer (OC) 379 84 

Colorectal Cancer (CRC) 377 157 

Multiple Myeloma (MM) 366 57 

Validation 

In order to assess the feasibility and validity of the proposed 

predictive framework, leave-one-out cross-validation 

(LOOCV) was applied [23] . The results will be then 

averaged to produce an estimate of the accuracy of the 

system. The following performance metrics were used to 

gauge the performance of the system: Accuracy and F-

measure [24, 25] . F-Measure,  , combines both precision 

and recall as a unified index.  

3. PERFORMANCE ANALYSIS 
All the 12 cancer datasets listed in Table 1 were used to test 

the performance of proposed classifiers. We performed leave-

one-out cross-validations (LOOCV) where an N-sized dataset 

was partitioned into N equal-sized sub-datasets. Out of the N 

sub-datasets, a single sub-dataset was retained as the 

validation data for testing the model, and the remaining N- 1 

sub-datasets were used as training data. The whole cross-

validation process was then repeated N- 1 more times such 

that each of the N sub-datasets got used exactly once as the 

validation data. The results were then averaged over all the N 

trials. Figure 2 benchmarks the maximum accuracy rates of 

five classifiers for 11 datasets. The vertical axis represents the 

accuracy of the classifiers in percentage while the horizontal 

axis represents the tested cancer datasets.  

 
Figure 2: Benchmarking on LOOCV accuracy rates of five 

classifiers over 11 datasets 

In addition, Table 2 lists the same set of results of five 

classifiers together with selected miRNAs for 11 datasets in a 

tabular format. The miRNAs for each trail were selected 

using gain ratio (GR) marker selection technique outlined in 

section 2.2.  

Table 2: Maximum accuracy rates of the state-of-the-art classifiers over 11 datasets  
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MG 100% 2 94.12% 10 97.06% 1 94.12% 1 97.06% 5 

BC 98.11% 3 96.23% 1 100% 2 98.11% 1 98.11% 1 

GC 100% 1 100% 1 100% 1 97.56% 1 97.56% 1 

DLBCL 98.18% 2 98.18% 1 98.18% 5 96.36% 1 98.18% 1 

HCC 91.10% 5 90.41% 15 89.04% 10 91.10% 20 91.10% 10 

PaC 96.77% 12 96.77% 10 93.55% 15 83.87% 10 90.32% 5 

MS  100% 6 95.83% 1 95.83% 1 95.83% 10 91.67% 1 

PC 95.77% 8 92.25% 20 94.37% 15 95.07% 10 97.18% 10 

OC 100% 3 97.62% 5 97.62% 1 97.62% 1 97.62% 1 

CRC 96.18% 14 84.71% 20 94.27% 15 89.81% 15 94.90% 15 

MM 94.74% 9 96.49% 10 94.74% 5 91.23% 1 96.49% 5 

 
    = 97.35%       = 94.72%     95.88%        93.70%        95.47% 
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In the training phase, the marker selection algorithms uncover 

markers based on a certain threshold. In the prediction phase, 

given an expression vector       , all the miRNA are 

removed except the relevant miRNA markers. Finally, the 

output expression vector is         with reduced 

dimensionality. Therefore, the marker selection process is an 

imperative stepping stone to accurate and reliable cancer 

classification.  

The maximum LOOCV accuracy of Random forest (RF) is 

100% for 4 out of 11 datasets namely, meningioma, gastric 

cancer, malignant schwannoma and ovarian cancer. 

Similarly, KStar (K*) achieved maximum accuracy of 100% 

for 2 out of 11 datasets namely, gastric cancer and breast 

cancer. Likewise, Hoeffding (Hoef) achieved maximum 

accuracy of 100% for gastric cancer data set with no 

misclassification. However, the highest accuracy rates of 

JRip and AdaBoostM1 (AdaB) over 11 datasets are 98.11% 

and 98.18% respectively. As shown in Table 2, the average 

maximum LOOCV accuracy of RF classifier       is 

97.35%,     is 95.88% and       is 94.72% across all the 11 

datasets. Interestingly,       is very close to K* and higher 

than       across all the 11 datasets which is 95.47% while 

      is the lowest among all five classifies. Based on the F-

measures results, out of five classifiers, RF was found to have 

best classification performance. Figure 3-7 illustrates the 

weighted F-measure of state-of-the-art classifiers for varying 

number of miRNAs for 11 datasets. The vertical axis 

represents the weighted F-measure of the classifiers while the 

horizontal axis represents the number of miRNAs. A 

weighted F-measure is simply F-measures of distinct cancer 

class labels weighted by the prior probability values of the 

class labels. The RF obtained perfect F-measures which is 1.0 

for 4 out of 11 cancer datasets and that it outperformed the 

rest of the classifiers. The results show that accuracy does 

increase with the number of selected miRNAs, albeit without 

perfect monotonicity. Results also show that at certain 

instances, accuracy decreases with an increase in the number 

of miRNAs, departing from monotonicity. This may be 

because all the proposed classifiers are sensitive to the 

presence of irrelevant attributes. Furthermore, the disruptions 

in monotonicity might be because of the intrinsic 

imperfection in the proposed marker selection process [26] . 

The accuracy rate of the cancer recognition system using the 

Random forest classifier with the gain ratio marker selection 

process seems to be higher than the other four cancer 

classifiers. 

 
Fig. 3: Weighted F-measure vs. no. of miRNAs of Random forest 

classifier with gain ration marker selection for 11 datasets. 

 

 
Fig. 4: Weighted F-measure vs. no. of miRNAs of Hoeffding tree 

classifier with gain ration marker selection for 11 datasets. 

 

 
Fig. 5: Weighted F-measure vs. no. of miRNAs of K* classifier 

with gain ration marker selection for 11 datasets. 

 

 
Fig. 6: Weighted F-measure vs. no. of miRNAs of JRip classifier 

with gain ration marker selection for 11 datasets. 

 

 
Fig. 7: Weighted F-measure vs. no. of miRNAs of AdaBoostM1 

classifier with gain ration marker selection for 11 datasets. 

 

4. CONCLUSION 
This paper benchmarked the performance of five 

classification algorithms to classify cancers from miRNA 

expression data. While comparing the performance metrics 

among the classifiers, Random forest results are more 
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encouraging. Random Forest (RF) has achieved an average 

accuracy of 97% over 11 independent datasets. The 

experimental results are quite encouraging and the predictive 

framework managed to classify cancer accurately even with 

much noise contaminated in the datasets.  
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