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ABSTRACT. For a simple graph = ( , )G V E  with vertex set V  and edge set E ,a labeling : {1,2, , }V E k    is 

called total k  labeling. The associated vertex weight of a vertex ( )x V G  under a total k  labeling   is defined as 

( )

( ) = ( ) ( ),
y N x

wt x x xy 


   

where ( )N x  is the set of neighbors of x . A total k -labeling   is defined to be a vertex irregular total labeling of a graph 

G  if for every two different vertices x  and y  of G , ( ) ( ).wt x wt y The minimum k  for which a graph G  has a 

vertex irregular total k -labeling is called the  total vertex irregularity strength of G , ( )tvs G .In this paper, we study the total 

vertex irregularity strength for special classes of grid-like plane graphs. 
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1  INTRODUCTION AND DEFINITIONS 

As a standard notation, assume that = ( , )G G V E  is a 

finite, simple and undirected graph with p  vertices and q  

edges. A labeling of a graph is any mapping that sends some 

set of graph elements to a set of numbers (usually positive 

integers). If the domain is the vertex set or the edge set, the 

labelings are called respectively vertex labelings or edge 

labelings. If the domain is V E  then we call the labeling a 

total labeling. In many cases it is interesting to consider the 

sum of all labels associated with a graph element. This will be 

called the weight of element. The graph labeling has caught the 

attention of many authors and many new labeling results 

appear every year. This popularity is not only due to the 

mathematical challenges of graph labeling, but also for the 

wide range of its application, for instance X-ray, 

crystallography, coding theory, radar, astronomy, circuit 

design, network design and communication design. In fact 

Bloom and Golomb studied applications of graph labelings to 

other branches of science and it is possible to find part of this 

work in [10] and [11]. 

Chartrand  et al. in [13] introduced edge-labelings of a graph

G with positive integers such that the sum of the labels of 

edges incident with a vertex is different for all the vertices in

G . Such labelings were called irregular assignments. What is 

the minimum value of the largest label over all such irregular 

assignments? This parameter of a graph G is well known as 

the irregularity strength of the graph G , ( )s G . 

The irregularity strength ( )s G can be interpreted as the 

smallest integer k for which G can be turned into a multigraph

G by replacing each edge by a set of at most k parallel edges, 

such that the degrees of the vertices in G are all different. 

Finding the irregularity strength of a graph seems to be hard 

even for simple graphs, see [12, 14, 15, 17, 18] and a complete 

survey [16]. 

Motivated by this research and by total labelings mentioned in 

a book of Wallis [23], Bača et al. in [8] recently defined a 

vertex irregular total labelings of graphs. For a simple graph 

= ( , )G V E with vertex set V and edge set E , a labeling

: {1,2, , }V E k   is called total k  labeling. The 

associated vertex weight of a vertex ( )x V G under a total 

k  labeling  is defined as  

( )

( ) = ( ) ( ),
y N x

wt x x xy 


   

where ( )N x is the set of neighbors of x . A total k -labeling

is defined to be a vertex irregular total labeling of a graph G if 

for every two different vertices x  and y of G ,  

( ) ( ).wt x wt y  

The minimum k  for which a graph G  has a vertex irregular 

total k -labeling is called the  total vertex irregularity 

strength of G , ( )tvs G . 

In this paper, we study properties of the vertex irregular total 

labelings and determine the exact values of the total vertex 

irregularity strength for four special classes of grid-like plane 

graphs. 

 

2KNOWN RESULTS 
The following theorem proved in [8], establish lower and 

upper bounds for the total vertex irregularity strength of a 

( , )p q -graph. 
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Theorem 1  [8] Let G  be a ( , )p q -graph with minimum 

degreeδ and maximum degree Δ. Then  

( ) 2 1.
1

p
tvs G p




 
      

 (1) 

If G is an r -regular ( , )p q -graph then from Theorem 1 it 

follows:  

( ) 1.
1

p r
tvs G p r

r

 
     

 

For a regular hamiltonian ( , )p q -graph G , it was showed in 

[8] that 
2

( )
3

p
tvs G

 
  
 

. Thus for cycle 
pC we have that 

2
( ) =

3
p

p
tvs C

 
 
 

. 

Recently, a much stronger upper bound on the total vertex 

irregularity strength of graphs has been established in [5]. In 

[19, 20, 21], Nurdin et al. found the exact values of total vertex 

irregularity strength of trees, several types of trees and disjoint 

union of t copies of path. Whereas the total vertex irregularity 

strengths of cubic graphs, wheel related graphs, Jahangir 

graphs 
,2nJ , for 4n  , circulant graphs (1,2)nC for 

5n  , and certain classes of unicyclic graphs have been 

determined by Ahmad et al. in [1, 3, 4]. Morerecently, the edge 

irregular total labelings for categorical product of two 

cycles(two paths) and for generalized prisms have been 

determined by Ahmad et al.. Wijaya et al. [24, 25] found the 

exact value of the total vertex irregularity strength of wheels, 

fans, suns, friendship, and complete bipartite graphs. Slamin et 

al. [22] determined the total vertex irregularity strength of 

disjoint union of sun graphs. 

 

3  MAIN RESULTS 
We start this section with the result on the total vertex 

irregularity strength of the plane graph nC dened in [8] as 

below: Let 1 2,P P and 3P be paths on vertices 

1 2 1 2, ,..., , , ,...,n na a a b b b and 1 2, ,..., nc c c

,respectively.Form the graph nC from the disjoint union 

1 2 3P P P  by adjoining the edges 2 1i ia b  and 2i ib c for

1,2,..., .i n (Fig. 1) 

The vertex set and edge set of nC are: 

( ) ={ ; :1 } { :1 2 }n i i iV a c i n b i n    C

1 1 1( ) ={ ; :1 1} { :1 2 1}n i i i i i iE a a c c i n bb i n        C

2 1 2{ ; :1 }i i i ia b c b i n  

 

Figure 1: The plane graph nC  

Theorem 2Let nC  be the plane graph for 2.n  Then

( ) 1.ntvs n C  

Proof. Let us consider the vertices of degree 2 and 3. There are

4n such vertices and if we want to use only labels1,2, ,k , 

the lowest and highest weights that we can obtain are 

respectively 3 and 4k , what implies that 4 3 1 4k n    

and thus  

4 2
( ) = 1.

4
n

n
tvs n


   C  

To show that ( ) 1ntvs n C , we define a labeling 

: ( ) ( ) {1,2, , 1}n nV E n   C C as follow: 

1, = 1,

( ) = 3, 2 1.i

if i n

a if i n




  



 

2, = 1

, = 2,2 1

1
( ) = , 3 2 2

2

3, = 2

i

if i

n if i n

i
b if i n

if i n








 
    





 

2, = 1

1, =
( ) =

1, 2 1
i

if i

if i n
c

n if i n







   
  

2 1 1 1 2 2 1( ) =1; ( ) = ( ) = ( ) = 2;n n n na b a b b c b c   

1 2 2 1 2( ) = ( ) = 3n nbb b b    

2 1 2( ) = ( ) = 2i i i ia b b c i    for 2 1i n    

1( ) = 1i ibb n    for 2 2 2i n    

For1 1i n    

1 1( ) =1; ( ) = 2i i i ia a c c    
This labeling gives weight of the vertices as follows: 
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3, =

4, = 1
( ) =

7, 2 1
i

if i n

if i
wt a

i if i n





   



 

7, = 1

8, = 2

( ) = 2 5, = 2 1

2 4 , 2 2 2

i

if i

if i n

wt b n if i n

n i if i n





 
     



 

5, =

6, = 1
( ) =

5 , 2 1
i

if i n

if i
wt c

n i if i n






    


 

It is easy to check that the weights of the vertices are distinct, 

that is 3,4, ,4 2n . This labeling construction shows that  

 ( ) 1.ntvs n C  

Combining with the lower bound, we conclude that  

 ( ) = 1.ntvs nC  

Which complete the proof. 

For 2,n  nA be the plane graph consisting of 3-sided faces, 

4-sided faces, 5-sided faces and one external infinite face. The 

plane graph nA is defined in [7] as shown in Figure 2. 

 

Figure 2: The plane graph nA  

Theorem 3Let nA be the plane graph for 5.n  Then 

3 3
( )

4
n

n
tvs


  A . 

Proof. Recall that the vertex set and the edge set of nA are 

( ) ={ ; ; ; :1 }n i i i iV a b c d i n A  

1 1 1 1( ) ={ ; ; ; :1 1}n i i i i i i i iE a a c c d d bc i n       A

{ ; ; :1 }i i i i i ia b bc c d i n   

Thus the plane graph nA has 5 vertices of degree 2, 3 4n  

vertices of degree 3; 1 vertex of degree 4 and 2n  vertices 

of degree 5. The smallest weight of nA is at least 3, so the 

largest weight of vertices of degree 2 is at least 7. Moreover, 

the largest weight of 3 4,1, 2n n  vertices of degree 3,4,5 

is at least 3 3,3 4,4 2n n n   , respectively. 

Consequently, the largest label of one of vertices or edges of

nA  is at least

7 3 3 3 4 4 2 3 3
max{ , , , } =

3 4 5 6 4

n n n n   
         

for 2n  . Thus  

 
3 3

( ) .
4

n

n
tvs


  A  

Let
3 3

=
4

n
k


   

We now prove the upper bound by providing labelling 

construction for nA as follow: 

1, = 1;

( ) = 5, 2 1

4 2 1

i

if i n

a if i k

i k if k i n






  
      

 

3, = 1

1, =
( ) =

2 5 2 , 2 1

2 4 3 2 1

i

n k if i

if i n
b

n k if i k

i n k if k i n



 




    
       

 

2, = 1

( ) = 3 3 2, 2i

if i

c n k if i n




   



 

3, = 1

4, 2 2

1
( ) = 2 4 2 , = 1

2

2 5 2 , =

i

if i

n k if i n

n
d n k if i n

n k if i n






    

 

     

  



 

1, = 1

2, =

( ) = 1, 2 1

, 2 1

i i

if i

if i n

a b i if i k

k if k i n






   

    



 

2, = 1;

( ) = , 2 1i i

if i n

b c k if i n




  


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2, = 1

( ) = , 2i i

if i

c d k if i n




 



 

1 1

1
, 1 2

2

( ) = ( ) = , = 1i i i i

i
if i n

c c d d k if i n  


    







For 

1 1i n    

1 1( ) =1; ( ) =i i i ia a bc k    

This labeling gives weight of the vertices as follows: 

3, = 1

4, =
( ) =

6 , 2 1
i

if i

if i n
wt a

i if i n






   


 

6, = 1

5, =
( ) =

2 4 , 2 1
i

n if i

if i n
wt b

n i if i n






    


 

7, = 1

3 4, =
( ) =

3 3 , 2 1
i

if i

n if i n
wt c

n i if i n







    


 

6, = 1

( ) = 5 , 2i

if i

wt d n i if i n




   



 

It is easy to check that the weight of the vertices are different. 

This labelling construction shows that  

3 3
( ) .

4
n

n
tvs


  A  

Combining with the lower bound, we conclude that  

3 3
( ) = .

4
n

n
tvs


 A  

Which completes the proof.  

 In the next two theorems, we show that the lower bound of 

Theorem 1 is tight. In the sequel we shall investigate the total 

vertex irregularity strength of the plane graph ,nB defined in 

[7] which consists of 3-sided faces, 4-sided faces and one 

external infinite face (Figure 3). 

Theorem 4Let nB be the plane graph for 5.n  Then 

2 1
( )

3
n

n
tvs


  B . 

Proof. Denote the vertex set and the edge set of nB are  

( ) ={ ; ; ; :1 }n i i i iV a b c d i n B  

1 1 1 1( ) ={ ; ; ; :1 1}n i i i i i i i iE a a bb c c d d i n      B

1 1{ ; ; :1 } { ; :1 1}i i i i i i i i i ia b bc c d i n b a c d j n       

Thus the plane graph nB has 4n vertices and maximum 

degree is 5. By Theorem 1, 

4 2 2 1
( ) =

6 3
n

n n
tvs

 
    B  for 5n  . 

 

Figure 3: The plane graph nB  

Let 
2 1

= .
3

n
k


   

We now prove the upper bound by providing labelling 

construction for nB as follow: 

1, i = 1

2, i = 2,3

1
( ) = ( ) = , i 4 2

3

, i = .

i i

f i

f i

i
a d i f i n

k f i n

 




 
     






If 

1,2(mod3)n  , then 1( ) = 1na k   and

1( ) = 2.nd k    

If 0(mod3)n  , then 1( ) = 2na k   and 

1( ) = 3.nd k    

1, = 1

( ) = ( ) = , 2 1.i i

if i

b c k if i n 




  



 

Also ( ) = 1nb k  and ( ) =nc k . 

1 1( ) = ( ) =1i i i ia a d d   if 1 2.i n    

If 0,1(mod3)n  , then 1( ) = 2n na a   and

1( ) = 3.n nd d   

If 2(mod3)n  , then 1( ) =1n na a   and 

1( ) = 2.n nd d   
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1 1

1, = 1

( ) = ( ) = , 2 1i i i i

if i

bb c c k if i n  




  



 

1, = 1

, 2 1
( ) = 3

, =
i i

if i

i
i if i n

a b

k if i n





      





 

1

1, = 2

3, = 3

1
( ) = , 4 1

3

, =

i i

if i

if i

i
a b i if i n

k if i n

 




 
     






 

1, = 1

, = 2

2
, 3 1

( ) = 3

5, = 0,1mod3

4, = 2mod3

i i

if i

k if i

i
i if i n

b c

if i n and n

if i n and n






 
     


 






 

2, = 1

3, = 2

3
( ) = , 3 1

3

, =

i i

if i

if i

i
c d i if i n

k if i n






 
     






 

1

1, = 1

3, = 2

1
( ) = , 3 2

3

, = 1

i i

if i

if i

i
c d i if i n

k if i n

 




 
     


 



 

This labeling gives weight of the vertices as follows: 

1 1 1 1( ) = 3, ( ) = 5, ( ) = 6 a ( ) = 4wt a wt b wt c nd wt d . 

If 0(mod3)n   

2 3, 2 1

( ) = 2 5, =i

i if i n

wt a i if i n

   






 

2 2 5, 2 2

4( 1) = 1
( ) =

2 7 =
i

n i if i n

n if i n
wt b

n if i n

    


 





 

2 2 6, 2 2

4 5 = 1
( ) =

2 8 =
i

n i if i n

n if i n
wt c

n if i n

    


 





 

2 4, 2 1

( ) = 2 6, =i

i if i n

wt d n if i n

   






 

If 1(mod3)n   

( ) = 2 3, i 2 ,iwt a i f i n    

2 2 3, 2 1

( ) = 2 5 =i

n i if i n

wt b n if i n

    






 

2 2 4, 2 1

( ) = 2 6 =i

n i if i n

wt c n if i n

    






 

( ) = 2 4, 2 .iwt d i if i n    

If 2(mod3)n   

( ) = 2 3, 2 ,iwt a i if i n    

2 2 4, i 2 2

4 3 i = 1
( ) =

2 5 i =
i

n i f i n

n f i n
wt b

n f i n

    


 





 

2 2 5, i 2 2

4( 1) i = 1
( ) =

2 6 i =
i

n i f i n

n f i n
wt c

n f i n

    


 





 

( ) = 2 4, i 2 .iwt d i f i n    

It is easy to check that the weight of the vertices are distinct. 

This labelling construction shows that  

2 1
( ) .

3
n

n
tvs


  B  
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Combining with the lower bound, we conclude that  

2 1
( ) = .

3
n

n
tvs


 B  

Which completes the proof. 

In [6] M. Bača defined the plane graph nD as below: Let 

1 2 3, ,P P P and 4P be paths on n  vertices. Let , , ,i i i ia b c d

where 1 i n  are the vertices of the paths 1 2 3, ,P P P and 

4P respectively. Form the graph ,nD from the disjoint union 

1 2 3 4P P P P   by adjoining the edges , ,i i i i i ia b bc c d for 

1 i n  and 1i ic b  for =1,2, , 1.i n (Figure 4). 

 

Figure 4: The plane graph nD  

Theorem 5Let nD be the plane graph for 5.n  Then 

2 1
( )

3
n

n
tvs


  D . 

Proof. Denote the vertex set and edge set of nD are  

 ( ) ={ ; ; ; :1 }n i i i iV a b c d i n D  

 1 1 1 1( ) ={ ; ; ; :1 1}n i i i i i i i iE a a bb c c d d i n      D  

 1{ ; ; :1 } { :1 1}i i i i i i i ia b bc c d i n c b i n        

Thus the plane graph nD has 4n vertices and maximum 

degree is 5. By Theorem 1 

4 2 2 1
( ) =

6 3
n

n n
tvs

 
    D  for 5n  . Let 

2 1
= .

3

n
k


   

We now prove the upper bound by providing labelling 

construction for nD as follow: 

1, 1 2

, = 1
( ) = 2

2, =
i

if i n

n
n if i n

a

if i n



  

    





 

1, = 1

2 1 2 , 2 2

1
( ) = 3 1 3 , = 1

2

2 4 3 , =

i

if i

n k if i n

n
b n k if i n

n k if i n






    

 

     

  



 

3 , 1 2

3
4 2 , = 1

( ) = 2

2 1 2 , =
i

n k if i n

n
n k if i n

d

n k if i n



    



      

  



 

1

, 1 2
2

( ) = 1, = 1i i

i
if i n

a a if i n 


    







 

1, = 1

3, 2 1
( ) =

2, =
i i

if i

if i n
a b

if i n





  




 

1

, 1 3
2

3
1 , = 2( ) =

2

, = 1

i i

i
if i n

n
n if i nd d

k if i n

 


    



    







 

1

1
, 1 2

2

( ) = , = 1i i

i
if i n

b b k if i n 


    







 

1, = 1

( ) = , 2i i

if i

b c k if i n




 



 

For 1 1;i n   1( ) = .i ic b k   

For 1 ;i n  ( ) =i ic d k  

If 0(mod2)k  , then 
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1

3 4 4 , 1 1e

( ) = , oi i

n k if i k ven

c c k therwise 

    





 

2 4 3 , = 1,

1, 2 1
( ) =

3 3 5 , 1
i

n k if i n

i if i k
c

i n k if k i n


 

   


     



 

If 1(mod 2)k  , then 

1

3 4 4 , 1 e

( ) = , oi i

n k if i k ven

c c k therwise 

   





 

2 4 3 , = 1,

1, 2
( ) =

3 3 5 , 1 1
i

n k if i n

i if i k
c

i n k if k i n


 

  


      



 

This labeling gives weights of the vertices as follows: 

3, = 1

5, =
( ) =

4, 2 1
i

if i

if i n
wt a

i if i n





   



 

4, = 1

2 6, =
( ) =

2 5 , 2 1
i

if i

n if i n
wt b

n i if i n







    


 

2 5, = 1

2 4, =
( ) =

3 3 , 2 1
i

n if i

n if i n
wt c

n i if i n







    


 

3 , 1 3

4 , 2 1
( ) =

2 1, =
i

n i if i n

n i if n i n
wt d

n if i n

    


     





 

It is easy to check that the weight of the vertices are distinct, 

that is 3,4, ,4 2.n This labelling construction shows that  

2 1
( ) .

3
n

n
tvs


  D  

Combining with the lower bound, we conclude that  

2 1
( ) = .

3
n

n
tvs


 D  

Which completes the proof. 
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