
Sci.Int.(Lahore),22(6),49334937,2015 ISSN 1013-5316; CODEN: SINTE 8 4933 

Nov.-Dec. 

AN EFFICIENT CLASS OF RATIO ESTIMATORS OF FINITE POPULATION 
MEAN UNDER SIMPLE RANDOM SAMPLING 

1
Mursala Khan, 

2*
Sultan Hussain 

1,2 Department of Mathematics, COMSATS Institute of Information Technology,  

Abbottabad, 22060, Pakistan  

mursala.khan@yahoo.com, tausef775650@yahoo.co.in  

ABSTRACT. In the present article, we have proposed a class of ratio estimators for the estimation of finite population mean 

using simple random sampling scheme when there is maximum and minimum values on both the study and the auxiliary 

variables and their properties are considered up to the first order of approximation. Also, we have found some theoretical 

conditions which make the proposed class of ratio estimators more efficient than the Kadilar and Cingi [1] estimators and 

other relevant existing estimators. In addition, these theoretical results are supported by a real data set. 
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1. INTRODUCTION 
In the field of survey sampling, the use of auxiliary 

information plays an important role in the estimation of 

population mean of the variable under study both the design 

as well as the estimation stage and have greatly increase the 

efficiency of the estimators. Various statisticians have 

worked on the estimation of the unknown population mean 

of the study variable using auxiliary information. Using 

auxiliary information Sisodia and Dwivedi [2] proposed 

ratio estimator using the known knowledge coefficient of 

variation of an auxiliary variable, Kadilar and Cingi [1] 

suggested a class of ratio estimators for the finite population 

mean, including Upadhyaya and Singh [3] , Singh [4], Singh 

and Tailor [5], Singh et al. [6], Kadilar and Cingi [7, 8], 

khan [9], Khan and Hussain [10], Khan et al. [11] and  Yan 

and Tian [12] and Yadav and Kadilar [13] have used 

auxiliary information for improved estimation of population 

mean of variable under study y.  
Consider a finite population of size N units such that 

 1 2 3, , ...., NU U U U U . Let y and x be the study and the 

auxiliary variable with corresponding values iy  and ix  

respectively for the i-th unit  1, 2, 3....,i N  defined on a 

finite population U.  

Let  
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population means of the study and the auxiliary variable, 

respectively. 

And    
22

1

1 1
N

y i

i

S N y Y


   and    
22

1

1 1
N

x i

i

S N x X


     

be the corresponding population mean square error of the study and 

the auxiliary variable, respectively and let
y

y

S
C

Y
  and

x
x

S
C

X
  

 be the coefficient of variation of the study as well as auxiliary 

variable respectively, and
yx

yx

y x

S

S S
  be the population 

correlation coefficient between x and y. 

In order to estimate the unknown population parameters we take a 

random sample of size n units from the  

finite population U by using simple random sample without 

replacement. 

 Let  
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 sample means of the study and the auxiliary variable, respectively, 

and their corresponding sample variances are 
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respectively. 

The usual unbiased estimator for population mean Y of the study 

variable is, given by 

1

n

i

i

y

y
n




          (1.1) 

The variance of the estimator y  up to first order of approximation 

is, given by 

  2

yVar y S           (1.2) 

Where
1 1

n N
   , 

In many practical situations, when we want to estimate the 

unknown characteristic of the population there exists some large 

( maxy ) or small values ( miny ) and to estimate the population 

quantities without considering these information is very sensitive in 

either the case the result will be either over estimated or under 

estimated. In order to tackle this situation Sarndal [14], proposed 

the following unbiased estimator for finite population mean. 
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min max

max min
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for all other samples,

S

y c y y

y y c y y

y




 

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(1.3) 

where c is a constant, whose values is to be find for minimum 

variance 

The minimum variance of the estimator Sy  up to first order of 

approximation is, given as 

   
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var var

2 1
Ss

y y
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where the optimum value of optc is
 max min

2
opt

y y
c

n


  .

     

Using the known knowledge of the auxiliary variables Kadilar and 

Cingi [1], suggested the following class of ratio estimators for 

population mean of the variable under study under simple random 

sampling kciy  and is given by 
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where 2x is the known value of the population coefficient of 

kurtosis of the auxiliary variable, 

The bias and mean square error of the estimators kciy  up to first 

order of approximation are, given by 

  2ˆ
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for 1, 2, 3, 4,5.i   
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2. The Proposed Class of Ratio Estimators  
On the lines of Sarndal [14], we proposed a class of 

ratio estimators for the estimation of finite population 

mean of the variable under study y, using the known 

knowledge of an auxiliary variable say x. Usually when 

the relationship between the study and the auxiliary 

variable is positive then the selection of the larger 

value of the auxiliary variable the larger the value of 

the study variable is to be expected, and the selection 

of the smaller value of the auxiliary variable the 

smaller the value of the variable under study is to be 

expected. Using the above information we proposed 

the following class of ratio-type estimators. 
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where xM  and 2x are the known values of the population 

median and population coefficient of kurtosis  

of the auxiliary variable respectively and 

 
11 211 2,C Cy y c x x c    , where 1c  and 2c  are 

unknown constants whose values are to be find for 

optimality conditions. 

To obtain the properties of 
ˆ
MiY  in terms of bias and Mean 

square error, we define the following relative error terms and 

their expectations. 
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The biases and mean square errors of the estimators
ˆ
MiY  up 

to first order of approximation are, given by
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and 

 
min

ˆ
MjMSE Y   

 

 

 

  

2 2 2 2

2

max min

max min

1

1

2 1

Mj x y yx

Mj yx

S S

y y

N x x

 



 

  
 
    
  
    

  
 

(2.13) 

for 1, 2, 3, 4,5,6,7,8,9,10,11.j   

where the optimum values of 1c and 2c are given by 
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3. Comparison of Estimators 

In this section, we have made some theoretical conditions 

under which our proposed class of ratio estimators performs 
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better than the other relevant existing estimators discussed in 

the literature of survey sampling. 

(i) By (1.11) and (2.13), 

   
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for 1, 2, 3, 4,5.i   and 1, 2, 3, 4,5,6,7,8,9,10,11.j 

 
4 Empirical Study 

To examine the performance of the proposed class of ratio 

estimators with some of the existing estimators discussed in 

the literature, we have considered a natural population from 

the literature. The description and the necessary data 

statistics of the population are given below. 

Population. (Source: Agricultural Statistics (1999) [15], 

Washington, US.). 

Y : Amount (in $000) of real estate farms loans in different 

estates during 1997.

 
X : Amount (in $000) of non-real estate farms loans in 

different estates during 1997. 
250, 15, 555.43, 878.16, 342021.5,yN n Y X S      

2 21176526, 0.804, 509910.41, 1.109,x yx yx yS S C     
2

max min max1.526, 2327.03, 1.61, 3928.732,xC Y Y X     

min 20.233, 452.517, 4.5247, 0.4334.x x yxX M       

The mean squared errors of the existing and the proposed class 

estimators are shown in Table-1.

 

 

Table 1. MSE’s of the competing and the proposed class of ratio 

estimators 

Population 

Estimators MSE’s 

Existing 

1

ˆ
KCY Kadilar and Cingi [1]

 
27632.8282 

2

ˆ
KCY Kadilar and Cingi [1]

 
27571.1249 

3

ˆ
KCY Kadilar and Cingi [1]

 
27408.0117 

4

ˆ
KCY Kadilar and Cingi [1]

 
27619.4203 

5

ˆ
KCY Kadilar and Cingi [1]

 
27450.5951 

Proposed 

1

ˆ
MY Proposed Estimator 25984.4793 

2

ˆ
MY Proposed Estimator 25928.2290 

3

ˆ
MY Proposed Estimator

 
25781.7167 

4

ˆ
MY Proposed Estimator 27192.5264 

5

ˆ
MY Proposed Estimator

 
25820.3199 

6

ˆ
MY Proposed Estimator

 
14732.4339 

7

ˆ
MY Proposed Estimator

 
25984.2055 

8

ˆ
MY Proposed Estimator

 
13436.6316 

9

ˆ
MY Proposed Estimator

 
15989.51339 

10

ˆ
MY Proposed Estimator

 
22138.8749 

11

ˆ
MY Proposed Estimator

 
25984.4793 

 

5. CONCLUSION 
In this research article, we have proposed a class of ratio 

estimators using the known knowledge of the auxiliary 

variable such as population mean, population median, 

population coefficient of variation, population coefficient of 

kurtosis for finite population mean under maximum and 

minimum using simple random sampling. We have also find 

some theoretical conditions under which the suggested class 

of ratio-type estimators have always efficient than the 

Kadilar and Cingi [1] estimators. Theoretical results are also 

verified with the help of real data set which clearly indicates 

that the proposed class of ratio estimators have smaller mean 

square error than the other estimators discussed in the 

literature. Thus the suggested approach under maximum and 

minimum values may be preferred over the existing 

estimators for the use of applied applications. 
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