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1. INTRODUCTION 
The term “convex’’ stems from a result obtained by 

Hermite in 1881 and published in 1883 as a short note in 

Mathesis, a journal of elementary mathematics. In a letter 

sent on November 22, 1881, to the journal Mathesis (and 

published there two years later), Ch. Hermite noted that 

every convex function f : [a, b] →  R satisfies the 

inequalities 
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The left-hand side inequality was rediscovered ten years 

later by J. Hadamard. Nowadays, the double inequality 

(1.1) is called the Hermite-Hadamard inequality. The 

interested reader can find its complete story in ,       -  
Number of articles are published on generalization, 

refinements and extensions of inequality (1.1). 

We include some basic definitions which will be necessary 

in the forthcoming theorems. 

Definition 1.1[4] Let   be a convex set in a real vector 

space. A function     is said to be convex if 

 (    (   )  )    (  )  (   ) (  ) 
        and   ,   -. 
Definition 1.2[4] A function   ,   )    is said to be 

        (in second sense) if, 

 (    (   )  )   
  (  )  (   )

  (  ) 
holds        ,   ),   ,   - and some fixed   (   -. 
The class of  -convex (in second sense) functions are 

usually denoted by  
 . It can be easily seen that for   , 

            reduces to ordinary convexity. 

  

Dragomir , - has extended inequality (   ) as: 

Theorem1.1.Let         be a differentiable 

function on   , and       with    . If |  ( )|is convex 

on ,   -, then 
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Another result has been published in , - as: 

Theorem 1.2.Let         be a differentiable 

function on   ,       with     and    . If mapping 
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U. S. Kirmaci in , - refine inequality (   ) as: 

Theorem 1.3.Let     ,   ) be a differentiable mapping 

on    and       with   , then 
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And also in , -: 
Theorem 1.4. Let     ,   )  be a differentiable 

mapping on    and       with     .If |  ( )|
 

 is  -

convex on ,   - for some fixed   (   - and      then 
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}  (1.5) 

In this paper, we find new inequalities for those functions 

whose absolute values of first derivative are  -convex and 

apply these inequalities to discover inequalities for special 

mean. 

2.     MAIN RESULT 

We use the following lemma, to introduce our main 

results. 

Lemma 2.1 ([6]): Let   be an interval and       be a 

differentiable on    ,      with     and     . If 

     ,   - then the following inequality holds: 
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Theorem 2.1: Let     ,   )    be a differentiable 

mapping on          with           ⁄      
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and     ,   -. If |  ( )| is  -convex on ,   -  then the 

following inequality holds. 

|(   ) ( )    ( )  (   ) .
   

 
/  

 

   
∫  ( )  
 

 
|  

(   )

(   )
02
     

(   )
 

 

    
 
     

(   )
 

 .
 

    
  /  

   

   
.

 

    
  /3 |  ( )|  2

 (   )   

   
 

 .  
 

    
/  

 

    
.
 

   
  /  

 

   
 
 (   )   

   
 

 

    
.  

 

   
/  

 

    
3 |  ( )|1        (   )  

Proof: Let 
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By taking modulus on both sides of (   ), we get the 

inequality 
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Using above values of    and    in (   )  we get the 

     of (   ). 
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Corollary 3.1.1: Let         be a differentiable 

mapping on          with       

      ⁄     and     ,   -. If |  ( )| is convex 

on ,   -  then the following inequality holds. 
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Proof :Proof of this corollary is simple, by putting     

in theorem 3.1. 

Theorem 3.2: Let     ,   )    be a differentiable 

mapping on          with           ⁄      

and      ,   - . If |  ( )|
 

 for     is  -convex on 

,   -  then 
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Where 
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Proof:By lemma 2.1 and using the properties of modulus, 

we have 
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Using Holder’s inequality, 
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By using the beta and incomplete beta function, we have 
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Proof: Putting     in theorem 3.2. 

Corollary 3.2.2: Let     ,   )    be a differentiable 

mapping on          with              

 and      ,   - . If |  ( )|
 

 for     is  -convex on 
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Proof:By putting       
 

 
 in corollary 3.2.1. 

Corollary 3.2.3:Let     ,   )    be a differentiable 
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|  ( )|
 
 for     is  -convex on ,   -      

| .
   

 
/  

 

   
∫  ( )  
 

 
|  

(   )

 
.

 

(   )(   )    
/

 

 
[{(  

 )|  ( )|
 
 (        )|  ( )|

 
}
 

  {(       

 )|  ( )|
 
 (   )|  ( )|

 
}
 

 7                           (2.7) 

|
 ( )  ( )

 
 

 

   
∫  ( )  
 

 
|  

(   )

 
.

 

(   )(   )    
/

 

 
[{|  ( )|

 
 

(       )|  ( )|
 
}
 

  {(       )|  ( )|
 
 

|  ( )|
 
}
 

 7                            (2.8) 

|
 

 
2 ( )   ( )    .

   

 
/3  

 

   
∫  ( )  
 

 
|  

 (   )

  
0

 

 (   )(   )      
1

 

 
[{,    (    )   -|  ( )|

 
 

,           *    (   )      +-|  ( )|
 
}
 

  

{,           *    (   )      +-|  ( )|
 
 

,    (    )   -|  ( )|
 
}
 

 7        (2.9) 

Proof: By putting(   )  (   ) (   )and(   ) in 

corollary 3.2.2. 

Corollary 3.2.4:Let     ,   )    be a differentiable 

mapping on          with    and     ,   -. If 
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Proof: By putting     in corollary 3.2.3. 

Remark: By puting    in corollary 3.2.4, we reform the 

inequality (   ) and inequalities of , - as follows. 
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Let       be a differentiable mapping on          
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Proof: Using lemma 2.1, convexity of   ( ) on ,   - and 

Holder’s inequality  
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Using above values of    and    in (2.16), the required 

result follows. 

Corollary 2.3.1:Let     ,   )    be a differentiable 
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Proof:The result is obtained, if we put      
 

 
 in 

theorem 2.3. 

3.      APPLICATION TO SPECIAL MEAN. 

For    and    , means are defined as: 

Arithmetic Mean: (   )  
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Generalized logarithmic mean  
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Proof: Take  ( )  
    

   
. As   ( )     is  -convex 

function. Appling  ( )  on corollary 2.2.2. We get the 

desire result. 
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Proof:By 

putting(   )  
(   ) (   ) (   ) (   ) (   ) (   )and(   ) in theorem 

3.1. 
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Theorem 3.3: Let                 ,  
    and     then 
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Proof:By putting     in theorem 3.3. 
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