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ABSTRACT. There are certain types of topological indices such as degree based topological indices, distance based topological indices and 

counting related topological indices etc. Among degree based topological indices, the so-called atom-bond connectivity (ABC), geometric 

arithmetic (GA) are of vital importance. These topological indices correlate certain physico-chemical properties such as boiling point, 

stability and strain energy etc. of chemical compounds. In this paper, we compute formulas of General Randić index (      ) for different 

values of α , First zagreb index, atom-bond connectivity (ABC) index, geometric arithmetic GA index, the fourth ABC index ( ABC4 ) , fifth 

GA index ( GA5 ) for certain families of graphs. 
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1. INTRODUCTION AND PRELIMINARY 
RESULTS 
Cheminformatics is a new subject which relates chemistry, 

mathematics and information science in a significant manner. The 

primary application of cheminformatics is the storage, indexing and 

search of information relating to compounds. Graph theory has 

provided a vital role in the aspect of indexing. The study of 

Quantitative structure-activity (QSAR) models predict biological 

activity using as input different types of structural parameters of 

molecules. Topological indices are very interesting class of these 

parameters. Topological indices can be derived from graph 

representation based on only nodes(atoms) and 

edges(chemical bonds). 

A graph can be recognized by a numeric number, a polynomial, a 

sequence of numbers or a matrix which represents the whole graph, 

and these representations are aimed to be uniquely determined for 

that graph. A topological index is a numeric quantity associated with 

a graph which characterize the topology of graph and is invariant 

under graph automorphism. There are some major classes of 

topological indices such as distance based topological indices, 

degree based topological indices and counting related polynomials 

and indices of graphs. Among these classes, degree based 

topological indices are of great importance and play a vital role in 

chemical graph theory and particularly in chemistry. In more precise 

way, a topological index is a function "Top" from ‘∑’ to the set of 

real numbers, where ‘∑’ is the set of  finite simple graphs with 

property that Top(G) = Top(H) if both G and H are isomorphic. 

Obviously, the number of edges and vertices of a graph are 

topological indices. 

 

A few networks such as hexagonal, honeycomb, and grid networks, 

for instance, bear resemblance to atomic or molecular lattice 

structures. These networks have very interesting topological 

properties which have been studied in different aspects in [13, 15, 

16, 19]. The hexagonal and honeycomb networks have also been 

recognized as crucial evolutionary biology, in particular for the 

evolution of cooperation, where the overlapping triangles are vital 

for the propagation of cooperation in social dilemmas. Relevant 

research that applies this theory and which could benefit further 

from the insights of the new research is found 

in [11, 14, 17, 18, 20, 23]. 

A graph G is connected if there exist a connection between any 

given pair of vertices of graph G. Throughout in this article, G 

is connected graph with vertex set V(G) and edge set E(G), du 

is the degree of vertex         and  

   ∑   

       

 

where                         . 
The general Randić index was proposed by Bollobás and Erdös 

[3], and Amic et al. [1] independently, in 1998. The definition 

is as follows: 

Definition 1.1. The general  Randić index is defined as 

 

      ∑       
  

       

 

 

First Zagreb index denoted by M1(G) was introduced about forty 

years ago by Ivan Gutman and Trinajstić. The formal definition is 

given as: 

Definition 1.2. Consider a graph G, the first Zagreb index is defined 

as 

      ∑        

       

 

 

Atom-bond connectivity index denoted by ABC(G) was introduced 

by Estrada et al. in [6]. The definition is as follows: 

Definition 1.3. For a graph G, the ABC index is defined as 

       ∑ √
       

    
       

         

 

An important connectivity topological descriptor is geometric-

arithmetic GA index which was introduced by Vukičević et al. in 

[22]. The formal definition is given by: 

Definition 1.4. Consider a graph G, then its GA index is defined as 

      ∑
 √     

     
 

       

  

The fourth version of ABC index was introduced by Ghorbani et al. 

[9] in 2010. The definition is given as: 

Definition 1.5. For a graph G, the ABC4  

index is defined as 

        ∑ √
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Recently fifth version of GA index is proposed by Graovac et al. 

[10] in 2011. The definition is as follows: 

Definition 1.6. The fifth GA index for graph G is defined as 

following 

       ∑
 √     

     
 

       

  

In this paper, we compute formulas of General Randić index 

(Rα(G) ) for different values of α, First Zagreb index, atom-bond 

connectivity (ABC) index, GA index, ABC4  index, GA5  index 

for Cayley graph Cay(Zn  Zm) for n≥3 and m≥2, and 

generalized antiprism graph   
  for n≥3 and m≥1. 

2. Results for Cayley graph Cay(Zn Zm) 

Let G be a semigroup, and let S be a nonempty subset of G. The 

Cayley graph Cay(G,S) of G relative to S is defined as the graph 

with vertex set G and edge set E(S) consisting of those ordered 

pairs (x,y) such that sx = y for some s S. Cayley graphs of 

groups are significant both in group theory and in constructions 

of interesting graphs with nice properties. The Cayley graph 

Cay(G,S) of a group G is symmetric or undirected if and only if 

S = S-1 . 

The Cayley graph Cay(Zn Zm), n≥3, m≥2, is a graph which can 

be obtained as the cartesian product       of a path on m 

vertices with a cycle on n vertices. The vertex set and edge set of 

Cay(Zn Zm) defined as: V(Cay(Zn Zm))= 

{(xi,yj): 1≤i≤n, 1≤j≤m } and E(Cay(Zn Zm)) ={(xi,yj) (xi+1,yj): 

1≤i≤n, 1≤j≤m} {(xi,yj) (xi,yj+1): 1≤i≤n, 1≤j≤m-1}. We make the 

convention that (xn+1,yj) = (x1, yj) for 1≤j≤m. We have 

│V(Cay(Zn Zm)│=mn, │E(Cay(Zn Zm)│= 

(2m-1)n, where │V (Cay(Zn Zm)│, │E(Cay(Zn Zm)│ denote 

the number of vertices, edges of the Cayley graph Cay(Zn Zm) 

respectively. 

Theorem 2.1.  Consider the Cayley graph Cay(Zn Zm), then its 

general Randić index is equal to 

                                     32mn-38n                ,α = 1; 

                                     8mn+(4√ -14) n      ,α=
 

 
; 

Rα(Cay(Zn Zm))=       
 

 
mn+

  

   
n                 ,α=-1; 

                                      
 

 
mn+

 √   

  
 n            ,α=-

 

 
.           

Proof. Consider the Cayley graph Cay(Zn Zm). The number of 

vertices and edges in Cay(Zn  Zm) are mn and (2m-1)n, 

respectively. There are three types of edges in Cay(Zn Zm) 

based on degrees of end vertices of each edge. Table 1 shows 

such partition of Cay(Zn Zm). 

                   

(du,dv) Number of edges 

(3,4) 2n 

(4,4) 2mn-5n 

(3,3) 2n 

Table 1: The edge partition of Cay(Zn Zm) based on degrees of 

end vertices of each edge 

 
 Now for  α= 1, we apply the formula of Rα(Cay(Zn Zm)). 

               ∑       

                

 

By using edge partition given in Table 1, we obtain 

R1(Cay(Zn  Zm))=(2n)(3  4)+(2mn-5n)(4  4)+(2n) 

(3 3)=32mn-38n. 

For α=
 

 
, we apply the formula of Rα(Cay(Zn Zm)). 

  
 

             ∑ √     

                

 

By using edge partition given in Table 1, we obtain 

  

 

 (Cay(Zn Zm))=(2n)( √   )+(2mn-5n)(√   ) 

+(2n)( √   )=8mn+(4√ -14)n. 

For  α=-1, we apply the formula of Rα(Cay(Zn Zm)). 

                ∑  
 

    
 

                

 

By using edge partition given in Table 1, we obtain 

               =(2n)(
 

   
)+(2mn-5n)(

 

   
)+(2n) 

(
 

   
) = 

 

 
mn+

  

   
n. 

For α= - 
  

 
, we apply the formula of Rα(Cay(Zn Zm)). 

 
  

 
 

    ∑
 

√            

 

By using edge partition given in Table 1, we obtain 

 
  

 

 

            =(2n)(
 

 √   
)+(2mn-5n)(

 

 √   
)+(2n) 

(
 

 √   
)=

 

 
mn+

 √   

  
n. 

 

 In the following theorem, we determine the first Zagreb index 

for Cayley graph Cay(     ) . 

Theorem 2.2. For Cayley graph Cay(     ), the first Zagreb 

index is equal to M1(Cay(     ))=2n(8m-7). 

Proof. Consider the Cayley graph Cay(     ). By using the 

edge partition given in Table 1, the result follows. We know 

 

               ∑        

                

 

 

Substituting the values, we get 

M1(Cay(      ))=(2n)(3+4)+(2mn-5n)(4+4)+(2n)(3+3) 

=2n(8m-7). 

 

Now we compute ABC index for Cayley graph Cay(     ). 

Theorem 2.3. For Cayley graph Cay(     ), the ABC index 

is equal to 

ABC(Cay(     )) =√
 

 
   (√

 

 
  

 

 
√

 

 
 

 

 
)    

Proof. Consider the Cayley graph Cay(     ). The proof is 

just calculation based. By using edge partition given in Table 1, 

we get the result. We know 

   (          )   

∑ √
       

    
                

       

 

ABC(Cay(      ))=(2n)(  √
     

   
)+(2mn-5n)(  √

     

   
)+ 

(2n)( √
     

   
) 

By doing some calculation, we get 

ABC(Cay(     )) =√
 

 
   (√

 

 
  

 

 
√

 

 
 

 

 
)n. 

 

In the next theorem, we compute the GA index for Cayley graph 

Cay(     ). 
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Theorem 2.4. Consider the Cayley graph Cay(     ), then 

its GA index is equal to GA(Cay(     ))=2mn+ 

(
 √ 

 
-3) n. 

Proof. Consider the Cayley graph Cay(     ). The proof is 

just calculation based. By using edge partition given in Table 1, 

we get the result. We know 

               ∑
 √     

     
 

                

 

GA(Cay(      ))=(2n)(  
 √   

   
)+(2mn-5n)(  

 √   

   
)+(2n) 

( 
 √   

   
) 

By doing some calculation, we get 

GA(Cay(     ))=2mn+(
 √ 

 
-3) n. 

In the following theorem, we compute the fourth version of ABC 

index for Cayley graph Cay(     ). 

Theorem 2.5. Consider the Cayley graph Cay(     ), then 

its fourth ABC index is equal to 

ABC4(Cay(     ))=
√  

 
mn+(

 √ 

 
+

 

 
√

  

 
+

 √ 

  
+

 

 
√

  

  
-
 √  

  
)n. 

Proof. Consider the Cayley graph Cay(     ). We find the 

edge partition of Cay(     ) based on the degree sum of 

vertices lying at unit distance from end vertices of each edge. 

Table 2 explains such partition for Cay(     ). 

 

(Su,Sv) Number of edges 

(10,10) 2n 

(10,15) 2n 

(15,15) 2n 

(15,16) 2n 

(16,16) 2mn-9n 

Table 2: The edge partition of Cay(     ) based on degree 

sum of vertices lying at unit distance from end vertices of each 

edge. 

Now we can apply the formula of ABC4 index for Cay(   
  ). Since 

    (          )   

∑ √
       

    
                

      

Using Table 2, we have 

ABC4(Cay(      ))=(2n)( √
       

     
)+(2n)                    

( √
       

     
)+(2n)( √

       

     
)+(2n)( √

       

     
)+(2mn-9n) 

(√
       

     
) 

After an easy simplification, we get 

ABC4(Cay(     ))=
√  

 
mn+(

 √ 

 
+

 

 
√

  

 
+

 √ 

  
+

 

 
√

  

  
-
 √  

  
)n. 

In the following theorem, we determine the fifth version of ABC 

index for Cayley graph Cay(     ). 

Theorem 2.6. Consider the Cayley graph Cay(     ), then 

its fifth GA index is equal to 

GA5(Cay(     ))=2mn+(
 √ 

 
+

  √  

  
-5)n. 

Proof. Consider the Cayley graph Cay(     ). We apply the 

formula of GA5 index of Cay(     ) which is given as 

                ∑
 √     

     
 

                

 

Using values from Table 2, we easily get the result 

GA5(         ))=(2n)(
 √     

     
)+(2n)(

 √     

     
)+(2n) 

(
 √     

     
)+(2n)(

 √     

     
)+(2mn-9n)(

 √     

     
) 

After an easy calculation, we get 

GA5(Cay(     ))=2mn+(
 √ 

 
+

  √  

  
-5)n. 

 

3. Results for generalized antiprism graph   
  

 

For n≥3 and m≥1, we denote by   
  the plane graph of a convex 

polytope, which is obtained as a combination of m antiprisms An 

defined in [4]. 

Let us denote the vertex set and edge set of    
  by V(  

 ) and 

E(  
 ) respectively. We have V (  

 )= {(xi,yj) : 1≤i≤n, 1≤ j≤ 

m+1} and E(  
 ) ={(xi,yj)(xi+1,yj): 1≤i≤n, 1≤j≤m+1} 

 {(xi,yj)(xi,yj+1): 1≤i≤n, 1≤j≤ m} {(xi+1,yj)(xi,yj+1): 1≤i≤n, 1≤j≤ 

m, j odd} {(xi,yj) (xi+1,yj+1): 1≤i≤n, 1≤j≤ m, j even}. We make 

the convention that (xn+1,yj) = (x1,yj) for 1≤j≤m+1. 

The number of vertices and edges of   
  are (m+1)n and 3mn+n 

respectively. 

Theorem 3.1.  Consider the generalized antiprism graph   
  , 

then its general Randić index is equal to 

                     108mn-52n                ,α = 1; 

                     18mn+(8√ -22)n      ,α=
 

 
;                       Rα(  

 )=       
 

  
mn+

  

  
n                  ,α=-1; 

                     
 

 
mn+

√   

 
 n               ,α=-

 

 
.           

Proof. There are three types of edges in   
  based on degrees of 

end vertices of each edge. Table 3 shows such partition. 

                   

(du,dv) Number of edges 

(4,4) 2n 

(4,6) 4n 

(6,6) 3mn-5n 

Table 3: The edge partition of   
  based on degrees of end 

vertices of each edge 

 
 Now for  α= 1, we apply the formula of Rα(  

 ).  

     
   ∑       

       
  

 

By using edge partition given in Table 3, we obtain 

R1(  
 )=(2n)(4 4)+(4n)(4 6)+(3mn-5n)(6 6)=108mn-52n. 

For α=
 

 
, we apply the formula of Rα(  

 ). 

  
 

   
   ∑ √     

       
  

 

By using edge partition given in Table 3, we obtain 

  

 

 (   
 )=(2n)( √   )+(4n)( √   )+(3mn-5n)( √   )= 

18mn+(8√ -22)n. 

For  α=-1, we apply the formula of Rα(  
 ). 

      
   ∑  

 

    
 

       
  

 

By using edge partition given in Table 3, we obtain 

R-1(  
 )=(2n)(

 

   
)+(4n)(

 

   
)+(3mn-5n)(

 

   
)= 

 

  
mn+

  

  
n. 

For α= - 
  

 
, we apply the formula of Rα(  

 ). 

 
  

 
 

   
   ∑

 

√            
  

 

By using edge partition given in Table 3, we obtain 

 
  

 

 

   
  =(2n)(

 

 √   
)+(4n)(

 

 √   
)+(3mn-5n)(

 

 √   
)= 

 

 
mn+

√   

 
n. 
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Theorem 3.2. For a generalized antiprism graph   
 , the first 

Zagreb index is equal to M1(  
 ) = 4n(9m-1) . 

Proof. Consider the generalized antiprism graph   
 . By using 

the edge partition given in Table 3, the result follows. We know 

 

     
   ∑        

       
  

 

Substituting the values, we get 

M1(  
 )=(2n)(4+4)+(4n)(4+6)+(3mn-5n)(6+6)=4n(9m-1) .  

Theorem 3.3. For generalized prism graph   
 , the ABC index is 

equal to 

ABC(  
 ) =√

 

 
   (√

 

 
 

 

√ 
  

 

 
√

 

 
)   

Proof. Consider the generalized antiprism graph   
 . The proof is 

just calculation based. By using edge partition given in Table 3, 

we get the result. We know 

      
   ∑ √

       

    
       

  

       

 

ABC(  
 )=(2n)( √

     

   
)+(4n)( √

     

   
)+(3mn-5n) 

( √
     

   
) 

By doing some calculation, we get 

ABC(  
 )=√

 

 
   (√

 

 
 

 

√ 
  

 

 
√

 

 
)   

Theorem 3.4. Consider the generalized antiprism graph   
 , then 

its GA index is equal to GA(  
 )=3mn+(

 √    

 
)n. 

Proof. The proof is just calculation based. By using edge 

partition given in Table 3, we get the result. We know 

     
   ∑

 √     

     
 

       
  

 

GA(  
 )=(2n)( 

 √   

   
)+(4n)( 

 √   

   
)+(3mn-5n)( 

 √   

   
) 

By doing some calculation, we get 

GA(  
 )=3mn+(

 √    

 
)n. 

Theorem 3.5. Consider the generalized antiprism graph   
 , then 

its fourth ABC index is equal to ABC4(   
 ) 

=
 

 
√

  

 
mn+(

 

 
√

  

 
+

√ 

 
+

 

 
√

  

 
+

 

 
√

  

 
-
  

  
√

  

 
)n. 

Proof. We find the edge partition of   
  based on the degree sum 

of vertices lying at unit distance from end vertices of each edge. 

Table 4 explains such partition for   
 . 

 

(Su,Sv) Number of edges 

(20,20) 2n 

(20,32) 4n 

(32,32) 2n 

(32,36) 4n 

(36,36) 3mn-11n 

Table 4: The edge partition of   
  based on degree sum of 

vertices lying at unit distance from end vertices of each edge 

 

Now we can apply the formula of ABC4 index for   
 . Since 

       
   ∑ √

       

    
       

  

      

Using Table 4, we have 

ABC4(  
 )=(2n)(√

       

     
)+(4n)(√

       

     
)+(2n) 

(√
       

     
)+(4n)(√

       

     
)+(3mn-11n) (√

       

     
) 

After an easy simplification, we get 

ABC4(  
 )=

 

 
√

  

 
mn+(

 

 
√

  

 
+

√ 

 
+

 

 
√

  

 
+

 

 
√

  

 
-
  

  
√

  

 
)n. 

Theorem 3.6. Consider the generalized antiprism graph   
 , then 

its fifth GA index is equal to GA5(  
 )=3mn+ 

(
  √  

  
+

  √ 

  
-7)n. 

Proof. We apply the formula of GA5 index of   
  which is given 

as 

      
   ∑

 √     

     
 

       
  

 

Using values from Table 4, we easily get the result 

GA5(   
 )=(2n)(

 √     

     
)+(4n)(

 √     

     
)+(2n)(

 √     

     
)+ 

(4n)(
 √     

     
)+(3mn-11n)(

 √     

     
) 

After an easy calculation, we get 

GA5(  
 )=3mn+(

  √  

  
+

  √ 

  
-7)n. 
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5. CONCLUSIONs  

 

We have computed the formulas of General Randić index, First 

zagreb index, ABC index, GA index, ABC4 index, GA5 index for 

Cayley graph Cay(     ) for n≥3 and m≥2, and generalized 

antiprism graph   
  for n≥3 and m≥1. This work will give new 

direction for considering and computing topological indices of 

several other families of graphs. 
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