
Sci.Int.(Lahore),29(4),943-950 ,2017 ISSN 1013-5316;CODEN: SINTE 8 943

July-August

DYNAMIC ADAPTATION OF SERVICE TO THE CONTEXT WITH VARIABILITY

MODELS
Naoufel Kraiem

1,2, Omnia Saidani Neffati
2
, Rim Samia Kaabi

2 and Zuhoor Al Khanjari
1

1CSComputer Science Department University of Sultan Qaboos, Muscat, Oman.
2RIADI Lab, National School of Computer Science, University of Manouba, Manouba, Tunisia

Contact: naoufel@squ.edu.om, omnisaidani@gmail.com, rim.kabi@riadi.rnu.tn, zuhoor@squ.edu.om

ABSTRACT: Web services run in complex contexts where arising events may compromise the quality of the whole system.

The dynamic nature of environments in which Web services are executed require that these ones must be reactive and adaptive

in order to meet changing requirements. These changing requirements have to be taken into account in the Web service

composition process. BPEL (Business Process Execution Language), the de-facto standard language used to define processes

through the composition of Web services, doesn’t support dynamic changes. Therefore, BPEL doesn’t support the dynamic

adaptation of Web service composition according to the context. In this paper, we propose solution in order to support the

dynamic adaptation of service composition through BPEL. An evaluation demonstrates several benefits of our approach, both

at design time and at runtime.

Keywords: Web Service Composition and Orchestration, BPEL, BPMN, Context-awareness, Dynamic Adaption.

1. INTRODUCTION
Web Services are self-contained, modular, distributed and

dynamic applications that can be described, published,

located, or invoked over the network in order to create

products, processes, and supply chains. These applications

can be local, distributed, or Web based [1].

Web services can be combined in order to achieve specific

functionalities. The process of assembling of these services

together is called service composition [2].

The service composition can be defined as the process of

constructing a complex service from atomic ones to achieve a

specific task [3].

Web services are executed in dynamic environments in which

several exceptional situations may arise continuously. We

find out as cited in [4], that the dynamic nature of these

environments requires that Web services must be reactive and

adaptive in order to meet changing requirements. Therefore,

these changing requirements have to be taken into account in

the Web service composition process. Furthermore, a support

for the Web service adaptation according to the context is

required.

Among the most popular composition languages for Web

services we note BPEL (Business Process Execution

Language) [5] . BPEL is the de-facto standard language used

to define processes through the composition of Web services

[6]. Nevertheless, BPEL neither supports dynamic changes

[7], nor does it offer a support for the dynamic adaptation of

the orchestration logic according to the context [8], [9]. This

fact is triggered by the static nature of BPEL process

definitions which makes it difficult to adapt Web services at

runtime [6].

In [10], the authors confirms the inability of BPEL engine to

monitor running processes and thereafter to decide which

Web service has to be replaced or omitted from a given

composition in certain circumstances (e.g. when a service

execution failure happens). BPEL needs to be redeployed in

order to be adapted. The redeployment of the BPEL process

implies the downtime of all the system since all services

should be stopped until the modification process is done [11].

In this paper, we propose a methodological approach

allowing to support the dynamic adaptation of service

compositions according to the context based on BPEL.

The remainder of this paper is organized as follows: Section 2

introduces the background Section 3 presents an illustrative

example. Section 4 presents the proposed approach. Section 5

provides architecture for a support tool. Section 6 introduces

a case study in order to validate our approach. And finally,

section 7 concludes the paper.

2. BACKGROUND
This section will focus on the definition of the basic concepts

that are related to our approach.

2.1. Context and Context-awareness

The concepts of context and context-awareness are defined

and used in several approaches [12,13.14].

According to [12], the context is all information that can be

used to characterize an entity. An entity can be a person, a

place, or a relevant object for the interaction between a user

and an application, including the user and the application

itself. In [15], Chihani has considered that the context-

awareness is a particular type of formal logic on which

theories and artificial intelligence algorithms (e.g. inference

rules) can be applied in order to automate the deduction of

new contextual knowledge and reasoning about the facts that

represent the situation of the user. Context-aware service

oriented systems refer to applications that use context

information to provide appropriate services to the user [16].

2.2. Dynamic Adaptation

According to [17], the adaptation consists of making changes

to a software or a computer system in order to perform its

features and, if possible, to improve its performance in an

environment of use.

Software adaptation can be seen as the ability for humans to

reconfigure the software and then to restart it (static

adaptation), or the ability of the software to reconfigure itself

during execution (dynamic adaptation) [18]. According to

[19], the dynamic adaptation of software behavior can be

defined as the act of changing the behavior of some part of a

software system as it executes, without stopping or restarting

it.

3. Illustrative Example
In order to illustrate our work, we use the example of a hotel

booking process Figure (1). The business rules are described

as follows: the customers can make booking according to

their preferences (e.g. Arrival and departure dates, room

mailto:naoufel@squ.edu.om
mailto:omnisaidani@gmail.com
mailto:rim.kabi@riadi.rnu.tn
mailto:zuhoor@squ.edu.om

944 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(4),943-950 ,2017

July-August

type, service type). They can check the availability of rooms

according to their arrival and departure dates. The booking is

made and the payment is done on the basis of room’s

availability.

We distinct four different payment methods: credit card

payment, cash payment, bank transfer payment and check

payment.

 Check the room availability: it aims at checking the room

availability overlooked the arrival and the departure dates

set by the customer.

 Make booking: it corresponds to the assignment of a room

to the customer according to his preferences. This task is a

composite task (sub-process) that is composed of the

following tasks:

 Provide the personal information: It consists at giving the

information related of the customer i.e. name, address,

etc.).

 Specify the arrival and the departure dates.

 Specify the room type. The room type can be single, double,

etc.

 Specify the service type. The customer has to precise the

service type: full board, half board, etc.

 Pay booking: it corresponds to the payment of the booking

fees. The payment can be done by credit card, by bank

transfer, by check or cash.

We have chosen to model a given BPEL process through the

BPMN diagram (Business Process Modeling Notation) [20],

for the following reasons: BPMN tasks can express Web

service operations while BPMN sub-processes can express

composite service operations. Moreover, several approaches

[21,22], have adopted BPMN model to represent the elements

in a service composition since BPMN is suitable to express

sequences and dependencies among Web services, on the one

hand, and BPMN diagram can be transformed to an

executable BPEL process through several dedicated tools, on

the other hand. In this example, we will focus on the payment

service. We assume that the customer has chosen to pay the

reservation by the credit card. At runtime, a number of

unexpected contextual changes can occur such as the lack of

money needed to cover the booking fees, the expiration of the

credit card, the network failure, the service unavailability due

to fluctuations in available bandwidth and throughput rates,

etc. These facts make impossible the achievement of the

booking payment with the given mean (i.e. by credit card).

As consequence, the payment process may not finish

correctly. Nevertheless, the booking process has not to be

stopped until the customer does not wish to finishes it. For

this, we need to propose a solution in order to adapt the hotel

booking process to the unexpected changes that can occur at

untime in order to satisfy without shutting down the system.

Figure 1: The hotel booking example

3. THE PROPOSED APPROACH

In order to adapt the hotel booking process to the unexpected

changes that can occur at runtime, we present a

methodological approach for the dynamic adaptation of

service compositions according to the context. The proposed

approach consists mainly of two steps: “the context

management” step and “the adaptation actions” step.

The context management consists on the context modeling,

capture and reasoning. The adaptation action consists of

dealing with the context changes by applying a set of

adaptation rules which are useful in order to adapt the BPEL

process behavior according to the context changes. Details

will be presented in section 4.1 and section 4.2.

4.1. The Context Management Step

This step is crucial especially in order to identify and to

model the contextual information pertinent for services, to

determine the current context.

4.1.1 A Context Model for Services

In order to use the contextual information in an adequate

manner, we need to define a context model for the

representation of the service context called: CM4S (Context

Model for Services). The proposed model aims to represent

the contextual factors related to the service adaptation. The

different concepts for describing the contextual information

and the relationships between them are described through the

meta-model represented by Figure (2).

Figure 2: The context meta-model for services.

Sci.Int.(Lahore),29(4),943-950 ,2017 ISSN 1013-5316;CODEN: SINTE 8 945

July-August

It should be noticed that only the elements with the gray

color belong to the proposed context meta-model. The

“Context” class is represented in order to show its

relationship with the concepts of the proposed context meta-

model. The concepts of the CM4S are described as follows:

 Context element: it represents a part of the knowledge

related to the context. The service user context, the service

context, the service execution environment are examples of

context elements.

 Context Property: it is considered as an attribute that

characterizes a context element. Indeed, a context element is

featured by one or more property (ies) context. For example,

the context element “User context” has the following context

properties: profile and preferences (Figure 3). The context

property can be itself featured by other context properties.

For example, the “Profile” context property can be featured

by the context properties: “age”, “sex”, “nationality”, and

“gender” Figure (3).

We distinguish two types of context properties; static context

property which refers to a property whose value is always

fixed (e.g. the context property “sex”) and dynamic context

property which refers to a property whose value can

change(e.g. the context property (e.g. the context property

“time”).

4.1.2 An Ontology Based Model

Ontologies are widely accepted for modeling context

information in many fields such as pervasive computing,

service engineering and business process management.

Ontology can be defined as a formal explicit specification of

a shared conceptualization. A conceptualization is an

abstract, simplified view of the world that we wish to

represent for some purpose [23], [24].

We choose to use ontologies in order to instantiate the

context meta-model already proposed in section 4.1.1 Figure

(2).

Our choice is motivated by the following reasons: The

context can be modeled as ontology since the use of

ontologies allows not only the context modeling, but also the

reasoning on the collected contextual data based on an

inference engine [16]. Ontologies provide a formal and

semantic description of context information in terms of

objects, concepts, properties and relationships (Najar, S.,

2014). According to [25], several advantages are involved in

ontology based modeling. By providing a formal semantics to

context data, it becomes possible to share and/or integrate

context among different sources. Also, many available

reasoning tools can be used both to check consistency of the

set of relationships describing a context scenario, and to

recognize higher level context information.

Thus, we propose an ontology-based model Figure (3) in

order to show the contextual information. Furthermore, in

order to provide an extensible, well-structured and easily

understood ontology, we choose to use a multi-level

ontology. In fact, the context is modeled according to two

levels: (i) the general level (upper ontology) and (ii) the

specific level (lower ontology).The upper ontology describes

the basic context information which is quite generic and

common to several areas while the lower ontology includes

specific context information which is related to a particular

domain.

According to the illustrative example, the presented lower

ontology is specific to the booking area. We distinguish three

categories for contextual elements:

 The user context: it represents the contextual information

related to the service user. Examples of the user context are:

profile, preferences, etc.

 The Web service context: it represents the contextual

information related to the service itself such as the

availability. We identify two general types of Web service

contextual information: the first one is related to the business

side of the service such as its goal (service of electronic

payment for example) and its business rules. We qualify this

type as “functional requirements”. The second one is related

to the “non-functional” considerations of Web services such

as its availability, used security protocol, etc.

 The environment context: it represents the information

that characterizes the service runtime environment such as the

spatial and the temporal factors.

4.1.3 The Context Capture and Reasoning

The capture of the contextual information can be made

through several methods such as access to the Information

System (IS), access to the system calendar, and input by the

user through an interface, etc.

A sensor can be defined as a hardware or software source

which can generate contextual information [26]. We

distinguish two main types of sensors, the physical sensors

that represent hardware devices which are able to provide

context data (e.g. GPS).and the virtual sensors that provide

contextual information from software applications or

services. Context reasoning is used in order to deduce new

contextual information from existing one.

Figure 3: The context based-ontology model

This section introduces a methodology in order to express

where and how a BPEL process can be adapted at runtime,

according to the context. This methodology is represented

using a BPMN diagram and shown in Figure (4). The

methodology, that we propose, addresses the BPEL process

dynamic adaptation through two axes. The first one is

interested by the adaptation of the BPEL process before the

detection of an execution failure. We qualify this type of

946 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(4),943-950 ,2017

July-August

adaptation as “preventive adaptation”. It aims to minimize the

chances of the execution failure emergence.

The second axe aims to adapt the BPEL process after the

detection of an execution failure and determines a solution

through the change of the current BPEL process behavior.

We qualify this type of adaptation as “curative adaptation

4.2. 1. Preventive Adaptation

This mechanism is applied on each “switch” activity in a

given BPEL process (Exclusive gateway in BPMN). The

“switch” activity evaluates the state of the business process

and, based on the condition, breaks the flow into one of the

two or more mutually exclusive paths. We qualified the

“switch” activity as a “decision point”. A BPEL process can

contain one or more decision point. According to the booking

process presented in section 3, the decision point corresponds

to the exclusive gateway related to the payment method

choice. This gateway allows the customer to pay the booking

fees by credit card, check, bank transfer or cash. The

proposed alternatives as shown in the BPMN diagram Figure

(3) are: “pay booking by credit card”, “pay booking by

check”, “pay booking by bank transfer” and “pay booking

cash”. We assume that the offered Web services that

participate in this BPEL process and which can accomplish

these alternatives are respectively: “PayCard”, “PayCheck”,

“PayBankTransfer” and “PayCash”.

Depending on the current context zero, one or more

alternatives may be suitable to be offered to the user who will

choose, thereafter, only one alternative to make the booking

payment. Hence, it is not necessary that all the Web services

that are associated with these alternatives are adequate to the

current context.

A context-based selection should be performed in order to

provide to the user only the services that can be executed

depending on such context. This fact allows to minimize the

chance of the BPEL execution failure caused by the

incoherence of some Web services with the current context,

on the one hand, and reduces the time allocated to the

execution of the BPEL process due by the providing of

unusable Web services, on the other hand.

For example, in a given context in which the user credit card

is expired, it is impossible to execute the service “PayCard”.

This Web service should not be, therefore, offered to the user

from the beginning. Only the Web services

“PayBankTransferCard”, “PayCheck” and “PayCash can be

offered to the user. Indeed, being informed about the

expiration date of the credit card before the service running

allows to know at an early stage if the service can be

executed or not. Hence, this fact prevents the execution

failures which can arise thereafter. Besides, it is beneficial in

terms of time to avoid the proposal of unusable Web service

in a given context.

In order to select the appropriate alternatives that can be

offered to the user according to the context, we propose the

following method which includes the following five steps:

(i) Identify each switch activity in BPEL (XOR gateway in

BPMN) as a “decision point”. This activity evaluates the state

of the business process and based on the condition breaks the

flow into one of the two or more mutually exclusive paths.

(i) Identify, for each decision point, the relevant contextual

elements.

(ii) Capture the values of the contextual elements, already

identified, for the current context.

Figure 4: The adaptation methodology

Determine, for each proposed alternative, if its execution is

possible with reference to the values of the current contextual

elements or not.

(iii) Keep only the adequate alternatives and ignore the

inadequate ones from the process schema.

Zero, one or several alternatives can be selected to be kept in

the process schema. The aim of this adaptation is to adapt the

BPEL process to the current context in order to prevent

failure execution cases caused by the context negligence.

4.2.2. Curative Adaptation

The curative adaptation is useful when no alternative is

adequate to the current context after the application of the

“preventive adaptation”. This fact implies that the current

BPEL process will not be finished correctly since a Web

service that participates to this process cannot be executed.

This category of adaptation proposes to use additional Web

services (i.e. new functionalities offered by Web services)

which are not included in the initial BPEL process. The use

of the additional Web services leads to the modification of

the initial process schema by the emergence of other

alternatives initially absent. We qualify the additional Web

services as “adaptation services”. Their usefulness is to

ensure the dynamic adaptation of the BPEL process at

runtime, according to the current context. The adaptation

services are Web services which are published by the service

provider and stored at the UDDI repository [27]. They will be

invoked in the situation of no proposed alternative within the

initial process is suitable to the current context. The definition

of the adaptation services is made at each decision point

when one or more adaptation services can be associated with

the decision point. In the case when only one adaptation

service is associated with the decision point, this service

adaptation will be directly invoked to be inserted into the

current BPEL process. Else, in the case where several

adaptation services are associated with the decision point, an

association <context, adaptation service> (i.e. for each given

context there is a corresponding adaptation service) will be

created by the service provider, and the selection of the best

adequate adaptation service is therefore based on this

association. The execution of the already invoked service

leads to a particular state in the process [20], e.g. the

execution of the Web service “confirm registration” in the

university registration process leads to the generation of the

state “registration is confirmed”. If the state generated after

Sci.Int.(Lahore),29(4),943-950 ,2017 ISSN 1013-5316;CODEN: SINTE 8 947

July-August

the execution of the invoked service is the same generated at

the end of the process, then the process will take end. Else if

the state generated after the execution of the invoked service

is the different to the generated one at the end of the process,

then the process have to return again to the already defined

decision point.

5. ARCHITECTURE OF SUPPORT TOOL

In order to provide a potential implementation of the

proposed approach, we propose the architecture shown in

Figure (5). This architecture is composed of three modules:

 The Context Management Module

 The Adaptation Management Module

 The Adaptation Module

The role of each identified module and the interaction

between them is detailed as follow:

1) Context Management Module: it is mainly responsible

for the capture, the modeling, the interpretation and the

storage of the contextual information (user context, service

context, etc.).

This module consists of the following sub-modules:

(i)The Context Capture sub-module: it is responsible for the

capture of the contextual information values and its

interpretation.

(ii)The Context Storage sub-module: it is responsible for the

storage of the contextual information. It consists of a context

register.

2) The Adaptation Service Management Module: it is

responsible for the storage and the management of the

adaptation services which are invoked when required in order

to adapt the running BPEL process.

3) The Adaptation Management Module: it is responsible

for the adaptation process of the BPEL process by applying

the adaptation rules. It is related to both the Context

Management Module in order to extract the contextual

information already stored and the Adaptation Service

Management Module in order to select and to invoke the

adaptation service.

This module consists of the following sub-modules:

(i)The Extraction Contextual Information sub module: it

extracts the contextual information already stored in the

context register.

(ii)The Adequate Service Selection sub-module: it is

responsible for the selection of the adequate services to be

allowed to the user according to the context.

(iii)The Adaptation Service Selection and Invocation sub-

module: it is responsible for the selection and the invocation

of the adaptation service.

The interaction between the different modules of the

proposed architecture is as follows: The Context Capture sub-

module captures changes in contextual information related to

the Web service, to the user and to the environment (1). The

captured contextual information will be stored, thereafter, in

the context register (2). The Extraction Contextual

Information sub-module extracts the contextual information

already stored in the context register (3). The Adequate

Service Selection sub-module selects the adequate services to

be allowed to the user according to the context (4). If it is

necessary (any service can be selected), the Adaptation

Service Selection and Invocation sub-module selects and

invokes the suitable adaptation service (5).

Figure 5: The support tool architecture

6. CASE STUDY

We propose to implement our approach on the hotel booking

process (Section 3).

6.1. The Proposed Scenario

We take the following scenario: the customer consults the

hotel website in which he wants to spend the holiday. He

checks the room availability overlooked the arrival and the

departure dates. Thereafter, he provides his personal

information, confirms the arrival and the departure date and

chooses a single room for his accommodation. Thereafter, he

chooses a half board accommodation. Finally, the customer is

redirected to the booking fees payment space in order to pay

the booking fees. According to the initial process, the

customer can pay by card, by bank transfer, by check or cash.

By using our adaptation approach, the payment method

choice is a decision point in which only the adequate Web

services should be offered to the user.

6.2.2. Relevant Contextual Element Definition
In order to identify the adequate Web services on the basis of

the proposed method explained in section 4.2.1, the exclusive

gateway concerning the payment method choice Figure (1) is

considered as a decision point. Table 1 presents the defined

relevant contextual elements associated to the “payment

method choice” decision point.
Table 1: Relevant contextual elements related to the “payment

method choice”.
Decision point Relevant contextual elements

Payment

method choice

Credit card possession

Checkbook possession

Cash possession

Bank account possession

Credit card status

Preference to pay by credit card

Preference to pay by check

Preference to pay by cash

Preference to pay by bank transfer

Client type

Current day

Pay by credit card service availability

Pay by check service availability

Pay by cash service availability

Pay by bank transfer

Service availability

The description of the relevant contextual elements defined in

Table 1 is as follow:

 Credit card possession: it indicates if the client has a

credit card or not.

948 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(4),943-950 ,2017

July-August

 Checkbook possession: it indicates if the client has a

checkbook or not.

 Cash possession: it indicates if the client has cash or not.

 Bank account possession: it indicates if the customer has a

bank account or not.

 Credit card status: it indicates if the credit card is valid or

expired.

 Preference to pay by credit card: that indicates if the

customer prefers to pay the booking fees by his credit card or

by another mean.

 Preference to pay by check: it indicates if the customer

prefers to pay the booking fees by check or by another mean.

 Preference to pay by bank transfer: it indicates if the

customer prefers to pay the booking fees by bank transfer or

by another mean.

 Preference to pay by cash: it indicates if the customer

prefers to pay the booking fees by cash or by another mean.

 Customer type: it indicates whether the customer is

accustomed to make bookings at this hotel or not. If the

number of bookings per year is more than five, then the client

is described as “regular” otherwise he is described as

“normal”.

 Current day: it indicates the current date.

 Pay by credit card service availability: it indicates if the

payment by credit card service is available or not.

 Pay by check service availability: it indicates if the

payment by check service is available or not.

 Pay by cash service availability: it indicates if the

payment by cash service is available or not.

 Pay by bank transfer service availability: it indicates if

the payment by bank transfer is available or not.

The selection of the adequate alternative requires a given

context. A context representation can be defined as a

conjunction (AND) of contextual assertions which may be

negative by a negation operator (NOT) (Angles, R., 2014).

The required contexts related to the proposed alternatives are

described as follow:

 Pay booking by credit card= ((Credit card possession=

yes) AND (Credit card status= valid)AND (Preference to pay

by credit card=yes) AND (Payment by credit card service

availability=yes)

This assertion implies that in order to use the “PayCard” Web

service, the customer should have a valid credit card and the

use of the card has not to be out of his preferences. Besides,

the “PayCard” Web service should be available at the current

time.

 Pay booking by check= (Check book possession=yes)

AND (Preference to pay by check=yes) AND (Payment by

check service availability=yes)

 This assertion implies that in order to use the “PayCeck”

Web service, the customer should have a check book, and the

use of the check book has not to be out of his preferences.

Finally, the “PayCeck” Web service should be available at

the current time.

 Pay booking by bank transfer= (Bank account

possession=yes) AND (Preference to pay by bank

transfer=yes) AND (Payment by bank transfer service

availability=yes) AND NOT ((day = Saturday) OR (day=

Sunday))

This assertion implies that in order to use the

“PayBankTransfer” Web service, the customer should have a

bank account, and the use of the bank transfer has not to be

out of his preferences. Besides, the “PayBankTransfer” Web

service should be available at the current time. Also, it should

not be a Saturday or Sunday day since most banks are closed

these days.

 Pay booking by cash=(Cash possession=yes) AND

(Preference to pay by cash=yes) AND (Payment by cash

service availability=yes)

 This assertion implies that in order to use the “PayCash”

Web service, the customer should have cash, and the use of

the bank transfer has not to be out of his preferences. Finally,

the “PayCash” Web service should be available at the current

time.

6.3. The Relevant Contextual Element Capture

 We assume that, in the current context, the capture of the

relevant contextual elements values shows the following

elements (see Table 2). These values can be captured

explicitly or implicitly. We give just a preview.

Table 2: Relevant contextual elements values.
Relevant contextual

element

Value Capture method

Credit card possession Yes Explicit (provided by the

user)

Credit card status Valid Implicit (by the access to

the calendar)

...

6.4. Adequate Web Services Definition

We assume that the current context allows using only the

credit card in order to pay the booking fees. Hence, only the

“PayCard” Web service will be offered to the user in this

context. This “preventive adaptation” modifies the initial

booking process Figure (6).

Figure 6: The new process schema after the “preventive

adaptation”

6.5. Adequate Web Services Definition

As mentioned in section 4.2, each decision point is associated

with one or more adaptation services.

We assume that the service provider associates the following

adaptation services to the “payment method choice”

decision point:
 “KeepingReservation2Days” adaptation service: allows

keeping the booking process for two additional days.
 “KeepingReservation4Days” adaptation service: allows

keeping the booking process for additional four days. It is
used especially when it is a weekend period for example

Sci.Int.(Lahore),29(4),943-950 ,2017 ISSN 1013-5316;CODEN: SINTE 8 949

July-August

and keeping the reservation process only for two days is
not enough.

 “ValidateReservation” adaptation service: allows validating
the booking process as if the customer paid the booking
fees. This adaptation service can be used in rare cases
where a customer is considered “faithful customer” (i.e.
who’s the number of booking made during the year
exceeds five times [28]. This service does not replace the
booking payment service but rather to validate the booking
in order to satisfy a “faithful customer” and terminates the
process as well. The specification of the payment
procedure in this case is left to the enterprise business
expert. For example, when a new booking process is
launched by the “regular customer”, the fees payment of
this booking is made [27].

The already defined adaptation services and their required

contexts (defined by the business expert of the enterprise) are

presented in Figure (7).

Figure 8: The adaptation services and their required contexts.

Currently, we do not have need to use an adaptation service

from the three proposed ones since the definition of adequate

alternatives step implies that the “PayCard” service is

adequate to the current context and it can be used by the

customer.

6.6. Context Change and Adaptation Service Selection

When the user enters the credit card number to make the

booking payment, an alert notifies him that his credit card

amount is not sufficient to cover the accommodation fees.

Hence, the payment cannot be made with this credit card. The

alert is an event that will trigger either the proposal of another

alternative (i.e. the use of another allowed Web service if it

exists) or the looking for a suitable adaptation service in the

case of the absence of another alternative. In our case, there

are no other alternatives offered to the customer since the

only possible way is “Pay booking by credit card” (see

section 6.4). Then, the call for an adaptation service remains

the only possibility in order to adapt the BPEL process to the

new context.

According to the new context, the adaptation service

“KeepingReservation4Days” will be selected and invoked.

The adapted process is modelling using BPMN diagram and

shown in Figure (8).

7. Conclusion and Future Work
In this paper, we have presented a solution to support the

dynamic adaptation of service compositions. The “preventive

adaptation” is carried out before the execution of given

services that participate to the process. This adaptation is

based on the selection of adequate services depending to the

current context. The “curative adaptation” is carried out at the

service runtime and it is based on the invocation of the

“adaptation services”. Our solution is validated by a hotel

booking case study and illustrated by support tool

architecture.

Actually, we are working on the implementation of the

proposed support tool architecture. Also, we will look to

extend our approach in order to handle with the service

composition issue in unknown contexts.

REFERENCES
[1] “No Title,” IBM, 2015. .

[2] A. Salinas and P. Ferragud, 2014 “Document

downloaded from : This paper must be cited as :

Dynamic Adaptation of Service Compositions with

Variability Models,” Journal of Systems and Software
.pp. 24–47,.

[3] C. Szyperski, “Component Software and the Way

Ahead,” Found. Component-Based Syst., pp. 1–20,

2000.

[4] C. Zeginis and D. Plexousakis, “Web service

adaptation: State of the art and research challenges,”

Self, pp. 1–66, 2010.

[5] OASIS Web Services Business Process Execution

Language (WSBPEL), D. Jordan, and A. Alves, “Web

Services Business Process Execution Language Version

2 . 0,” Language (Baltim)., vol. 11, no. April, pp. 1–264,

2007.

[6] D. Domingos and C. Cândido, “Flexibility in Cross-

organizational WS-BPEL Business Processes,”

Procedia Technol., vol. 9, pp. 584–595, 2013.

[7] A. Charfi and M. Mezini, AO4BPEL: An aspect-

oriented extension to BPEL, vol. 10, no. 3. 2007.

[8] K. Boukadi, C. Ghedira, Z. Maamar, D. Benslimane,

and L. Vincent, “Context-aware data and IT services

collaboration in E-business,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 5740 LNCS, pp. 91–115, 2009.

[9] “World â€
TM

 s largest Science , Technology & Medicine

Open Access book publisher A Study of the Porosity of

Activated Carbons Using the Scanning Electron

Microscope,” 2010.

[10] K. Boumhamdi and Z. Jarir, “A Flexible Approach to

Compose Web Services in Dynamic Environment,” Int.

Figure 7: The adapted process after the “curative

adaptation.

950 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(4),943-950 ,2017

July-August

J., vol. 1, no. 2, pp. 157–163, 2010.

[11] H. Tout, A. Mourad, C. Talhi, and H. Otrok, “AOMD

approach for context-adaptable and conflict-free Web

services composition,” Comput. Electr. Eng., vol. 44,

pp. 200–217, 2015.

[12] F. Computing and E. Group, “Understanding and Using

Context.”

[13] S. N. Han, G. M. Lee, and N. Crespi, “Semantic

context-aware service composition for building

automation system,” IEEE Trans. Ind. Informatics, vol.

10, no. 1, pp. 252–261, 2014.

[14] J. D. Kim, J. Son, and D. K. Baik, “CA 5W1H Onto:

Ontological context-aware model based on 5W1H,” Int.

J. Distrib. Sens. Networks, vol. 2012, 2012.

[15] B. Chihani, E. Bertin, F. Jeanne, N. Crespi, B. Chihani,

E. Bertin, F. Jeanne, and N. C. Context-aware,

“Context-aware systems : a case study To cite this

version :,” 2012.

[16] H. Guermah, T. Fissaa, H. Hafiddi, M. Nassar, and A.

Kriouile, “A semantic approach for service adaptation in

context-aware environment,” Procedia Comput. Sci.,

vol. 34, pp. 587–592, 2014.

[17] A. Celentano, “Adaptation in context-aware pervasive

information systems : the SECAS project,” 2006.

[18] F. Akkawi, A. Bader, D. Fletcher, K. Akkawi, M.

Ayyash, and K. Alzoubi, “Software adaptation: A

conscious design for oblivious programmers,” IEEE

Aerosp. Conf. Proc., 2007.

[19] J. Keeney, “Completely Unanticipated Dynamic

Adaptation of Software Completely Unanticipated

Dynamic Adaptation of Software,” no. January 2005,

2014.

[20] “Documents Associated With Business Process Model

And Notation
TM

 (BPMN
TM

) Version 2.0,” BPMN, 2011.

[Online]. Available:

http://www.omg.org/spec/BPMN/2.0/. [Accessed: 01-

Dec-2015].

[21] C. Ayora, V. Torres, V. Pelechano, and G. H. Alférez,

“Applying CVL to business process variability

management,” Proc. Var. You Work. Var. Model. Made

Useful Everyone - VARY ’12, no. February 2015, pp.

26–31, 2012.

[22] R. Angles, P. Ramadour, C. Cauvet, and S. Rodier,

“Adaptation dynamique de processus m??tier:

Application au circuit du medicament ?? l???AP-HM,”

Ing. des Syst. d’Information, vol. 19, no. 2, pp. 35–60,

2014.

[23] T. R. Gruber, “Toward principles for the design of

ontologies used for knowledge sharing,” Int. J. Hum.

Comput. Stud., vol. 43, no. 5–6, pp. 907–928, 1995.

[24] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge

Engineering: Principles and Methods,” Artif. Intell.,

1998.

[25] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D.

Nicklas, A. Ranganathan, and D. Riboni, “A survey of

context modelling and reasoning techniques,” Pervasive

Mob. Comput., vol. 6, no. 2, pp. 161–180, 2010.

[26] J. Indulska and P. Sutton, “Location management in

pervasive systems,” Conf. Res. Pract. Inf. Technol. Ser.

Vol. 34, p. 143, 2003.

[27] J. Alston and D. Hess, “UDDI (Universal Description ,

Discovery , and Integration) and Web Services :

Perspective Summary registry of Web services data and

metadata , APIs , and interfaces for accessing the

services . Note Universal Description , Discovery and

Integration (UDDI) is a registry , not a repository . The

UDDI registry only stores the interfaces to Web services

, but not the Web services themselves ; the

implementations are available at another location . A

repository , on the other hand , would store both the

interfaces and the UDDI (Universal Description ,

Discovery , and Integration) and Web Services :

Perspective List Of Figures,” no. November, pp. 1–28,

2002.

[28] Y. Jamoussi, “Enhancing Satisfaction of Actor’s

Requirements in Web Service Composition: A Guided

Negotiation Based Approach,” J. Softw. Eng., vol. 9, pp.

429–450, 2015.

