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1. INTRODUCTION 

Recently many inequalities have been studied for convex 

functions, but Hermite-Hadamard inequality is the 

fundamental event due to its geometrical importance and 

applications in Mathematical tools. Hanson [6] introduced 

the invex functions which is the generalization of convex 

functions. Noor in [9] studied the basic properties of pre-

invex function and its significance in Mathematics. The 

Hermite-Hadamard inequalities and their variant forms for 

convex function was also investigated by Wier and Mond 

[15]. Ben-Israel and Mond [7] introduced the pre-invex 

functions which is the special case of invexity. In present 

paper we investigate some new Hermite-Hadamard type 

inequalities for functions whose first derivative are pre-

invex function. 

2. PRELIMINARIES 

Let  R: Kf   and  :(.,.)    RKK   be 

continuous functions, where  
nK R   is a none empty 

closed set. We require the following well known concepts 

and results which are essential in our investigations. 

Definition 1[10, 15]. Let  Ku  . Then the set  K   is said 

to be invex at  Ku   with respect to  (.,.),   if  

.]1,0[,,,),(  tKvuKuvtu   

 K   is said to be invex set with respect to  (.,.)   if it is 

invex at every  .Ku   The invex set  K   is also called a  

   connected set. 

Geometrically the above definition says that there is a path 

starting from the point  u   which is contained in  K  . The 

point  v   should not be one of the end points of the path in 

general, see [1] . This observation plays a key role in our 

study. If we require that  v   should be an end point of the 

path for every pair of points  Kvu ,  , then  

uvuv ),(  , and consequently invexity reduces to 

convexity. Thus, every convex set is also an invex set with 

respect to  uvuv ),(  , but the converse is not 

necessarily true, see [15, 16] and the references therein. For 

the sake of simplicity, we assume that  

)],(,[ abaaK   , unless otherwise specified. 

Definition 2 [15]. The function  f   on the invex set  K   is 

said to be pre-invex with respect to    , if 

.]1,0[,,),()()1()),((  tKvuvtfuftuvtuf 
Note that every convex function is pre-invex but the 

converse is not true. For example, the function  

||)( uuf    is not a convex function, but it is a pre-

invex function with respect to    , where 















otherwise.     ,

,0,0or 0,0 if,

),(

vu

uvuvuv

uv  

The concepts of the invex and pre-invex functions have 

played very important roles in the development of 

generalized convex programming. 

Definition 3 [3, 14]. The well-known Hermite-Hadamard 

inequality for a convex function defined on the interval  

],[ ba   is given by 
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Noor [11] proved the following Hermite-Hadamard 

inequality for the pre-invex functions. 

Let    ),0(),(,:  abaaKf    be a pre-invex 

function on the interval of real numbers  
0K  (interior of  

K ) and  
0, Kba    with  ),( abaa   . Then the 

following inequalities holds: 
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Recently M. A. Latif and S. S. Dragomir [8] proved the 

following inequalities for the functions whose first 

derivative are convex functions. 

(i). Let  RRf :    be a differentiable function on  I
0

  

such that  ],[ baLf    where  Iba ,   with  .ba   If  

|f|   is convex function then the following inequality hold: 
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(ii) Let  RRf :   be a differentiable function on  
0I   

such that  ],[ baLf    where  Iba ,   with  ba   . If  

q
f    is convex for some  1q  , then the following 

inequality hold: 
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(iii) Let  RRf :   be a differentiable function on  
0I   

such that  ],[ baLf    where  Iba ,   with  ba   . If 

q
f    is convex for some  1q , then the following 

inequality hold: 
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(iv) Let  RRf :   be a differentiable function on  
0I   

such that  ],[ baLf    where  Iba ,   with  ba   . If 

q
f    is concave for some  1q  , then the following 

inequality hold: 
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qp

 . 

Motivated from the above works, we aim to find new 

Hermite-Hadamard inequalities for the functions whose first 

derivative in absolute value are pre-invex functions, related 

to the difference between dxxf
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 . 

 

3. MAIN RESULTS 

Lemma 1: Let  RRf :   be a differentiable function 

on  ,0I   the interior of  I   where  Iabaa  ),(.    

with  ),,( abaa   then the following equality hold: 
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Proof: Using by parts formula and substitution  

x t
4ab,a

4
1ta  , we have 
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adding (1) to (4). we get the desired equality. 

Theorem 2: Let  RRf :    be a differentiable 

function on  
0I   such that  )],(,[ abaaf    where  

,a    Iaba  ),(   with  ).,( abaa    If  f    is 

pre-invex function , then the following inequality hold: 
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Proof: Using Lemma 1 and modulus, we have 
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Now using the definition of pre-invex of  f    on  

)],(,[ abaa    we have, 
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In similar way the following inequalities holds: 
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ing inequalities (6) to (9) in (5), we get the desired 

inequality. 

Theorem 3: Let  RRf :   be a differentiable 

function on  
0I   such that  )],(,[ abaaLf    where  

Iabaa  ),(,    with  ),( abaa   . If 
q

f    is 

pre-invex for some  q 1  , then the following inequality 

hold: 
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Proof: Using Holder's integral inequality and Lemma 1 we 

have, 
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Since  
q

f    is pre-invex, then 
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using inequalities (11) to (14) in (10) we get the desired 

inequality. 
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Theorem 4: Let  RR    be a differentiable function on  
0I   such that  )],(,[ abaaLf    where  

Iabaa  ),(,    with  ),( abaa   . If  
q

f    is 

pre-invex for some  1q  , then the following inequality 

hold: 
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Proof: Suppose that  .1q   Using power mean inequality 

and Lemma 1, we have  
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Since  
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f /
  is pre-invex on  )],(,[ abaa   , therefore  
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Similarly we have the following inequalities  
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using   16   to  )19(   in  ),15(   we get the desired 

inequality. 

Theorem 5: Let  RRf :   be a differentiable 

function on  
0I   such that  ],[ baLf    where  

Iabaa  ),(,    with  ),( abaa   . If 
q

f    is 

preconcave for some  1q  , then the following inequality 

hold: 
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Proof: Using the well-known Holder's inequality for  1q  

, Lemma 1 and  
1


q
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p  , we have 

)20(.
4

),(34
)1(),(()1(

2

),(2
)1(

4

),(34

4

),(4
)1(

2

),(2
)1(

)1(
4

),(4

16

),(

)(
),(

1

2

)()(

1
1

1

1
1

1

1
1

1

1
1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

),(
4

),(4

4

,(4





















 























 

























 












































































q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

dt
aba

tabatt

dt
aba

t
aba

tdtt

dt
aba

t
aba

tt

dtt
aba

tdtt
ab

dxxf
ab

ff

q

q

q

q

aba

a

abaaba















Since  
q

f    is preconcave therefore 

)21(.)
8

),(8
(

2

)1(
4

),(4

4

),(4

1

0

qq
aba

q

aba
f

a
f

dtt
aba

t















 








 

Similarly the following inequalities holds 
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using inequalities from (21) to (24) in (20), we get the 

desired inequality. 
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