HADAMARD'S TYPE INEQUALITIES FOR FUNCTIONS WHOSE ABSOLUTE VALUES OF FIRST DERIVATIVE AREs-CONVEX

Abdul Waheed ${ }^{1}$, Muhammad Iqbal Bhatti ${ }^{1}$ Fakhar Haider ${ }^{1}$

Corresponding Author:waheeduet 1 @gmail.com
${ }^{1}$ Department of Mathematics, University of Engineering and Technology Lahore, Pakistan

Abstract

In this paper, we find new inequalities for functions whose absolute values of first derivative are s-convex and deduce some relations related to special mean.

Keywords: Integral Inequalities; Hermite-Hadamard Inequality; s-convex function; Beta and incomplete Beta Functions; Holder's Inequality; Means for real numbers.

1. INTRODUCTION

The term "convex" stems from a result obtained by Hermite in 1881 and published in 1883 as a short note in Mathesis, a journal of elementary mathematics. In a letter sent on November 22, 1881, to the journal Mathesis (and published there two years later), Ch. Hermite noted that every convex function $f:\left[\begin{array}{ll}a, b] & \mathbf{R} \text { satisfies the }\end{array}\right.$ inequalities

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

The left-hand side inequality was rediscovered ten years later by J. Hadamard. Nowadays, the double inequality (1.1) is called the Hermite-Hadamard inequality. The interested reader can find its complete story in [2,3,7,8]. Number of articles are published on generalization, refinements and extensions of inequality (1.1).
We include some basic definitions which will be necessary in the forthcoming theorems.
Definition 1.1[4] Let X be a convex set in a real vector space. A functionf : $X \rightarrow \mathbb{R}$ is said to be convex if

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

$\forall x_{1}, x_{2} \in$ Xand $t \in[0,1]$.
Definition 1.2[4] A function $f:[0, \infty) \rightarrow \mathbb{R}$ is said to be s - convex(in second sense) if,

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq t^{s} f\left(x_{1}\right)+(1-t)^{s} f\left(x_{2}\right)
$$

holds $\forall x_{1}, x_{2} \in[0, \infty), t \in[0,1]$ and some fixed $s \in(0,1]$. The class of s-convex (in second sense) functions are usually denoted by k_{s}^{2}. It can be easily seen that fors $=1$, s - convexity reduces to ordinary convexity.

Dragomir [1] has extended inequality (1.1) as:
Theorem1.1.Let $f: I^{0} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on I^{0}, and $a, b \in I^{0}$ with $b>a$. If $\left|f^{\prime}(x)\right|$ is convex on $[a, b]$, then

$$
\begin{align*}
\left\lvert\, \frac{f(a)+f(b)}{2}-\right. & \left.\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \\
& \leq \frac{(b-a)}{8}\left(\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right) \tag{1.2}
\end{align*}
$$

Another result has been published in [1] as:
Theorem 1.2.Let $f: I^{0} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function on $I^{0}, a, b \in I^{0}$ with $b>a$ and $p>1$. If mapping $\left|f^{\prime}(x)\right|^{\frac{p}{p-1}}$ is convex on $[a, b]$ for $q>1$, then

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \quad \leq \frac{(b-a)}{2(\mathrm{p}+1)^{\frac{1}{q}}}\left(\left|f^{\prime}(x)\right|^{\frac{p}{p-1}}+\left|f^{\prime}(x)\right|^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}} \tag{1.3}
\end{align*}
$$

U. S. Kirmaci in [5] refine inequality (1.1) as:

Theorem 1.3.Let $f: I \subset[0, \infty)$ be a differentiable mapping on I^{0} and $a, b \in I$ withb $>a$, then
$\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right|$
$\leq \frac{(b-a)}{2}\left(\frac{1}{2}\right)^{1-\frac{1}{q}}\left[\frac{2+\left(\frac{1}{2}\right)^{s}}{(s+1)(s+2)}\right]^{\frac{1}{q}}\left(\left|f^{\prime}(a)\right|^{q}+\left|f^{\prime}(b)\right|^{q}\right)^{\frac{1}{q}}$
And also in [5]:
Theorem 1.4. Let $f: I \subset[0, \infty)$ be a differentiable mapping on I^{0} and $a, b \in I$ with $b>a$.If $\left|f^{\prime}(x)\right|^{q}$ is s convex on $[a, b]$ for some fixed $s \in(0,1]$ and $q>1$, then
$\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right|$
$\leq \frac{(b-a)}{4}\left(\frac{q-1}{2 q-1}\right)^{1-\frac{1}{q}}\left[\frac{1}{s+1}\right]^{\frac{1}{q}}\left\{\left[\left|f^{\prime}(a)\right|^{q}+\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}\right]^{\frac{1}{q}}+\right.$

$$
\begin{equation*}
\left.\left[\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}+\left|f^{\prime}(b)\right|^{q}\right]^{\frac{1}{a}}\right\} \tag{1.5}
\end{equation*}
$$

In this paper, we find new inequalities for those functions whose absolute values of first derivative are s-convex and apply these inequalities to discover inequalities for special mean.

2. MAIN RESULT

We use the following lemma, to introduce our main results.
Lemma 2.1 ([6]): Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a differentiable on $I^{0}, a, b \in I$ with $a<b$ and $\lambda, \mu \in \mathbb{R}$. If $f^{\prime} \in L^{1}[a, b]$ then the following inequality holds:
$(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x$ $=(b-a)\left\{\int_{0}^{1 / 2}(\lambda-t) f^{\prime}(t a+(1-t) b) d t+\right.$
$\left.\int_{1 / 2}^{1}(\mu-t) f^{\prime}(t a+(1-t) b) d t\right\}$
Theorem 2.1: Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a, 1 \geq \mu \geq 1 / 2 \geq \lambda \geq 0$
andf $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|$ is s-convex on $[a, b]$, then the following inequality holds.
$\left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)-\right.$
$\frac{1}{b-a} \int_{a}^{b} f(x) d x \left\lvert\, \leq \frac{(b-a)}{(s+1)}\left[\left\{\frac{2 \lambda^{s+2}}{(s+2)}-\frac{\lambda}{2^{s+1}}+\frac{2 \mu^{s+2}}{(s+2)}-\right.\right.\right.$
$\left.\mu\left(\frac{1}{2^{s+1}}+1\right)+\frac{s+1}{s+2}\left(\frac{1}{2^{s+1}}+1\right)\right\}\left|f^{\prime}(a)\right|+\left\{\frac{2(1-\lambda)^{s+2}}{s+2}+\right.$
$\lambda\left(1+\frac{1}{2^{s+1}}\right)-\frac{1}{2^{s+2}}\left(\frac{1}{s+2}+1\right)-\frac{1}{s+2}+\frac{2(1-\mu)^{s+2}}{s+1}-$
$\left.\left.\frac{1}{2^{s+2}}\left(1+\frac{1}{s+2}\right)+\frac{\mu}{2^{s+1}}\right\}\left|f^{\prime}(b)\right|\right]$
Proof: Let

$$
\begin{gather*}
I=\left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)\right. \tag{2.2}\\
\left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\,
\end{gather*}
$$

By taking modulus on both sides of (2.1), we get the inequality
$I \leq(b-a)\left\{\int_{0}^{1 / 2}|\lambda-t|\left|f^{\prime}(t a+(1-t) b)\right| d t+\right.$ $\left.\int_{1 / 2}^{1}|\mu-t|\left|f^{\prime}(t a+(1-t) b)\right| d t\right\}$
As $\left|f^{\prime}(x)\right|$ is s-convex, so

$$
\begin{gathered}
I \leq \\
(b-a)\left\{\int_{0}^{1 / 2}|\lambda-t|\left(t^{s}\left|f^{\prime}(a)\right|+(1-t)^{s}\left|f^{\prime}(b)\right|\right) d t+\right. \\
\left.\int_{1 / 2}^{1}|\mu-t|\left(t^{s}\left|f^{\prime}(a)\right|+(1-t)^{s}\left|f^{\prime}(b)\right|\right) d t\right\} \\
=(b-a)\left[I_{1}+I_{2}\right](2.3)
\end{gathered}
$$

As
$I_{1}=\left|f^{\prime}(a)\right|\left\{\frac{2 \lambda^{s+2}}{(s+1)(s+2)}-\frac{\lambda}{2^{s+1}(s+1)}+\frac{1}{2^{s+2}(s+2)}\right\}+$
$\frac{\left|f^{\prime}(b)\right|}{s+1}\left\{\left\{\frac{2(1-\lambda)^{s+2}}{s+2}+\lambda\left(1+\frac{1}{2^{s+1}}\right)-\frac{1}{2^{s+2}}\left(\frac{1}{s+2}+1\right)-\frac{1}{s+2}\right)\right\}$
$I_{2}=\left|f^{\prime}(a)\right|\left\{\frac{2 \mu^{s+2}}{(s+1)(s+2)}-\frac{\mu}{s+1}\left(\frac{1}{2^{s+1}}+1\right)+\frac{1}{s+2}\left(\frac{1}{2^{s+2}}+\right.\right.$

1) $\}+\frac{\left|f^{\prime}(b)\right|}{s+1}\left\{\frac{2(1-\mu)^{s+2}}{s+2}-\frac{1}{2^{s+2}}\left(1+\frac{1}{s+2}\right)+\frac{\mu}{2^{s+1}}\right\}$

Using above values of I_{1} and I_{2} in (3.2), we get the R.H.Sof (2.3).
$=\frac{(b-a)}{(s+1)}\left[\left\{\frac{2 \lambda^{s+2}}{(s+2)}-\frac{\lambda}{2^{s+1}}+\frac{2 \mu^{s+2}}{(s+2)}-\mu\left(\frac{1}{2^{s+1}}+1\right)+\right.\right.$
$\left.\frac{s+1}{s+2}\left(\frac{1}{2^{s+1}}+1\right)\right\}\left|f^{\prime}(a)\right|+\left\{\frac{2(1-\lambda)^{s+2}}{s+2}+\lambda\left(1+\frac{1}{2^{s+1}}\right)-\right.$
$\frac{1}{2^{s+2}}\left(\frac{1}{s+2}+1\right)-\frac{1}{s+2}+\frac{2(1-\mu)^{s+2}}{s+1}-\frac{1}{2^{s+2}}\left(1+\frac{1}{s+2}\right)+$
$\left.\left.\frac{\mu}{2^{s+1}}\right\}\left|f^{\prime}(b)\right|\right]$ (Proved)
Corollary 3.1.1: Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a$,
$1 \geq \mu \geq 1 / 2 \geq \lambda \geq 0$ andf $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|$ is convex on $[a, b]$, then the following inequality holds.

$$
\begin{aligned}
& \left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)\right. \\
& \left.\quad-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \\
& \leq \frac{b-a}{24}\left\{\left(10-3 \lambda+8 \lambda^{3}-15 \mu+8 \mu^{3}\right)\left|f^{\prime}(a)\right|\right. \\
& \quad+\left(8-9 \lambda+24 \lambda^{2}-8 \lambda^{3}-21 \mu+24 \mu^{2}\right. \\
& \left.\left.-8 \mu^{3}\right)\left|f^{\prime}(b)\right|\right\}
\end{aligned}
$$

Proof : Proof of this corollary is simple, by putting $s=1$ in theorem 3.1.
Theorem 3.2: Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a, 1>\mu \geq 1 / 2 \geq \lambda>0$ and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|^{q}$ for $q>1$ is s-convex on [a, b], then
$\left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)-\right.$
$\left.\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\,$
\leq
(b-
a) $\left(\frac{\mathrm{q}-1}{2 \mathrm{q}-\mathrm{p}-1}\right)^{1-\frac{1}{\mathrm{q}}}\left[\left(\lambda^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}+\right.\right.$
$\left.\left(\frac{1}{2}-\lambda\right)^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}\right)^{1-\frac{1}{\mathrm{q}}}\left\{\left|f^{\prime}(a)\right|^{q} \lambda^{s+p+1}[B(s+1, p+1)+\right.$ $\left.(-1)^{p+1} B\left(1-\frac{1}{2 \lambda} ; p+1, s+1\right)\right]+\left|f^{\prime}(b)\right|^{q}(1-$
$\lambda)^{s+p+1}\left[(-1)^{p+1} B\left(\frac{\lambda}{\lambda-1} ; p+1, s+1\right)+B\left(\frac{1-2 \lambda}{2(1-\lambda)} ; p+\right.\right.$
$1, s+1)]\}^{\frac{1}{q}}+\left(\left(\mu-\frac{1}{2}\right)^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}+(1-\mu)^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}\right)^{1-\frac{1}{\mathrm{q}}}$
$\left\{\left|f^{\prime}(a)\right|^{q} \mu^{s+p+1}[B(1-1 / 2 \mu ; p+1, s+1)+\right.$
$\left.(-1)^{p+1} B\left(\frac{\mu-1}{\mu} ; p+1, s+1\right)\right]+\left|f^{\prime}(b)\right|^{q}(1-$
$\mu)^{s+p+1}\left[(-1)^{p+1} B\left(\frac{1-2 \mu}{2(1-\mu)} ; p+1, s+1\right)+\right.$
$\left.B(p+1, s+1)]]^{\frac{1}{q}}\right]$
Where

$$
\begin{gathered}
B(p, s)=\int_{0}^{1} t^{p-1}(1-t)^{s-1} d t \\
\text { and } B(v ; p, s)=\int_{0}^{v} t^{p-1}(1-t)^{s-1} d t
\end{gathered}
$$

Proof:By lemma 2.1 and using the properties of modulus, we have

$$
\begin{aligned}
& \left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)\right. \\
& \left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \\
& \leq(b-a)\left\{\int_{0}^{1 / 2}|\lambda-t|\left|f^{\prime}(t a+(1-t) b)\right| d t+\right. \\
& \left.\int_{1 / 2}^{1}|\mu-t|\left|f^{\prime}(t a+(1-t) b)\right| d t\right\}
\end{aligned}
$$

Using Holder's inequality,
$\leq(b-a)\left\{\left(\int_{0}^{1 / 2}|\lambda-t|^{\frac{q-p}{q-1}} d t\right)^{1-\frac{1}{q}}\left(\left.\int_{0}^{\frac{1}{2}}|\lambda-t|^{p} \right\rvert\, f^{\prime}(t a+\right.\right.$
$\left.(1-t) b)\left.\right|^{q} d t\right)^{\frac{1}{q}}+\left(\int_{1 / 2}^{1}|\mu-t|^{\frac{q-p}{q-1}} d t\right)^{1-\frac{1}{q}}\left(\int_{1 / 2}^{1} \mid \mu-\right.$
$\left.\left.\left.t\right|^{p}\left|f^{\prime}(t a+(1-t) b)\right|^{q} d t\right)^{\frac{1}{q}}\right\}$

$$
\begin{equation*}
=(b-a)\left[I_{1}+I_{2}\right] \tag{2.4}
\end{equation*}
$$

By using the beta and incomplete beta function, we have

$$
\begin{align*}
& I_{1}=\left(\frac{\mathrm{q}-1}{2 \mathrm{q}-\mathrm{p}-1}\right)^{1-\frac{1}{\mathrm{q}}}\left(\lambda^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}+\left(\frac{1}{2}-\lambda\right)^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}\right)^{1-\frac{1}{\mathrm{q}}} \\
& \left\{| f ^ { \prime } (a) | ^ { q } \lambda ^ { s + p + 1 } \left[B(s+1, p+1)+(-1)^{p+1} B(1-\right.\right. \\
& \left.\left.\frac{1}{2 \lambda} ; p+1, s+1\right)\right]+ \\
& \left|f^{\prime}(b)\right|^{q}(1-\lambda)^{s+p+1}\left[(-1)^{p+1} B\left(\frac{\lambda}{\lambda-1} ; p+1, s+1\right)+\right. \\
& \left.\left.B\left(\frac{1-2 \lambda}{2(1-\lambda)} ; p+1, s+1\right)\right]\right\}^{\frac{1}{q}} \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& I_{2}=\left(\frac{\mathrm{q}-1}{2 \mathrm{q}-\mathrm{p}-1}\right)^{1-\frac{1}{\mathrm{q}}}\left(\left(\mu-\frac{1}{2}\right)^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}\right. \\
& \\
& \left.+(1-\mu)^{\frac{2 \mathrm{q}-\mathrm{p}-1}{\mathrm{q}-1}}\right)^{1-\frac{1}{q}} \\
& \times\left\{\left|f^{\prime}(a)\right|^{q} \mu^{s+p+1}\right.
\end{aligned} \begin{aligned}
& {[B(1-1 / 2 \mu ; p+1, s+1)} \\
& \left.+(-1)^{p+1} B\left(\frac{\mu-1}{\mu} ; p+1, s+1\right)\right] \\
& +\left|f^{\prime}(b)\right|^{q}(1 \\
& -\mu)^{s+p+1}\left[(- 1) ^ { p + 1 } B \left(\frac{1-2 \mu}{2(1-\mu)^{\prime}} ; p\right.\right. \tag{2.6}\\
& \left.+1, s+1)+B(p+1, s+1)]\}^{\frac{1}{q}}\right](2
\end{align*}
$$

Using (2.5) and (2.6) in (2.4). We get the desire result.
Corollary 3.2.1:Letf: $I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a, 1 \geq \mu \geq 1 / 2 \geq \lambda \geq 0$ and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|^{q}$ for $q \geq 1$ is s-convex on [$a, b]$, then

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right) \\
\\
\qquad \left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \\
(s+1)^{\frac{1}{q}} 2^{3}\left(1-\frac{1}{q}\right)
\end{array}\left(8 \lambda^{2}-4 \lambda+1\right)^{1-\frac{1}{q}}\left\{| f ^ { \prime } (a) | ^ { q } \left[\frac{\lambda^{s+2}}{s+2}+\right.\right. \\
\left.\frac{1-2 \lambda}{2^{s+2}}+\frac{1}{s+2}\left(\lambda^{s+2}-\frac{1}{2^{s+2}}\right)\right]+\left|f^{\prime}(b)\right|^{q}\left[\lambda-\frac{1}{s+2}\{1-\right. \\
\left.\left.\left.\left.(1-\lambda)^{s+2}\right\}-\frac{1}{2^{s+1}}\left(\frac{1}{2}-\lambda\right)-\frac{1}{s+2}\left\{\frac{1}{2^{s+2}}-(1-\lambda)^{s+2}\right\}\right]\right]\right\}^{\frac{1}{q}}+ \\
\left(8 \mu^{2}-12 \mu+5\right)^{1-\frac{1}{q}} \\
\left\{\left|f^{\prime}(a)\right|^{q}\left[\frac{1-2 \mu}{2^{s+2}}-\frac{1}{s+2}\left(\frac{1}{2^{s+2}}+1-2 \mu^{s+2}\right)+1-\mu\right]+\right. \\
\left.\left.\left|f^{\prime}(b)\right|^{q}\left[\frac{1}{2^{s+1}}\left(\mu-\frac{1}{2}\right)-\frac{1}{s+2}\left\{\frac{1}{2^{s+2}}-2(1-\mu)^{s+2}\right\}\right]\right]^{\frac{1}{q}}\right]
\end{array} .
\end{aligned}
$$

Proof: Putting $p=1$ in theorem 3.2.
Corollary 3.2.2: Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a, m>0, m \geq 2 l \geq$ 0 and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|^{q}$ for $q \geq 1$ is s-convex on $[a, b]$, then

$$
\begin{aligned}
\left\lvert\, \frac{l}{m}\{f(a)+f(b)\}\right. & +\frac{m-2 l}{m} f\left(\frac{a+b}{2}\right) \\
& \left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\,
\end{aligned}
$$

$\leq \frac{(b-a)}{8}\left(\frac{1}{(s+1)(s+2) m^{s+2} 2^{s-1}}\right)^{\frac{1}{q}}\left(\frac{8 l^{2}-4 m l+m^{2}}{m^{2}}\right)^{1-\frac{1}{q}} \times$
$\left[\left\{\left|f^{\prime}(a)\right|^{q}\left[(s+1) m^{s+2}-2 l(s+2) m^{s+1}+2^{s+3} l^{s+2}\right]+\right.\right.$
$\left|f^{\prime}(b)\right|^{q}\left[2^{s+3}(m-l)^{s+2}+2 l(s+2)\left(1+2^{s+1}\right) m^{s+1}-\right.$
$\left.\left.\left(s+3+2^{s+2}\right) m^{s+2}\right]\right\}^{\frac{1}{q}}+\left\{\left|f^{\prime}(a)\right|^{q}\left[2^{s+3}(m-l)^{s+2}+\right.\right.$
$\left.2 l(s+2)\left(1+2^{s+1}\right) m^{s+1}-\left(s+3+2^{s+2}\right) m^{s+2}\right]+$
$\left.\left.\left|f^{\prime}(b)\right|^{q}\left[(s+1) m^{s+2}-2 l(s+2) m^{s+1}+2^{s+3} l^{s+2}\right]\right\}^{\frac{1}{q}}\right]$
Proof:By putting $\lambda=1-\mu=\frac{l}{m}$ in corollary 3.2.1.
Corollary 3.2.3:Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a$ and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|^{q}$ for $q \geq 1$ is s-convex on $[a, b]$, then
$\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)}{8}\left(\frac{1}{(s+1)(s+2) 2^{s-1}}\right)^{\frac{1}{q}}[\{(s+$

1) $\left.\left|f^{\prime}(a)\right|^{q}+\left(2^{s+2}-3-s\right)\left|f^{\prime}(b)\right|^{q}\right\}^{\frac{1}{q}}+\left\{\left(2^{s+2}-s-\right.\right.$
2) $\left.\left.\left|f^{\prime}(a)\right|^{q}+(s+1)\left|f^{\prime}(b)\right|^{q}\right\}^{\frac{1}{q}}\right]$
$\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq$
$\frac{(b-a)}{8}\left(\frac{1}{(s+1)(s+2) 2^{s-1}}\right)^{\frac{1}{q}}\left[\left\{\left|f^{\prime}(a)\right|^{q}+\right.\right.$
$\left.\left(2^{s+1} s+1\right)\left|f^{\prime}(b)\right|^{q}\right\}^{\frac{1}{q}}+\left\{\left(2^{s+1} s+1\right)\left|f^{\prime}(a)\right|^{q}+\right.$
$\left.\left.\left|f^{\prime}(b)\right|^{q}\right\}^{\frac{1}{q}}\right]$
(2.8)
$\left|\frac{1}{6}\left\{f(a)+f(b)+4 f\left(\frac{a+b}{2}\right)\right\}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq$
$\frac{5(b-a)}{72}\left[\frac{1}{5(s+1)(s+2) 3^{s} 2^{s-1}}\right]^{\frac{1}{q}}\left[\left\{\left[3^{s+1}(2 s+1)+2\right]\left|f^{\prime}(a)\right|^{q}+\right.\right.$
$\left.\left[2.5^{s+2}+3^{s+1}\left\{2^{s+1}(s-4)-2 s-7\right\}\right]\left|f^{\prime}(b)\right|^{q}\right\}^{\frac{1}{q}}+$
$\left\{\left[2.5^{s+2}+3^{s+1}\left\{2^{s+1}(s-4)-2 s-7\right\}\right]\left|f^{\prime}(a)\right|^{q}+\right.$
$\left.\left.\left[3^{s+1}(2 s+1)+2\right]\left|f^{\prime}(b)\right|^{q}\right\}^{\frac{1}{q}}\right]$
Proof: By putting $(l, m)=(0,1),(1,2)$ and $(1,6)$ in corollary 3.2.2.
Corollary 3.2.4:Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>$ aand $f^{\prime} \in L^{1}[a, b]$. If
$\left|f^{\prime}(x)\right|$ is s-convex on $[a, b]$, then
$\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)}{(s+1)(s+2)}(1-$
$\left.\frac{1}{2^{s+1}}\right)\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]$
$\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)}{(s+1)(s+2) 2^{s+1}}\left(2^{s} s+\right.$
3) $\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]$
(2.11)
$\left|\frac{1}{6}\left\{f(a)+f(b)+4 f\left(\frac{a+b}{2}\right)\right\}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq$
$\frac{(b-a)}{(s+1)(s+2) 2^{s+2} 3^{s+2}}\left[3^{s+1}\left\{2^{s+1}(s-4)-6\right\}+2(1+\right.$
$\left.\left.5^{s+2}\right)\right]\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]$
Proof: By putting $q=1$ in corollary 3.2.3.
Remark: By putings $=1$ in corollary 3.2.4, we reform the inequality (1.2) and inequalities of [6] as follows.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>$ aand $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|$ is convex on $[a, b]$, then

$$
\begin{align*}
& \left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \leq \frac{(b-a)}{8}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right] \\
& \left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.13}\\
& \leq \frac{(b-a)}{8}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right] \\
& \left|\frac{1}{6}\left\{f(a)+f(b)+4 f\left(\frac{a+b}{2}\right)\right\}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.14}\\
& \leq \frac{5(b-a)}{72}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right] \tag{2.15}
\end{align*}
$$

Theorem 2.3: Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a, 1>\mu \geq 1 / 2 \geq \lambda>0$ and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|^{q}$ for $q>1$ is s-convex on [$a, b]$, then
$\left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)-\right.$
$\left.\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\,$
$\leq(b-a)\left(\frac{1}{2^{s p+1}(s p+1)}\right)^{\frac{1}{p}}\left(\frac{1}{q+1}\right)^{\frac{1}{q}}\left[\left|f^{\prime}(a)\right|\left\{\left(\lambda^{q+1}+\right.\right.\right.$
$\left.\left(\frac{1}{2}-\lambda\right)^{q+1}\right)^{\frac{1}{q}}+\left(2^{s p+1}-1\right)^{\frac{1}{p}}\left(\left(\mu-\frac{1}{2}\right)^{q+1}+\right.$
$\left.\left.(1-\mu)^{q+1}\right)^{\frac{1}{q}}\right\}+\left|f^{\prime}(b)\right|\left\{\left(2^{s p+1}-1\right)^{\frac{1}{p}}\left(\lambda^{q+1}+\right.\right.$
$\left.\left.\left.\left(\frac{1}{2}-\lambda\right)^{q+1}\right)^{\frac{1}{q}}+\left(\left(\mu-\frac{1}{2}\right)^{q+1}+(1-\mu)^{q+1}\right)^{\frac{1}{q}}\right\}\right]$
Proof: Using lemma 2.1, convexity of $f^{\prime}(x)$ on $[a, b]$ and Holder's inequality

$$
\begin{aligned}
& \left\lvert\,(1-\mu) f(a)+\lambda f(b)+(\mu-\lambda) f\left(\frac{a+b}{2}\right)-\right. \\
& \left.\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \leq(b-a)\left\{\int_{0}^{1 / 2}|\lambda-t| \mid f^{\prime}(t a+\right. \\
& \left.(1-t) b)\left|d t+\int_{1 / 2}^{1}\right| \mu-t| | f^{\prime}(t a+(1-t) b) \mid d t\right\} \\
& \leq(b-a)\left\{\int_{0}^{1 / 2}|\lambda-t|\left\{t^{s}\left|f^{\prime}(a)\right|+(1-t)^{s}\left|f^{\prime}(b)\right|\right\} d t+\right. \\
& \left.\int_{1 / 2}^{1}|\mu-t|\left\{t^{s}\left|f^{\prime}(a)\right|+(1-t)^{s}\left|f^{\prime}(b)\right|\right\} d t\right\} \\
& \quad=(b-a)\left\{I_{1}+I_{2}\right\}(2.16)
\end{aligned}
$$

Now

$$
\begin{aligned}
& I_{1}=\left|f^{\prime}(a)\right| \int_{0}^{1 / 2} t^{s}|\lambda-t| d t \\
& \quad+\left|f^{\prime}(b)\right| \int_{0}^{1 / 2}(1-t)^{s}|\lambda-t| d t
\end{aligned}
$$

Using Holder's inequality
I_{1}
$\leq\left|f^{\prime}(a)\right|\left[\left(\int_{0}^{\frac{1}{2}} t^{s p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{\frac{1}{2}}|\lambda-t|^{q} d t\right)^{\frac{1}{q}}\right]$
$+\left|f^{\prime}(b)\right|\left[\left(\frac{1}{2^{s p+1}(s p+1)}\right)^{\frac{1}{p}}\left(\frac{1}{q+1}\right)^{\frac{1}{q}}\left(2^{s p+1}-1\right)^{\frac{1}{p}}\left\{\lambda^{q+1}\right.\right.$
$\left.\left.+\left(\frac{1}{2}-\lambda\right)^{q+1}\right\}^{\frac{1}{q}}\right]$
$I_{1} \leq\left(\frac{1}{2^{s p+1}(s p+1)}\right)^{\frac{1}{p}}\left(\frac{1}{q+1}\right)^{\frac{1}{q}}\left[\left|f^{\prime}(a)\right|\left\{\lambda^{q+1}+\left(\frac{1}{2}-\right.\right.\right.$
$\left.\left.\lambda)^{q+1}\right\}^{\frac{1}{q}}+\left|f^{\prime}(b)\right|\left(2^{s p+1}-1\right)^{\frac{1}{p}}\left\{\lambda^{q+1}+\left(\frac{1}{2}-\lambda\right)^{q+1}\right\}^{\frac{1}{q}}\right]$
Similarly we have
$I_{2} \leq\left(\frac{1}{2^{s p+1}(s p+1)}\right)^{\frac{1}{p}}\left(\frac{1}{q+1}\right)^{\frac{1}{q}}\left[\left|f^{\prime}(a)\right|\left(2^{s p+1}-1\right)^{\frac{1}{p}}\{(\mu-\right.$
$\left.\left.\frac{1}{2}\right)^{q+1}+(1-\mu)^{q+1}\right\}^{\frac{1}{q}}+\left|f^{\prime}(b)\right|\left\{\left(\mu-\frac{1}{2}\right)^{q+1}+\right.$
$\left.\left.(1-\mu)^{q+1}\right\}^{\frac{1}{q}}\right]$
Using above values of I_{1} and I_{2} in (2.16), the required result follows.
Corollary 2.3.1:Let $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{0}, a, b \in I$ with $b>a, m>0, m \geq 2 l \geq 0$ andf $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}(x)\right|^{q}$ for $q>0$ is s-convex on [$a, b]$, then
$\left|\frac{l[f(a)+f(b)]+(m-2 l) f\left(\frac{a+b}{2}\right)}{m}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right|$
$\leq \frac{(b-a)\left\{1+\left(2^{s p+1}-1\right)^{\frac{1}{p}}\right\}}{\left\{2^{s p+1}(s p+1)\right\}^{\frac{1}{p}}}\left\{\frac{2^{q+1} l^{q+1}+(m-2 l)^{q+1}}{(q+1) 2^{q+1} m^{q+1}}\right\}^{\frac{1}{q}}\left[\left|f^{\prime}(a)\right|+\right.$
$\left.\left|f^{\prime}(b)\right|\right]$
Proof:The result is obtained, if we put $\lambda=1-\mu=\frac{l}{m}$ in theorem 2.3.
3. APPLICATION TO SPECIAL MEAN.

For $a>0$ and $b>0$, means are defined as:
Arithmetic Mean: $A(a, b)=\frac{a+b}{2}$
Geometric Mean: $G(a, b)=\sqrt{a b}$
Harmonic Mean: $H(a, b)=\frac{2 a b}{a+b} \quad$ Logarithmic
Mean: $I(a, b)=\left\{\begin{array}{cc}\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} & \text { if } a \neq b \\ a & \text { if } a=b\end{array}\right.$
and
Generalized logarithmic mean

$$
L_{n}(a, b)= \begin{cases}{\left[\frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)}\right]^{\frac{1}{n}}} & , n \neq-1,0 \\ \frac{b-a}{\ln b-\ln a} & n=-1 \\ \frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} & , n=0\end{cases}
$$

Now, we deduce relations between means.
Theorem 3.1: Let $b>a>0, m>0, m \geq 2 l \geq 0$
and $0<s \leq 1, q \geq 1$, then
$\left|\frac{2 l A\left(a^{s+1}, b^{s+1}\right)+(m-2 l) A^{s+1}(a, b)-m L_{s+1}^{s+1}(a, b)}{m(s+1)}\right|$
$\leq \frac{(b-a)}{8}\left(\frac{1}{(\mathrm{~s}+1)(\mathrm{s}+2) \mathrm{m}^{\mathrm{s}+2} 2^{s-1}}\right)^{\frac{1}{\mathrm{q}}}\left(\frac{8 l^{2}-4 m l+m^{2}}{\mathrm{~m}^{2}}\right)^{1-\frac{1}{\mathrm{q}}}\left[\left\{a^{s q}[(s+\right.\right.$ 1) $\left.m^{s+2}-2 l(s+2) m^{s+1}+2^{s+3} l^{s+2}\right]+b^{s q}\left[2^{s+3}(m-\right.$ $l)^{s+2}+2 l(s+2)\left(1+2^{s+1}\right) m^{s+1}-(s+3+$
$\left.\left.\left.2^{s+2}\right) m^{s+2}\right]\right\}^{\frac{1}{q}}+\left\{a^{s q}\left[2^{s+3}(m-l)^{s+2}+2 l(s+2)(1+\right.\right.$ $\left.\left.2^{s+1}\right) m^{s+1}-\left(s+3+2^{s+2}\right) m^{s+2}\right]+b^{s q}\left[(s+1) m^{s+2}-\right.$ $\left.\left.\left.2 l(s+2) m^{s+1}+2^{s+3} l^{s+2}\right]\right\}^{\frac{1}{\mathrm{q}}}\right]$
Proof: Take $f(x)=\frac{x^{s+1}}{s+1}$. As $f^{\prime}(x)=x^{s}$ is s-convex function. Appling $f(x)$ on corollary 2.2.2. We get the desire result.
Corollary 3.1.1: Letb $>a>0, m>0, m \geq 2 l \geq$ 0 , and $1 \geq s>0$ then

$$
\begin{array}{r}
\left|\frac{2 l A\left(a^{s+1}, b^{s+1}\right)+(m-2 l) A^{s+1}(a, b)-m L_{s+1}^{s+1}(a, b)}{m(s+1)}\right| \\
\leq \frac{b-a}{(s+1)(s+2) 2^{s} m^{s+2}}\left[2 ^ { s + 2 } \left\{l^{s+2}\right.\right. \\
\left.+(m-l)^{s+2}\right\}+2^{s+1}(s+2) l m^{s+1} \\
\left.-\left(s+2^{s+1}\right) m^{s+2}\right] A\left(a^{s}, b^{s}\right)
\end{array}
$$

Proof: Put $q=1$ in theorem 3.1.
Corollary 3.1.2: Let $b>a>0$, and $1 \geq s>0, q \geq 1$, then

$$
\begin{align*}
& \left|\frac{A^{s+1}(a, b)-L_{s+1}^{s+1}(a, b)}{(s+1)}\right| \\
& \leq \frac{(b-a)}{8}\left(\frac{1}{(s+1)(s+2) 2^{s-1}}\right)^{\frac{1}{q}}[\{(s \\
& \left.+1) a^{s q}+\left(2^{s+2}-3-s\right) b^{s q}\right\}^{\frac{1}{q}} \\
& +\left\{\left(2^{s+2}-s-3\right) a^{s q}\right. \\
& \left.\left.+(s+1) b^{s q}\right\}^{\frac{1}{q}}\right] \tag{3.1}\\
& \left|\frac{A\left(a^{s+1}, b^{s+1}\right)-L_{s+1}^{s+1}(a, b)}{(s+1)}\right| \leq \frac{(b-a)}{8}\left(\frac{1}{(s+1)(s+2) 2^{s-1}}\right)^{\frac{1}{q}}\left[\left\{a^{s q}+\right.\right. \\
& \left.\left(2^{s+1} s+1\right) b^{s q}\right\}^{\frac{1}{q}}+ \\
& \left.\left\{\left(2^{s+2} s+1\right) a^{s q}+b^{s q}\right\}^{\frac{1}{q}}\right] \tag{3.2}\\
& \left|\frac{2 A\left(a^{s+1}, b^{s+1}\right)+A^{s+1}(a, b)-3 L_{s+1}^{S+1}(a, b)}{3(s+1)}\right| \leq \\
& \frac{5(b-a)}{72}\left[\frac{1}{5(s+1)(s+2) 3^{s} 2^{s-1}}\right]^{\frac{1}{q}}\left[\left\{\left[3^{s+1}(s-1)+2^{s+3}\right] a^{s q}+\right.\right. \\
& \left.\left[2^{2 s+5}+3^{s+1}\left\{2^{s+2}(s-1)-s-5\right\}\right] b^{s q}\right\}^{\frac{1}{q}}+
\end{align*}
$$

$\left\{\left[2^{2 s+5}+3^{s+1}\left\{2^{s+2}(s-1)-s-5\right\}\right] a^{s q}+\left[3^{s+1}(s-\right.\right.$ 1) $\left.\left.\left.+2^{s+3}\right] b^{s q}\right\}^{\frac{1}{q}}\right] \quad$ (3.3)
$\left|\frac{A\left(a^{s+1}, b^{s+1}\right)+A^{s+1}(a, b)-2 L_{s+1}^{s+1}(a, b)}{2(s+1)}\right|$
$\leq \frac{(b-a)}{32}\left[\frac{1}{(s+1)(s+2) 2^{2(s-1)}}\right]^{\frac{1}{q}}$
$\left[\left\{\left[2^{s} s+1\right] a^{s q}+\left[3^{s+2}+2^{s}\left\{2^{s+1}(s-2)-s-\right.\right.\right.\right.$
$\left.4\}] b^{s q}\right\}^{\frac{1}{q}}+\left\{\left[3^{s+2}+2^{s}\left\{2^{s+1}(s-2)-s-4\right\}\right] a^{s q}+\right.$
$\left.\left.\left[2^{s} s+1\right] b^{s q}\right\}^{\frac{1}{q}}\right]$
$\left|\frac{2 A\left(a^{s+1}, b^{s+1}\right)+3 A^{s+1}(a, b)-5 L_{s+1}^{S+1}(a, b)}{5(s+1)}\right| \leq$
$\frac{b-a}{200}\left[\frac{1}{(s+1)(s+2) 5^{s} 2^{s-1}}\right]^{\frac{1}{q}}\left[\left\{\left[5^{s+1}(3 s+1)+2^{s+3}\right] a^{s q}+\right.\right.$
$\left.\left[2^{3 s+7}+5^{s+1}\left\{2^{s+2}(s-3)-3 s-11\right\}\right] b^{s q}\right\}^{\frac{1}{q}}+$
$\left\{\left[2^{3 s+7}+5^{s+1}\left\{2^{s+2}(s-3)-3 s-11\right\}\right] a^{s q}+\right.$
$\left.\left.\left[5^{s+1}(3 s+1)+2^{s+3}\right] b^{s q}\right\}^{\frac{1}{q}}\right]$
$\left|\frac{4 A\left(a^{S+1}, b^{s+1}\right)+A^{S+1}(a, b)-5 L_{s+1}^{S+1}(a, b)}{5(s+1)}\right| \leq$
$\frac{17(b-a)}{200}\left[\frac{1}{17(s+1)(s+2) 5^{s} 2^{s-1}}\right]^{\frac{1}{q}}\left[\left\{\left[5^{s+1}(s-3)+2^{2 s+5}\right] a^{s q}+\right.\right.$
$\left.\left[2^{s+3} 3^{s+2}+5^{s+1}\left\{2^{s+2}(2 s-1)-s-7\right\}\right] b^{s q}\right\}^{\frac{1}{q}}+$
$\left\{\left[2^{s+3} 3^{s+2}+5^{s+1}\left\{2^{s+2}(2 s-1)-s-7\right\}\right] a^{s q}+\right.$
$\left.\left.\left[5^{s+1}(s-3)+2^{2 s+5}\right] b^{s q}\right\}^{\frac{1}{q}}\right]$
$\left|\frac{A\left(a^{s+1}, b^{s+1}\right)+2 A^{s+1}(a, b)-3 L_{s+1}^{S+1}(a, b)}{3(s+1)}\right| \leq$
$\frac{5(b-a)}{72}\left[\frac{1}{5(s+1)(s+2) 3^{s} 2^{s-1}}\right]^{\frac{1}{q}}\left[\left\{\left[3^{s+1}(2 s+1)+2\right] a^{s q}+\right.\right.$
$\left.\left[2.5^{s+2}+3^{s+1}\left\{2^{s+1}(s-4)-2 s-7\right\}\right] b^{s q}\right\}^{\frac{1}{q}}+$
$\left\{\left[2.5^{s+2}+3^{s+1}\left\{2^{s+1}(s-4)-2 s-7\right\}\right] a^{s q}+\right.$
$\left.\left.\left[3^{s+1}(2 s+1)+2\right] b^{s q}\right\}^{\frac{1}{q}}\right]$
Proof: By
putting $(l, m)=$
$(0,1),(1,2),(1,3),(1,4),(1,5),(2,5)$ and $(1,6)$ in theorem 3.1.

Theorem 3.2:Letb $>a>0, m>0, m \geq 2 l \geq 0$ and $q \geq 1$, then
$\left|\frac{1}{m}[2 l A(\ln a, \ln b)+(m-2 l) \ln A(a, b)]-\ln I(a, b)\right| \leq$ $\frac{(b-a)}{24 m^{3} G^{2}(a, b)}\left\{3 m\left(8 l^{2}-4 m l+m^{2}\right)\right\}^{1-\frac{1}{q}}\left[\left\{\left(2 m^{3}-8 l^{3}+\right.\right.\right.$
$\left.\left.24 l^{2} m-9 l m^{2}\right) a^{q}+\left(m^{3}+8 l^{3}-3 l m^{2}\right) b^{q}\right\}^{\frac{1}{q}}+$
$\left\{\left(m^{3}+8 l^{3}-3 l m^{2}\right) a^{q}+\left(2 m^{3}-8 l^{3}+24 l^{2} m-\right.\right.$
$\left.\left.\left.9 l m^{2}\right) b^{q}\right\}^{\frac{1}{q}}\right]$
Proof: Take $s=1$ and $f(x)=\ln x$ in corollary 2.2.3. We got the desire result.
Corollary 3.2.1: Let $b>a>0, m>0$, and $m \geq 2 l \geq 0$, then
$\left|\frac{1}{m}[2 l A(\ln a, \ln b)+(m-2 l) \ln A(a, b)]-\ln I(a, b)\right| \leq$ $\frac{b-a}{4 m^{2} H(a, b)}\left(8 l^{2}-4 l m+m^{2}\right)$
Proof: Byputting $q=1$ in theorem 3.2.

Theorem 3.3: Let $b>a>0, m>0, m \geq 2 l \geq 0,1 \geq$
$s>0$ and $q>1$, then
$\left|\frac{2 l A\left(a^{s+1}, b^{s+1}\right)+(m-2 l) A^{s+1}(a, b)-m L_{s+1}^{s+1}(a, b)}{m(s+1)}\right| \leq$
$\frac{2(b-a)\left\{1+\left(2^{s p+1}-1\right)^{\frac{1}{p}}\right\}}{\left\{2^{s p+1}(s p+1)\right\}}\left\{\frac{2^{q+1} l^{q+1}+(m-2 l)^{q+1}}{(q+1) 2^{q+1} m^{q+1}}\right\}^{\frac{1}{q}} A\left(a^{s}, b^{s}\right)$
Proof: Take $f(x)=\frac{x^{s+1}}{s+1}$. As $f^{\prime}(x)=x^{s}$ is s-convex
function. Appling $f(x)$ on corollary 2.3.1. We get the desire result.
Corollary 3.3.1: Letb $>a>0, m>0, m \geq 2 l \geq 0$,
$1 \geq s>0$ and $q \geq 1$, then

$$
\begin{aligned}
& \left|\frac{2 l A\left(a^{s+1}, b^{s+1}\right)+(m-2 l) A^{s+1}(a, b)-m L_{s+1}^{s+1}(a, b)}{m(s+1)}\right| \\
& \leq \frac{2(b-a)}{s+1}\left\{\frac{2^{q+1} l^{q+1}+(m-2 l)^{q+1}}{(q+1) 2^{q+1} m^{q+1}}\right\}^{\frac{1}{q}} A\left(a^{s}, b^{s}\right)
\end{aligned}
$$

Proof: By putting $p=1$ in theorem 3.3.

REFERENCES

[1] Dragomir S. S and R. P. Agarwal, "Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal Formula," Applied Mathematics Letters, Vol. 11, No. 5, 1998, pp. 91-95. doi:10.1016/S0893-9659(98)00086-X.
[2] Dragomir S. S, J. Pecaric and L.-E. Persson, "Some Inequalities of Hadamard Type," Soochow Journal of Mathematics, Vol. 21, No. 3, 1995, pp. 335-341.
[3] Dragomir S. S and C. E. M. Pearce, "Selected Topics on Hermite-Hadamard Type Inequalities and Applications," RGMIA Monographs, Victoria University, Melbourne, 2000.
[4] Hudzik. H and L. Maligranda, "Some remarks on sconvex functions," AequationesMathematicae, vol.48, No.1, 1994, pp.100-111.
[5] Kirmaci U. S, "Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Midpoint Formula," Applied Mathematics and Computation, Vol. 147, No. 1, 2004, pp. 137-146. doi:10.1016/S0096-3003(02)00657-4
[6] Qi Feng, Tian-yuzhang, and Bo-yan "HermiteHadamard type integral inequalities for functions whose first derivatives are of convexity" arXiv:1305.5933v1,25 May 2013
[7] Xi. B.-Y and F. Qi, "Some Hermite-Hadamard Type Inequalities for Differentiable Convex Functions and Applications," Hacettepe Journal of Mathematics and Statistics, Vol. 42, 2013, in Press.
[8] Xi. B.-Y and F. Qi, "Some Integral Inequalities of Hermite-Hadamard Type for Convex Functions with Applications to Means," Journal of Function Spaces and Applications, Vol. 2012, 2012, 14 pp. doi:10.1155/2012/980438

