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ABSTRACT— Data flow testing is a code based testing technique that uses the dataflow relations in a program for the 

guidance of test case selection. Evolutionary testing uses the optimizing search techniques for the generation and selection of 

test data. This paper discusses the unique approach for data flow testing by applying evolutionary algorithms for the automatic 

generation of test paths and infeasible path detection by using data flow relations in a program. Our approach starts with a 

random initial population of test paths and then based on the selected testing criteria new paths are generated by applying a 

genetic algorithm. A fitness function evaluates each chromosome (path) based on the selected data flow testing criteria and 

computes its fitness. We have applied one point crossover and mutation operators for the generation of new population. We 

have also identified infeasible paths using genetic algorithm by executing them with appropriate inputs. The tool ETODF 

(evolutionary testing of data flow) has been implemented in Java for proof of concept. In experiments with this tool, our 

approach has very promising results. 
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I. INTRODUCTION 

Software testing is the process of executing a program with 

the intent of finding errors [1]. It is an important and 

expensive phase of software development life cycle. The 

purpose of software testing is to provide assurance that the 

software system is bug free and conforms to its 

specifications. Software test case design is the most crucial 

part of software testing. Evolutionary algorithms have been 

applied to software testing for automated generation of test 

cases and test data. The application of evolutionary 

algorithms [4] to software testing for generation of test data 

is known as evolutionary testing. They include genetic 

algorithms, particle swarm optimization, ant colony model, 

etc. [5]. Evolutionary algorithms have been applied in 

software testing at various levels from procedural to object 

oriented programming. Application of evolutionary testing is 

mostly on control flow testing. In this paper, we have 

extended our previous work [6] that uses the genetic 

algorithm for the generation for test paths for data flow 

testing at the unit level. In this paper, we have applied 

evolutionary approaches to data flow testing for the 

generation and infeasible detection of test paths. The 

approach has been implemented in Java language by a 

prototype tool called E-ETODF for validation. In 

experiments with this prototype, our approach has much 

better results as compared to random testing. 

The major contributions of this paper are as follows: 

 Extension of our previous work [6] for test data generation 

for data flow testing by adding a new approach for 

infeasible path detection. 

 Extension of our previous implemented tool (ETODF) 

[24] for test data generation for data flow testing by 

adding a new component for infeasible path detection. 

 GA has been applied for test path generation and 

infeasible detection of test paths. 

 We have performed different experiments on programs 

ranging from small to medium level for test path 

generation and infeasible path detection using our 

proposed approaches. 

  Results of the experiments are very encouraging and 

promising. 

 The rest of the paper is organized as follows: Section II 

describes the proposed approach test path generation and 

infeasible path detection using genetic algorithm for data 

flow testing and section III represents the tool for ETODF. 

Section IV represents the experimental results using ETODF 

Section represents the related work. Section VI concludes the 

paper and presents the future work. 

II. PROPOSED APPROACH 

 Our approach has two phases; in first phase test paths are 

generated using genetic algorithm [6] while second phase 

involves identifying the infeasible paths from the selected 

path. Infeasible paths are those paths for which there are no 

input to execute the path. For identification of infeasible 

paths, we will execute all the paths with some test data. If the 

execution of path is not possible with input data, then the path 

is said to be infeasible. 

A. Proposed Approach  for Test Path Generation 

Figure 1 depicts the high level flow of our proposed 

approach for test path generation.  We have proposed a novel 

approach [6] for the data flow testing of programs using 

evolutionary approaches at unit level.  We have applied 

genetic algorithm with one point crossover and mutation for 

generating test paths in our proposed approach. Genetic 

algorithm is a well-known evolutionary approach 

successfully applied to a variety of problems for optimization 

[11,12]. 

We have applied genetic algorithm with one point crossover 

and mutation for generating test paths in our proposed 

approach. Our approach starts with a  random population of 

test paths for a given program and then genetic algorithm has 

been applied for generating new population. Our proposed 

approach takes data flow graph of a program, variable whose 

values to be tested, dynamic data flow coverage criteria , 

number of iterations , if specified otherwise it uses the default 

value, and coverage requirement in percent as input. This 

approach is explained in detail in [6]. 
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Figure 1. Proposed Approach Flow for Test Path  

Generation [6] 

 

B. Automated Infeasible Path Detection 

Our approach has two phases; in first phase test paths are 

generated using genetic algorithm while second phase 

involves identifying the infeasible paths from the generated 

paths. Infeasible paths are those paths for which there is no 

input to execute the paths. For identification of infeasible 

paths, we execute all the paths with some test data. If the 

execution of path is not possible with input data, then the 

path is said to be infeasible. Program path is infeasible if 

there exists no input that executes the path. 

In figure 2 there is a sample program showing infeasible 

statement at line number 7. The main method calls the 

method ‗an‘ only if required argument is positive. In method 

‗a‘ argument is again checked for negative value in statement 

at line 6. The statement at line number 7 is not reachable as a 

method ‗a‘ accepts only positive number. In figure 2, the 

statement at line number 7 is not reachable. If some test path 

contains astatement at line number 7 shown in figure 2 then 

this path is infeasible as there is no input data  

for execution of statement at line number 7 of figure 2.  In 

our proposed approach we have identified infeasible paths 

using genetic algorithm. 

We have identified infeasible paths using genetic algorithm, 

we executed each path for a fixed number of iterations, as 

configured by input, if we found input data for path within  

fixed number of iterations, configured as input, then path is 

said to be feasible otherwise path is infeasible. We identified 

variables in program by static analysis of the code and then 

input values of the program variables are generated  

 

Figure 2. Sample Code Showing Infeasible Statement 
 

Randomly using the input boundaries of the variables. The 

code is instrumented for generating execution trace of the 

program. After the iteration has been completed, the 

executed path is compared with target path, if executed and 

target path is same, then the input data for this path is 

preserved and path is said to be feasible.Figure 3 depicts the 

high level flow of our proposed approach for infeasible path 

detection. We have used java source code in our proposed 

approach for experiments.  In the first step, source code is 

analyzed by static analyzer and extracts the variable 

information and control dependency information from the 

source code.  

The Instrumentor adds the additional lines of code in the 

source code so that an execution trace can be generated after 

each execution. The test driver takes the instrumented code 

and test data, generated by test data generator using variable 

information extracted in static analysis, for execution of 

code. 

Figure 3 depicts the high level flow of our proposed 

approach for infeasible path detection. We have used java 

source code in our proposed approach for experiments.  In 

the first step, source code is analyzed by static analyzer and 

extracts the variable information and control dependency 

information from the source code. 

public class Test { 

1. public void a(int x ){ 

2.   if (x<5){ 

3.    System.out.println(x);} 

4.  else if(x<10){ 

5.   System.out.println(x);} 

6.  else if(x<0){ 

7.   System.ou.println("ERROR");} 

8. } 

9. public static void main(String args[]){ 

10.   int b=10; 

11.   if(b<0){ 

12.   System.out.println("Error Negative 

");} 

13.  else{ 

14.   a(b);} 

15. } 

16. } 
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Figure 3. Proposed Approach Flow for Infeasible Path 

Detection 

The Instrumentor adds the additional lines of code in the 

source code so that an execution trace can be generated after 

each execution. The test driver takes the instrumented code 

and test data, generated by test data generator using variable 

information extracted in static analysis, for execution of 

code. Test driver executes the instrumented code and 

information is preserved as execution traces. The Comparator 

compares the execution trace of the executed path with target 

path, if same path is followed in execution trace as of target 

path, then path is called a feasible path and is stored in file as 

feasible path. If the path followed in execution trace is 

different from the target path, then population counter (PC) 

checks, if PC is equal to the maximum number of iterations, 

then path is said to be infeasible and is stored in the file as 

infeasible path. 

The population counter checks the number of iterations, if 

the number of iterations is less than the maximum number of 

iterations, then fitness calculator calculates the fitness value 

of data using previous data and control dependency 

information and new data is generated by the test data 

generator to move into the next iteration. In this way the 

program is executed, target and executed paths are compared 

and the paths generated in the first phase of our approach are 

classified as either feasible or infeasible. 

IV. THE TOOL E-ETODF 

The proposed approach has been implemented in a prototype 

tool called E-ETODF (Extended Evolutionary Testing of 

Data Flow) [25] in Java. The prototype tool uses the genetic 

algorithm for the generation of test path with single point 

crossover and mutation for test path generation. The 

infeasible path detection is through genetic algorithm by 

mutating the input data in every iteration by calculating the 

branch distance and approximation level [10]. In this paper, 

we have extended our tool by implementing a new 

component for infeasible path detection. The high level 

architecture of the tool is depicted in Figure 4. ETODF has 

the following major components: 

 

 Test Path Generator 

 Infeasible Path Detector  

4.1. Test Path Generator 

E-ETODF [24] takes data flow graph as input and stores the 

graph after analyzing and applying semantic on each node. 

This approach is explained in detail in [24]. 

 

 

Figure 4. High Level Architecture of ETODF 

The test path generator is an important component of 

ETODF which first generates the test path randomly and on 

the second iteration it uses genetic algorithms for test path 

generation. The test path generator uses the genetic algorithm 

with one point crossover and mutation for the generation of 

new population. The test paths are sorted by the sorter 

component of the ETODF and then each path is validated 

using the semantics of the graph for validness. In this step 

the invalid paths are sorted out from the test paths. The valid 

paths are passed to the fitness calculator which calculates the 

fitness of each path using the data flow coverage criteria. The 

fitness calculator takes valid paths from Validator 

components and data flow coverage criteria from user as 

input and calculate the fitness of the path according to the 

data flow coverage criteria. After evaluation, path that 

satisfies the coverage criteria valid are added in the global 

list of paths while those which do not satisfy the coverage 

criteria remains in the population and used in the 

recombination and mutation for the  next iteration. 

4.2. Infeasible Path Detector 

Infeasible path detector detects the infeasible path using 

genetic algorithm. Each path is executed for a fixed number 

of times with test data, if the execution of the path is 

possible, then path is said to be feasible otherwise path is 

infeasible. The infeasible path detector instruments the code 

by using Instrumentor component. The instrumented code 

and test data is provided to the path executor and trace 

preserver. The path executor executes the path and trace 

preserver logs the trace. The comparator compares the trace 

with test paths already generated by test path generator. If 

executed path and target path are same, the path is said to be 
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feasible and stored infeasible paths. If executed and target 

paths are different then GA process is initiated for new test 

data generation based on the fitness value. After certain 

number of iterations provided as input if the given path is not 

executed, then path is said to be infeasible and stored in 

infeasible paths.  

V. EMPIRICAL INVESTIGATIONS 

To determine the potential effectiveness of our approach and 

prototype tool, ETODF, a case study was performed on five 

Java programs. All these programs were developed and 

modified according to the testing requirements; Table II 

gives information about these programs. For each subject 

program, the table II lists total number of lines of code, 

number of methods in each program, number of methods 

under test in each subject program, and short description of 

each subject program. For each subject program, ETODF 

runs were performed between 50 and 300. We have input the 

Data Flow Graph to ETODF tool and also different infeasible 

paths were manually input to ETODF for each subject 

programs with arange of data input to check the effectiveness 

of our approach and tool. 

 

Table 1I. Subject Programs 

Programs Lines of Code MUT No. of methods Description 

TriType 93 1 2 Given three integers, determines the type of triangle 

AccountOP 237 2 4 Given an amount and account number and operation value for to 

perform debit, credit on account. Mid 84 1 2 Given three integers, determines the middle value of the three integers 

Find 69 1 2 Given array S[ ], and index F places all elements less than or equal to 

S[F] to the left of S[F] and  other elements right of S[F] Selection 76 1 2 Given an array of integers, selection sorts the array in ascending order 

 

Results of the experiments are very encouraging and 

promising by applying ETODF. We found that ETODF 

efficiently achieved results under given constraints. From 

experimental results, it is evident that our approach is very 

efficient for automatic test path generation for data flow 

testing and infeasible detection of paths. Table III 

summarizes these results of our experiments on subject 

programs.

Table III. Results of ETODF runs on subject programs 

No of 

Generations 

Coverage  Percentage Avg. 

coverage TriType AccountOP Mid Find Selection 

50 45% 34% 56% 60% 56% 50.2% 

100 53% 43% 61% 62% 64% 56.6% 

150 62% 51% 64% 73% 67% 63.4% 

200 73% 59% 71% 81% 76% 72% 

250 83% 71% 83% 84% 83% 80.8% 

300 85% 78% 86% 87% 87% 84.6% 

350 87% 87% 88% 88% 88% 87.6% 

400 88% 89% 88% 88% 88% 88.2% 

 

 
Figure 5. Coverage vs Generations 
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Table IV. Results of E-ETODF for Infeasible Detection 

No of Paths Accuracy  Percentage Avg. 

Accuracy TriType AccountOP Mid Find Selection 

5 100% 100% 100% 100% 100% 100% 

8 100% 100% 100% 100% 100% 100% 

10 100% 100% 100% 100% 100% 100% 

12 100% 95% 96% 97% 100% 99% 

15 98% 95% 94% 98% 98% 97% 

18 95% 93% 91% 95% 95% 94% 

 

 

Figure 6. Graphical Representation of Infeasible Detection 

 

From the above experiments, it has been concluded that our 

approach is very effective in terms of test path generation and 

for detection of infeasible paths. In both cases, our 

approaches have performed well. For test path generation, our 

approach has achieved higher coverage and we have observed 

that the coverage increases with the increase of number of 

generations. We have run ETODF between 50 and 400 runs; 

the coverage achieved is 88% on average for all tests. With 

increasing number of generations further, we have observed 

that there is no improvement in coverage. Table III and 

Figure 5 depicts our experimental results on subject programs 

with ETODF. For infeasible path detection, we have input 

different number of paths to ETODF and evaluate for 

infeasible detection.  We have run ETODF with fixed number 

of iterations for each path i.e. 250 iterations. ETODF 

successfully identified more than 94%, infeasible path in all 

cases. ETODF will not identify some paths and it will be 

identified if we increase the number of iterations or decrease 

the input domain. Table IV and Figure 6 depict our 

experimental results on subject programs with ETODF for in 

feasible detection of test paths. 

VI. RELATED WORK 

Tonella [7] performed the unit testing of classes using genetic 

algorithm. In this approach test cases are generated for unit 

testing of classes using genetic algorithm.  McMinn and 

Holcombe [8] proposed a solution for the state problem in 

evolutionary testing using the ant colony model.. McMinn 

and Holcombe [8] also proposed an extended chaining 

approach for the solution of state problem in evolutionary 

testing. The basic idea of the chaining approach is to find a 

sequence of statements, involving internal variables, which 

needs to be executed prior to the test goal. Watkins [9] 

performed various experiments to compare different fitness 

functions proposed by different researchers. Wegener et al. 

[10] Wegener et. al. [11] proposed an automatic structural 

testing environment in their work. Baresel et al. [12] suggests 

some  modifications in fitness function design to improve 

evolutionary structural testing.  

McMinn [13] provides a comprehensive survey on 

evolutionary testing approaches and discusses the application 

of evolutionary testing. The author discusses the different 

approaches in which evolutionary testing has been applied 

and also provides future directions in each individual area. 

Evolutionary approaches are mostly used in the area of 

automated test data generation [14-19]. Cheon et al. [20] 

proposed a specification based fitness function for 

evolutionary testing of object oriented program. They also 

proposed automation of Java program testing at unit level 

using evolutionary approaches. Dharsana et al. [21] generate 

test cases for Java based programs and also performed 

optimization of test cases using genetic algorithm. Jones et al. 

[22] performed automatic structural testing using genetic 

algorithm in their approach. Bilal and Nadeem [23] proposed 
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a state based fitness function for object oriented programs 

using genetic algorithm. 

 

VII. CONCLUSION AND FUTURE WORK 

This paper presents a novel approach applying evolutionary 

algorithms for the automatic generation of test paths using 

data flow relations in a program and then in feasible paths are 

detected by using genetic algorithm. Our approach starts with 

a random initial population of test paths and then based on 

the selected testing criteria new paths are generated by 

applying a genetic algorithm. A fitness function evaluates 

each chromosome (path) based on the selected data flow 

testing criteria and computes its fitness. The approach has 

been implemented in Java by a prototype tool called ETODF 

for validation. In experiments with this prototype, our 

approach has much better results as compared to random 

testing.  We will extend this concept to other levels of testing 

,i.e. integration testing and system testing. Currently we have 

compared our experimental with random testing only. In 

future, we will also carry out a complete empirical case study 

for the verification of our approach using all data flow 

coverage criterion and compare the experimental results with 

other approaches like hill climbing, tabu search etc.  
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