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ABSTRACT: The emergence of outcome based education and the increase of number of student in higher education have 

posed a need of assisted competency based assessment. Most of the assisted assessment available are focusing on 

performance-based approach. A new hybrid approach has been developed via a combination of Natural Language Processing, 

Neural Net and Information Theory and has produced an encouraging result. 
 

1. INTRODUCTION 
The increased number of student in Higher Education may 

also increase the time spent by the lecturer in marking the 

assessment [1]. According to statistical report from Ministry 

of Higher Education Malaysia (2010), the population of 

student has been raised yearly.  Assessment is an important 

process in any educational organization. Assessment is 

defined as the process of making determination about one 

individual attitudes, skills and knowledge through various 

methods such as interview, observation, projects, exam with 

prior predefined assessment criteria [2]. 

The emergence of outcome based education (OBE) and 

competency based assessment (CBE) in higher institution 

required the proper mixture of learning objective and 

competencies to be achieved by the student. In this type of 

assessment, at the end of the learning, student must be able to 

achieve certain outcome and the competencies set will say 

how we can certain that the student know it. The evidence is 

produced whether the student is competent to a certain 

standard and according to Moris, this kind of assessment 

approach is different from performance-based assessment [3]. 

The competency evidence can be get from the, report 

evaluation, test result, licenses or certificates [4]. 

Competencies are the knowledge, skills, abilities and 

behaviors that help and required to the successful 

performance of the job. Bloom Taxonomy has been applied 

to categorize competency pieces namely; cognitive, 

psychomotor and affective. In cognitive domain, Bloom has 

categorized these into 2 main levels that is low level consists 

of remembering, understanding, and applying and higher 

level consists of analyzing, evaluating and creating. Higher 

level cognitive has been assessed via short free text. As 

according to Carter et al. [5], 81% of exam is a closed book 

examination where 57% on application test and 37% on 

evaluation test. However, grading open ended questions by 

hand can be time consuming.  

There are numbers of assessment systems have been 

developed which focus to reduce time of marking especially 

essay and short answers There are also much disagreement on 

the techniques apply in assisted assessment. According to 

Wiemer-Hastings et. al. [6] Latent Semantic Analysis (LSA) 

is focusing on content and mostly used to assess humanities 

essay and the performance is poor in the domain of casual  

domains such as research methods [7]. Callear et al. [8] also 

argued that due to the importance of word order in short free 

text, the application of LSA is not suitable. In fact, most of 

the assisted assessment are focusing on performance instead 

of competency [9]. The increased adoption of CBE and the 

increase of number of students in HE have pose the need to 

produce competency assisted assessment. This paper is 

proposing a technique which can be employed to assess the 

higher level of cognitive competency focusing on short free 

text answer.  

2. OUTCOME BASE EDUCATION AND BLOOM 

TAXONOMY 

Outcomes based education (OBE) is a process that involves 

the curriculum restructuring. In OBE, rather than 

accumulating the course credits, the assessment and reporting 

practices in education have to reflect the achievement of high 

order learning [10]. It is defined as a “…comprehensive 

approach to organizing and operating an education system 

that is focused in and defined by the successful 

demonstrations of learning sought from each student” [11]. In 

Malaysia, it has been in practiced since 1950s and in being 

implemented at all levels of education tertiary education in 

2008 [12]. OBE be implemented in various modalities and 

the implementation is covering all three learning domains that 

are effective, cognitive and psychomotor. Cognitive 

outcomes include demonstrable acquisition of specific 

knowledge and skills. Affective educational outcomes, 

defined as learning outcomes that focus on "individual 

disposition, willingness, preferences, enjoyments …..." [13] 

can be reintegrated as a critical focus during this 

restructuring. Evidence of the outcome is required to fulfil the 

shortage of the soft skill of an employee in the workplace 

[14-15]. 

The Bloom’s Taxonomy of Educational Objectives cognitive 

domain has influenced many educationists long years ago 

[16]. It has been proved to be useful for analyses of cognitive 

demand from the constructing curricula to the assessment of 

student performance. Table I, the Blooms’ six cognitive 

skills, the questions cues, and also the skills demonstrated are 

shown. The questions cues are adapted from [17-18]. 
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Table 1: Cognitive Level of the Revised Taxonomy [19] 
Cognitive Level Cognitive Task Description 

Remember Recognizing 

Recalling 

Retrieving relevant 

knowledge from long-term 

memory. 

Understand Interpreting 
Exemplifying 

Classifying 

Summarizing 
Inferring 

Comparing 

Explaining 

Determining the meaning of 
instructional 

messages, including oral, 

written, and graphic 
communication. 

Apply Executing 

Implementing 

Carrying out or using a 

procedure in a given situation 

Analyze Differentiating 

Organizing 
Attributing 

Breaking material into its 

constituent parts and detecting 
how the parts relate to one 

another and to an overall 

structure or purpose. 

Evaluate Checking 

Critiquing 

Making judgments based on 

criteria and standards. 

Create Generating 

Planning 
Producing 

Putting elements together to 

form a novel, coherent whole 
or make an original product. 

 

3. REVIEWS OF TECHNIQUES IN ASSISTED 

ASSESSMENT 

There are various techniques have been invented in order to 

produce better assisted assessment for essay and short free 

text marking. For example, LSA, Probabilistic Latent 

Semantic Analysis (PLSA), Natural Language Processing 

(NLP), Vector Space Matrix (VSM) and Pattern Matching 

and many others. However, most of these assisted 

assessments were unable to assess competency-based of the 

student. Table 2, summarizes the existing assisted assessment 

and the techniques employed and also the assessment focus. 

4. NLP 

NLP is focus on the development and improvement in the 

process of learning. It is effectively applied in the education 

for promoting the language learning and enhancing the 

academic performance of the students. NLP able to improve 

learning via the assistance in the process of using computer 

and internet. There are numbers of assisted assessment that 

employ NLP in their assessment method [20-23]. 

 

Table 2: Summarised Techniques and Assessment Focus for Assisted Assessment for Short Free Text Answer (C-Competency, NM-

Not mentioned) 
 

Researchers Subjects Level / Age Sentences  Marks Techniques Focus 

[20] Science, Computer 

Science 

Undergraduates 

and Schools 

3-150 words 0-6 point 

scales 

NLP and Information 

Theory 

C 

[30-33] 

 

GCSE Biology 

Examination 

14-16 years old Up to 5 lines  0-2 IE & Computational 

Linguistic 

NM 

[34] Artificial Intelligence Undergraduate 

students  

Up to 6 lines NM Clustering C 

[35-36] 

 

Reading 

Comprehension 

7th and 8th 

Graders 

Up to 100 

words 

0-2 NLP 

Rule-based algorithm 

NM 

[37] 1999 Science 

National Test Paper 

A and B 

11 years old Up to  

short 

explanatory 

sentence  

0-2 NLP and IE NM 

[38-39] 

 

Introductory course 

in Computer Literacy 

Undergraduate 

Students 

Short answer  NM LSA and NLU NM 

[40] Assessment of 

summaries based on 

reading 

comprehension 

Undergraduate 

students 

75-100 long NM Computational 

Linguistic 

NM 

[41] Summary writing for 

reading 

comprehension 

6th to 9th graders 4 sentences 0-4 NLP C 

[42-44] 

 

Introductory data 

structure course 

Undergraduate 

students 

Up to 2 lines 0-5 Text Similarity & 

Corpus based similarity 

NM 

[45] 87 questions on 

Object Oriented 

Programming 

Undergraduate 

Students 

Up to 2 lines  NLP and QAML NM 

[46] High School physics Undergraduate 

Students 

Up to 2 lines 4 point 

scale 

Statistical Classifier and 

Rule-based 

NM 

 

Convolutional Neural Network 

Convolution is an important operation in signal and image 

processing. Convolutional neural networks (CNNs) are neural 

networks that make use of the internal structure of data such 

as the 2D structure of image data through convolution layers 

[24], where each computation unit responds to a small region 

of input data.  CNN has been applied on text for entity search, 

tagging, sentence modelling, and others and has been 

mentioned in [25]. The essence of CNN is to convert small 

region of data to feature vectors to be used in the computation 

of student known information.  
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Information Theory 

Knowledge has been viewed as enactment of knowing [26] 

where its forms a context use of information. And 

information is an input as in this research is the answer script 

of the learner and expert. The amount of this information, as 

in this research will be indicated as known information may 

be measured as with Shannon’s model as logarithm [27] of 

the inverse of the probability of the state of nature found at 

the output of the process of learning. Natural language itself 

shows a balance between order and randomness [28]. Excess 

entropy has been used to serves as a general purpose measure 

of a system’s structure, regularity, or memory and it provide 

provides a quantitative measure of structure that may be 

applied to any one-dimensional symbolic string as mentioned 

in [29]. Excess entropy also has been used to quantify the 

amount of known information of the learners [20]. Table 2 

summarized the computer assisted assessment that focus on 

short free text answer and the focus of assessment; 

performance or competency. 

5. PROPOSED HYBRID TECHNIQUES 
NCI (NLP, CNN-seq and Information theory) is the hybrid 

approach consists of a combination of NLP, seq-CNN and 

Information Theory. The NLP is used to train the data prior 

undergo the process of CNN to get the pattern and the 

Information Theory is to quantify the amount of information 

contain in the text. Figure 1 shows the overview of the 

proposed techniques. 

 
Fig. 1: Overview of NCI 

NLP Modules 

As shown in Figure 1, both learner and expert answer script 

will undergo NLP modules. There are 4 processes in this 

module, they are: 

a) Part of Speech Tagging  

All text will be tagged by using Stanford Log-linear 

Part-Of-Speech Tagger version 3.6.0.  

b) Term Extraction 

After that only noun, verb, adverb and adjective are 

extracted without ignoring the word order. However, 

common conjunctive adverbs will not be extract 

because it is used only to join two clauses together. 

c) Term Stemming 

Stemming is the process of derived words to their 

word stem, base or root form. WordNet 3.1 will be 

used in this process. 

d) Term Synonym 

The synonym will be identified by using WordNet 3.1. 

Seq-CNN 

Suppose that the Student Answer Script, S= (w1, w2,…,wn) 

with Expert Script as a Dictionary D. A word is treat as a 

pixel, treat S as if it is an image of |S| x 1 pixels with |D| 

channels and to represent each word as a |D|-dimensional 

one-hot vector.  In this research, since we are focusing on 

short free text, thus the region size is 2 and stride is 1. Figure 

2 shows the example. 

The extracted Expert Answer: smooth surface further object 

travel 

The extracted Student Answer: surface smooth distance 

travel car far 

 

 
Fig. 2:  seq-CNN for Extracted Word 

 

Information Theory 

Excess entropy will be employed to quantify the amount of 

Known-information (K). 
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                (2) 

Summed over all combinations of values of  [48]. 

For example, the vector of the Expert is shown below in 

Figure 3 and the amount of Known-information of an Expert 

is 2.32 bits. 

 
Fig. 3:   Example of Vector of an Expert 

Score Computation 

If there are more than 1 expert answer available, the KS will 

be compared against all the KE and the nearest KE will be 

used as a referent expert model and if there is a case where 

the amount of KS is more than the amount of KE, the amount 

of KS will be assigned to equivalent to KE. The formula of 

computation of the score is as below [20]; 

mark
K

K
Score

E

S                                              (3) 
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6. RESULTS AND DISCUSSION 
Table 3 shows sample data used to test NCI. There are two 

expert scripts and 4 student answer scripts has been used in 

the testing. Table 4 shows the result of NCI. As shown, KS1 is 

having amount of K of 2.32 for both expert script. However, 

KS1 is more than KE1 and equal to KE2. Therefore, the score 

will be based on KE2. And for KS2 is having K as 1.58 bits for 

both expert script comparisons. Therefore, the score will be 

based on the lowest differences between KE and KS, that is 

KE1 and the score is 0.80. And for KS3, the K differences is 

lowest with KE2 and therefore, the score is computed against 

KE2 that is 1. And same with KS4 where the lowest differences 

are with KE2 and the score is computed against KE2. 

 
Table 3: Sample Data. 

Category Answer Script 

Expert 1 

Expert 2 

Student 1 

Student 2 

Student 3 

Student 4 

The smoother the surface, the further the object 

The greater the friction of a surface, the shorter the 

object travel 

If surface is smooth, the distance travelled by car will 

be farer 

A smooth surface has less friction 

The smoother the surface, it has less friction 

The more friction, there are the less distance travelled 

by the car 

 
Table 4: NCI Initial Result 

Category KE   KS1 Score   KS2 Score   KS3 Score   KS4 Score 

Expert 1 

Expert 2 

2.00 

2.32 
2.32 

2.32 

1 

1 

1.58 

1.58 
0.80 

 

1.58 

2.00 

 

1.00 

1.37 

1.86 

 

0.90 

 

7. CONCLUSION 
All the result is check against human-rater and the result is 

encouraging. In order to validate the techniques, more data 

will be collected which focus on the three highest Bloom 

cognitive level form tertiary program from various domain 

such as Computer Science, Engineering, Business and 

Management and Information Technology. 
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