
Sci.Int.(Lahore),27(6),6033-6038,2015 ISSN 1013-5316; CODEN: SINTE 8 6033

Nov.-Dec.

IMPLEMENTATION OF SOFTWARE ARTIFACT RECOVERY
COMPLEXITY TOOL

Safia Sultana
1
,Nadim Asif

2
, Mazhar Hussain Malik*

3
, Maliha Rafi

4

1,4
Department of Computer Science & IT, Institute of Southern Punjab, 9-KM, Bosan Rd, Multan

2
Department of Computer Science, Bahria University,Lahore, Pakistan
3
Department of Informatics, Universita Ca Foscari, Venezia, Italia

*Email: malik@dsi.unive.it (Corresponding Author)

ABSTRACT—Modern software development projects are getting larger in size, are being developed using different software

languages and using many third party libraries as well as frameworks. ARC is the tool that measurse the complexity of

recovered artifacts. Artifacts are generating automatically during developing the software at different steps. In this research

paper, four types of abstraction layer is defined as grouping principle, where a hierarchy is remained to with higher levels of

abstraction near the top with more concept beneath. These artifacts are recovered and analyzed how much they are complex

with the help of Artifact Recovery Compexity (ARC) tool. Artifact Recovery Complexity tool has some weight points at every

level of abstraction layer. The software artifacts also have some dependencies whom which a source code complexity is depend

upon. These dependencies are Size of source code (SSC), Source Code Type (SCT), Abstraction Level (AL) and Documentaiton

Type Support (DTS). We used ARC tool, to measure and understand the code complexity impact using thirty one format string

using fixed vulnerabilities.We analysed the impact of code complexity on the quality of results, which includes the successful

detection along with false positive rates. Artifact Recovery Complexity tool is able to detected 90% of the format string

vulnerabilities, result shows direct relation of code complexity with detetcion rate, when code complexity increased, error

detetcion automatically decreases.
Keywords-ARC, SSC, SCT, AL, DTS, Artifacts

I. INTRODUCTION
The software maintenance is the tumult where performances

of all the activities need to keep a software system proactive

after it is acknowledged and placed in the production. The

software maintenance activities are classified into four major

types, perfective, adoptive, corrective and preventive. This

classification based on modifying program to produce new

outputs, to change executing logic, new features

amalgamation, to change or correct the existing features, to

correct errors in the existing code during the system code

optimization to meet different hardward and software

enviroments.

Software maintenance is very extensivebustle and it instigate

after deliverance of the correct faults, Performance

improvement or adopting a change change environments.

Software maintenance is the post-delivery activity and which

makes the maintenance hard[15].

Software maintenance consist of those mandatory activities

which leads to provide cost-effective support to software

system. Pre-delivery activities based on planning for the

post-delivery operations, supportability and rationality

willpower. Post-delivery activities consist on software

amendment, preparation and operating a help desk.

A. Software Artifact

The software systems are composed of different types of

artifacts which are compulsory to extract different

abstractions levels for the maintenance activities[4].

Software systems can be designed in different language

which lead to high techincal complexity. It is very necessary

to understand and extract the system documents from these

complex systems for maintenance, reuse or re-engineer the

systemsSoftware are imperceptible therefore software

visualization is needed in textually [11].

1) Software Artifacts Types:A software system has a lot of

artifacts types like source code, design documents,

specification documents and programmer knowledge and

experience that are most important for the reverse

engineering efforts.

2) Abstraction Levels of Artifacts: Software consists of

several layers of abstraction built on top of raw hardware; the

lowest-level software abstraction is machine code, or object

code (Figure 1). In the context of software maintenance, four

levels of reverse engineering abstraction are defined:

implementation abstraction, structural abstraction, functional

abstraction and domain abstraction [7].

B. Software Complexity

Complexity arises in software in many forms, here is a little

analysis of software complexity and how developers come

across in software development[17]:

 At the domain level complexity in the form of lack of deep

knowledge about domain and Analysis-paralysis,

 At the team level complexity is in form of many sub-

modules and may be a project has many stakeholders.

 At the level of chaotic code flow problems in the form of

algorithmic complexity.

 A bundle of ambiguous user interface design that causes

the design coding complexity that also consisting the

hundred of table columns, designing the hundred of

documents.

 Another form of complexity is arises in coding languages.

Code is not written in extraordinary language type.

 Real time and embedded system software are another big

issue of software complexity.

6034 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(6),6033-6038,2015

Nov.-Dec.

Figure 1: Artifact Arbstraction Levles X

C. Recovery of Artifacts

We recovered the artifacts from the source code just to plan,

resign, re-implement the system or just make changes in the

current system to meet the current requirements [4].

However it is well known fact that even in organization and

developing project with mature development processes,

software artifacts created as part of these processes at the end

to be disconnected with each other.

The software artifacts require for maintenance purpose are

different at the every level of abstraction. We must need to

know that:

 The software developers have specific aim for

maintenance tasks at hand.

 Which type of artifacts are required and at what level of

abstraction?

D. Designing the ARC Tool

It has been describe that Artifact Recovery Complexity

depend upon the four type of source code dependencies that

are; (i) size of source code, (ii)level of source code type, (iii)

artifact abstraction levels (iv) documentation type support to

recover the artifact for maintenance purpose as shown in

Figure 2. Here we used the term ―Degree‖ which is two type

―Recoverness‖ that is degree to which the artifact recovery

related with other artifact for maintenance task and another

type is ―Recovership‖ that is the degree to which the artifact

recovery related with other artifact for maintenance task.

Figure 2: Designing the ARC Tool

II. MATERIALS AND METHODS
The artifact recovery complexity is the formulated method by

which we can measure the complexity of software artifact.

This research is about to implement an ARC tool that

measure the complexity of recovered artifacts. A bundle of

devices and methods have been developed for the software

programmers.

Software reflexion models can help programmers to define

the large systems by highlighting, how the actual system is

associated with high level explanation of prospect [13].

Response models are as precious as developers that analyze

the structure of large software systems. The Rigi system also

uses visual techniques to provide programmers with a

graphical presentation of the structure of a software system

[13]; Above all Rigi is designed to support reverse

engineering responsibilities where a programmer must

accomplish a working understanding of an unfamiliar

software artifact [13]. These tools provide the software

developer precious imminent into the structure of the system

under examination, but goal mentioned here is rather

different. Here we are going to implement a tool which

measure the complexity of software artifact which generate

during developing the software.

The artifacts recovery complexity depends, degree of source

code type, abstraction level, on the size of source code and

the degree of available document support to recover the

artifacts for task at hand. First I explain source code, artifacts

for maintenance, available source code and documentation

nature, extraction of artifacts, presentation of artifacts.

A. Architecture of Artifact Recovery Complexity Tool

In the world of software industry; software tools are play an

important function to achieving high self assurance that a

software system convinces critical properties. The Figure 2

describe the four different functions where tool interact to

improving the quality of both software system and software

system artifacts.

B. Source code

Source code is a piece or code which is written any

designated programing to fulfill the requirement to design

and run the system. Normally, these codes are wriiten in high

languages which are understand by the computer using a

compiler/ interpretation steps which translate the high

languages computer languages files into machine

understanable form. Source code can also be stored in a

database as is common for stored procedures or elsewhere.

The conception of source code may also be in use more

broadly to include machine code and notations in graphical

languages neither of which are textual in nature[11].

For the meticulousness ‗source code‘ is taken to signify any

fully executable description of a software system. It is hence

construed as to include machine code very high level

languages and executable graphical representations of

systems.

C. Dependency of Artifact Recovery Complexity

Recovery of software artifacts is a complex factor. The

recovery of software is easily done with the help of different

tools but the recovery of software artifacts which are written

in different languages (human languages and programming

languages or in visual format) is a complex factor as compare

to software recovery [17]. The following dependencies

factors are proposed to measure the artifacts recovery

complexity:

Sci.Int.(Lahore),27(6),6033-6038,2015 ISSN 1013-5316; CODEN: SINTE 8 6035

Nov.-Dec.

 Size of available source code

 Degree of available source code type

 Abstraction level of source code

 Degree of available documentation Type support

These are the four dependency levels which are required to

recover the artifacts for task at hand. Now we explain them

in detail.

i. Size of source code (SSC): Size of source code is

very important. The code written in large size for large

system and a small type module has a small size of source

code. The increasing the source code makes it more complex.

A large size of source code consists in thousand lines.

Recovery of these artifacts is a big issue. In fact size is an

important factor and plays an important role to recover the

software artifacts. Size of source code from which the

artifacts are recovered for maintenance purpose, and the size

of source code falls into four categories, every category of

source code size have a specific weight points. as shown in

the table 1.
Table I: Source Code Size (Ssc)

Size of

source

code

Description Weight

Small Few thousand code lines 1

Medium above 10,000 code lines 2

Large Above 100,000 code lines 3

Very Large Above one million code lines 4

ii. Available Source Code Type (SCT): The source

code exist in many forms, it is consist of more then one

programming languages. It could happen that available

source code is written in different version of one language.

e.g. source code written in version C language and next time

when system module is updated for enhance purpose,

remaining code written in C++ version and next time in

visual C++.

 So the dialect of this type of source code makes it complex

and its recovery is another big issue. It could be happen that

source code is incomplete or there are errors in source

code[23]. Recovery of such type of source code that is

incomplete or consisting errors is easy rather then source

code is in mix-mode or in dialects form. So we assign the

weight regarding their available source code type discussed

in table 2.
Table 2: Source Code Type (Sct)

Source

Code Type
Description

Weigh

t

Mix-Mode The Source Code in multiple languages 5

Dialects The source code is in different dialects 4

Incomplete Incomplete source code 3

Errors Error in Code compilation 2

Normal Source code written in single language 1

iii. Abstraction Level (AL): Each abstraction level has

specific weight points, so we assign it for computing the

ARC. These abstraction levels and regarding weights are

shown in table 3.

Table 3: Artifact Abstraction Level (Al)

Abstraction

Levels
Description

Weight

Point

Domain
High level entities describe

the system software
4

Functional
Artifacts like in Use Cases

and Scenarios
3

Structural
Components,/ classes type

artifacts
2

Implementation
Files, Function definition and

procedure call etc.
1

iv. Documentation Type Support (DTS):Documentation

is very important in any case. The software documents are

also plays an important role to measure the complexity of

recovered artifacts. The last dependency which is needed to

measure the Artifact Recovery Complexity is available

Documentation Type supports that recover the software

artifact for maintenance purpose. The table given below

show that the document type and the weight that we assign to

the appropriate document.

These are four types of dependency levels that are very

important to calculate the Artifact Recovery Complexity of

available source code. Following is the formula for

calculating the ARC.

In this formula, SSC (Size of source code), SCT (Source

Code Type) and AL (Abstraction Level) are added and DTS

(Documentation Type Support) is subtracted from all of this.

So known about size of a source code, its type and its

abstraction level is important other then for ARC calculating

DTS (Documentation Type Support) is very important.

Table 4: Document Type Support (Dts)

Documentation

type support
Documents Description Weight

 Documentation There is no documentation support 0

Minor
There is only system and

components information.
1

Medium
Requirements, Design and

implementation details subsist
2

High

Complete Requirements, Design

and implementation details for

recovery task

3

III. RESULTS AND DISCUSSIONS
To comprehend the produce of code complexity on ARC

Tool, thirty one design string susceptibilities were

considered. A class is the just name of object and how these

objects interact each other, but when we design this class. A

class must be explain by its attributes and the methods how

this class working. We analyzed different case studies for

every susceptibility. We observe the effect of code

complexity on the quality of results, including successful

detection and false positive rates. ARC Tool detected 90% of

the format string vulnerabilities, with detection rates

decreasing with increasing code complexity. When the tool

failed to identify the code complexity, it was for one of four

reasons:

ARC = SSC + SCT + AL - DTS

6036 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(6),6033-6038,2015

Nov.-Dec.

 The size of source code is small

 Available source code is normal

 Artifact abstraction level is implementation

 And documentation support is high in the ARC tool.

Complex code is more likely to hold complex code

constructs and ambiguous format string functions, resulting

in lower finding rates.

A. Test Procedures

Thirty one format string vulnerabilities source code written

in C or C++, VB Code, Java, Pseudo Code, Component, Use

Case, Classes are randomly selected from Vulnerability

Database are used. For a test case to be evaluated, source

codes are available. The Test cases that did not meet these

criteria were replaced with another test cases selected

randomly.

For each source code, four types of artifact recovery

complexity dependencies are calculated. The first type whom

which artifact recovery complexity is depend is size of

source code, second is degree of source code type, third is

abstraction level and the fourth one is available document

type support.

The first artifact recovery complexity dependency is size of

source code. The size of source code must be small, medium,

large and very large. If the size of source code is consist on

few hundred lines, it is consider small and its weight age

value is ‗1‘. If the size of source code is more then 1000

lines, it is considered medium and its weightage value is 2. If

the size of source code is more then 100,000 lines, it is

considered large and its weightage value is 3. If the size of

source code is more then 1 million lines, it is considered vary

large and its weightage value is 4. In this way size of source

code is calculated.

The second artifact recovery dependency is available source

code type. Available source code is five types. The first type

is Mix-mode, its mean that source code is written in multiple

languages and weight given to mix-mode is highest value

that is 5. It‘s most complicated to analyze this type of code,

that‘s way its value is highest. The second type of available

source code is Dialects. The dialects type of code is also

complicated because it consists of different version of a

language. That‘s way it is complicated and value given to it

is 4. The third type of available source code is Incomplete

where you have code that is not complete the weightage

value is 3. The fourth type of available source code is Errors.

Source code is available but consists of errors and not

successfully compiled. So its weightage value is 2.the fifth

and last type of available source code is Normal. The source

code exists in a single language and its weightage value is 1.

So our available source code is calculated.

The third dependency of artifact recovery complexity is

artifact abstraction level. Artifact abstraction levels are four

types. The first type of abstraction level is Domain where the

high level entities describe the system. These high level

entities are application domain and algorithm. Analyze the

application domain and algorithms are most complicated

that‘s way its weightage value is highest that is 4. The

second type of abstraction level is Functional where artifacts

are like use cases and scenarios. The recovery of use cases

and scenarios are completed so here is also complexity is

high and functional weightage vale is 3. The third type of

abstraction level is Structural where artifacts are in the form

of component and architecture classes and its weightage

value is 2. The fourth type of artifact abstraction level is

Implementation. Here source code artifacts are in the form of

files, functions definition and program calls etc. The

recovery of implementation level is easy so its weightage

value is only 1. Now we have calculates the abstraction level.

The fourth artifact recovery complexity dependency is

Documentation Support type. There are four type of

documentation. First one is, it may be happen that you have

source code but have not documentation. If a source code has

no documentation support, it has no weightage value and it

given to a 0 value. The second type of documentation

support is minor. Here we have only system/component

detail and no other document is available. The weightage

value of minor is 1. The third type of documentation support

is Medium, where we have some requirements, design and

implementation details and its weightage value is 2. The

fourth type of documentation support is High. In the high

documentation included requirements, design and

implementation details support fully the recovery the tasks.

The weightage value of documentation support is 3.

These are the four types of artifact recovery complexity

dependencies, which applied to recover the artifacts. The

formula which calculate the artifact recovery complexity is

Artifact Recovery Complexity:

(ARC) = SSC + SCT + AL – DTS

B. RESULTS
The four dependency of artifact recovery complexity is

measured. And every source code has its own individual

result. The highest value show that recovery complexity for

this is most complicated and the lowest value indicate that

recovery complexity for this artifact is easiest. Artifact

recovery complexity for any type of software artifact can be

measure by ARC Tool. The results is shown by graph that

how the values are varies at different levels.

Figure 3: ARC for 31 Case studies

The graph shows the variation for each artifact recovery

complexity dependency. The highest complexity is found in

Task 25 that is 9 and lowest complexity found in Task 31

that is 0. Which mean that to recover of this task is very easy.

Now artifact recovery complexity is shown below for every

dependency by graph.

Sci.Int.(Lahore),27(6),6033-6038,2015 ISSN 1013-5316; CODEN: SINTE 8 6037

Nov.-Dec.

C. ARC at Different Levels of Abstraction

i. ARC at Level 9

Task 25 found a high artifacts recovery complexity, here is

analysis of this task. The first dependence is size of source

code (SSC) which is 3; its mean size of source code lies in

more then 100,000 lines of code. The second dependency is

available source code type (SCT); its value is 5 which mean

that source code is written in multiple languages. So analyze

them and recovered it most complicated. The third

dependency is artifact abstraction level (AL) which

calculated value is 3: its mean artifact at this level is in the

form of use cases and scenarios. The recovery of use cases

and scenario is most complicated because if the system

modification due to any internal or external reason, its

scenario will also change. So at the functional level artifact

recovery complexity is high. The fourth dependency of

artifact recovery complexity is documentation support. Here

calculated value is 2, so the complexity is medium type here.

The medium documentation support has some requirements;

design and implementation details exist for support. The

artifact recovery complexity is maximum here due to these

four types of dependencies.

Figure 4: ARC at level 9

ii. ARC at Level 0

Task 31 has a lowest complexity and that is 0; its mean that

artifacts are easily recovered. Now we analyze what are the

dependencies values are found here. First artifact recovery

dependency is size of source code which has 1. So here is

small size of source code that consisting on few lines. These

lines are easily recovered, count and reconstruct. The second

dependency is source code type. The source code type is

normal and consisting on single language. The value found

here is 1. The fourth dependency is available abstraction

level. Abstraction level is implementation type that consists

on program files, function definition and function calls etc.

This abstraction level value has 3. So the artifact recovery

complexity is 0.

Figure 5: ARC at level 0

We can easily compare the artifact recovery complexity

(ARC) of both tasks. So if SSC in small, SCT in normal, AL

in implementation level and DTS is in medium form. We

have the artifact recovery complexity is 0, and is we have

SSC in large, SCT in Mix-mode, AL in Functional level and

DTS is in medium form. We found the high level complexity

to recover the artifacts.

Figure 6: Comparison level 0 and level 9

IV. CONCLUSION

The ARC Tool calculates the complexity of every recovered

artifact and return a value. With the implementation of this

tool, it has been concluded that with very large size of source

code is available and in the mix-mode of source code type,

the recovery of artifacts is most complex. At the domain

level of abstraction layer if source code has not any type of

documentation, the recovery of artifacts is also most

complicated. ARC must be high at these dependencies levels.

So if the size of source code is small with normal type of

source code and its abstraction level is at implementation and

if documents are fully available the ARC complexity is at

zero level because we have full documents support so

recovery of artifact is easily recovered.

IV. REFERENCES

[1]. Asif, Nadim, et al. "Recover the design

artifacts." proceedings of International Conference of

Information and Knowledge Engineering (IKE02).

2002.

[2]. Asif, Nadim, et al. "Clustering the source

code." WSEAS Transactions on Computers 8.12

(2009): 1835-1844.

[3]. Asif, Nadim, et al. "Recover the design

artifacts." proceedings of International Conference of

Information and Knowledge Engineering (IKE02).

2002.

[4]. Asif, Nadim. "Reverse Engineering Methodology to

Recover the Design Artifacts: A Case Study." Software

Engineering Research and Practice. 2003.

[5]. Asif, Nadim. "Artifacts Recovery at Different levels of

Abstraction." Information Technology Journal 7.1

(2008): 1-15.

[6]. Micro, Bianco at el. " Extracting and analyzing

software code metrics from C# source code." Center for

Applied Software Engineering Free University of

Bolzano-Bozen.

[7]. Chikofsky, Elliot J., and James H. Cross. "Reverse

engineering and design recovery: A

taxonomy." Software, IEEE 7.1 (1990): 13-17.

[8]. Koschke, Rainer. "Atomic architectural component

recovery for program understanding and evolution."

(2000).

6038 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(6),6033-6038,2015

Nov.-Dec.

[9]. Koschke, Rainer. " Atomic Architectural Component

Recovery for Program Understanding and Evolution."

Proceedings of the International Conference on

Software Maintenance (2002).

[10]. Koschke, Rainer. "Software Visualization in Software

Maintenance, Reverse Engineering, and Re-

engineering: A Research Survey." Journal of Software

Maintenance and Evolution: Research and Practice J.

Softw. Maint. Evol.: Res. Pract.: 87-109.

[11]. Eichberg, Michael. Open Integrated Development and

Analysis Environments. Diss. TU Darmstadt, 2007.

[12]. Murphy, Gail C., David Notkin, and Kevin Sullivan.

"Software reflexion models: Bridging the gap between

source and high-level models." ACM SIGSOFT

Software Engineering Notes 20.4 (1995): 18-28.

[13]. Murphy, Gail C., and David Notkin. "Reengineering

with reflexion models: A case study." Computer 30.8

(1997): 29-36.

[14]. Pigoski, Thomas M. Practical software maintenance:

best practices for managing your software investment.

John Wiley & Sons, Inc., 1996.

[15]. Rasool and Asif. Design Recovery

Tool. International Journal of Software Engineering.

2007

[16]. Banker, Rajiv D., et al. "Software complexity and

maintenance costs."Communications of the ACM 36.11

(1993): 81-94.

[17]. Banker, Rajiv D., et al. "Software errors and software

maintenance management." Information Technology

and Management 3.1-2 (2002): 25-41.

[18]. Hennicker, Rolf, and Nora Koch. "Systematic design of

Web applications with UML." Unified Modeling

Language: Systems Analysis, Design and Development

Issues (2001): 1-20.

[19]. Swanson, B. E., and I. S. Maintainability. "Should It

Reduce the Maintenance Effort." Conference on

Maintenance, New Orleans. 1999.

[20]. Sarma, Anita, Zahra Noroozi, and André Van Der

Hoek. "Palantír: raising awareness among configuration

management workspaces." Software Engineering, 2003.

Proceedings. 25th International Conference on. IEEE,

2003.

[21]. Singh, Paramvir, and Hardeep Singh. "DynaMetrics: a

runtime metric-based analysis tool for object-oriented

software systems." ACM SIGSOFT Software

Engineering Notes 33.6 (2008): 1-6.

[22]. Dean, Thomas R., Andrew J. Malton, and Ric Holt.

"Union Schemas as a Basis for a C++

Extractor." Reverse Engineering, 2001. Proceedings.

Eighth Working Conference on. IEEE, 2001.

